设为首页 加入收藏

Sustainable Development
Vol.2 No.4(2012), Article ID:4982,9 pages DOI:10.4236/SD.2012.24020

International Research Advance of Industrial System Ecologization and Its Reflection*

Yiping Fang

Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu

Email: ypfang@imde.ac.cn, ypfang2004@yahoo.ca

Received: Jul. 2nd, 2012; revised: Jul. 26th, 2012; accepted: Aug. 5th, 2012

ABSTRACT:

In line with the feature of industry’s configurator of resource, as well as controller of pollutants discharge, it is of significant importance to shift from an open loop system of “resource-product-waste” to a closed loop system of “resource-product-waste”, especially in coordination between industrial symbiosis and the environment, and in sustainability of industrial system. Based on the impact of industrial activities on natural ecosystem, the idea of industrial ecology has formed gradually since 1980s; therefore, the research of industrial system-based ecology is expanding continuously in international academic society. This paper summarizes the international research advances and orientations in six aspects, including industrial ecology and practical tools, ecological efficiency of industrial system, emergy analysis of industrial system, risk and vulnerability of industrial system, ecological stimulation of industrial system, cleaning and sustainability of industrial system. And author provides twofold of research reflections, which are strategically shifting from “adjustment” to “adaptation” of industrial system in research perspective, shifting from “simplicity” to “integrity” in discipline base.

Keywords: Industrial System; Ecologization; Research Advance; Reflection

工业系统生态化研究的国际态势 及其启示*

方一平

中国科学院成都山地灾害与环境研究所,成都

Email: ypfang@imde.ac.cn, ypfang2004@yahoo.ca

摘 要:

根据工业既是资源配置器,又是资源消耗和污染物产生的控制体这一特征,在过程上促进从“资源–产品–废弃物”的开环流程到“资源–产品–资源”的闭环流程的转换,对产业共生关系和环境协调,促进工业系统的可持续发展具有重要意义。针对工业活动对自然生态系统的影响,20世纪80年代末逐步形成了工业生态学(IE)的思想,20世纪90年代以来,国际学术界对工业系统降低环境影响、提高生态化水平的调控研究不断拓展,文章从工业生态学理论和应用工具、工业系统生态效率、工业系统能值、工业系统风险和脆弱性、工业系统生态模拟、工业系统绿色化和持续性管理等6个方面的研究进展进行了梳理和总结,在此背景下,获得了工业系统生态化研究的战略视野由“调整”转向“适应”、工业系统生态化研究的学科基础由“单一”转向“综合”的重要启示。

收稿日期:2012年7月2日;修回日期:2012年7月26日;录用日期:2012年8月5日

关键词:工业系统;生态化;国际研究进展;启示

1. 引言

针对工业活动对自然生态系统的影响[1],20世纪80年代末逐步形成了工业生态学(IE)的思想,20世纪90年代以来,国际学术界对工业系统降低环境影响、提高生态化水平的调控研究不断拓展,形成了工业生态学理论工具、工业系统生态效率、工业系统能值、工业系统脆弱性、工业系统生态模拟、工业系统持续性管理等6个方面的研究内容和方向。

2. IE理论和应用工具研究

工业生态学(IE)理论涉及领域主要包括概念、对象方法等[2-9]。1995年B. Allenby和T. Graedel[9]出版了第一部IE专著,形成了与物质、能量、信息流相关的概念及生态、经济系统相互耦合的思想。R. Lifset和T. Graedel[10]将工业生态学领域的核心要素归纳为6个方面:生物类比(The Biological Analogy)、使用系统观(The Use of System Perspectives)、技术变化的作用(The Role of Technological Change)、公司的角色(The Role of Companies)、低物质化和生态效率(Demariterialisation and Eco-Efficiency)、超前的研究和实践(Forward Looking Research and Practice)。J. Korhonen[11]利用K. H. Robert等[12]人的研究框架,将IE概念和原理进行了有效结合;P. H. Templet[13]创建了表达工业系统物质能量和产品、服务间的数量关系工具,突出了工业的系统属性、多样性和结构特性;T. E. Casavant和R. P. Côté[14]将理学分析方法与工具引入工业生态分析,强调自然与社会科学工具在工业系统应用中的互补性。在工业生态学理论的应用方面,国际上呈现出极其明显的两个方向:一是基于产品的系统研究(Product-Based Systems Approach),该类研究关注产品的影响,考虑生命周期过程,测度物质、能量与相关企业、过程、产品的输入输出关系,为工业系统运行管理和政策开发提供有用的信息;二是基于地理的系统研究(Geographical Systems Approach),该类研究惯于关注工业企业和参与机构在地理空间上的集聚,通过物质、能量以及副产品交换等紧密合作关系形成工业生态系统[15-17]。从基于产品系统方向看,工业生态学理论的应用主要集中在包括企业、工业部门、服务领域等在内的生命周期评价(Life Cycle Assessment,LCA),即从原料、生产、废物管理整个生命过程视角来评估潜在的环境影响和资源利用,由于考虑了自然、人类健康、资源的综合属性以及各个方面,自1990s年代以来,LCA工具得到广泛应用,其中较为典型的包括:UNEP/SETAC(环境毒性与化学协会)的生命周期倡议(Life Cycle Initiative),欧盟委员会的LCA平台(The European Platform for LCA of the European Commission)(2007),国际生命周期数据参照系统(International Reference Life Cycle Data System,ILCD),以及欧盟生命周期分析革新的第6合作行动框架(EU 6th Framework Co-Ordination Action for Innovation in Life Cycle Analysis for Sustainability,CALCAS,2009)等[18]。G. Finnveden等[18]总结了LCA研究从目标界定、生命周期清单、生命周期影响评估到现象和结果解释四个发展阶段,为进一步理解LCA方法的优劣势,深化LCA方法的应用奠定了很好的基础。从地理系统研究趋向看,工业生态学理论最重要的应用形式之一在于生态工业园区(Ecological Industrial Parks,EIPs)的建设,EIPs的建设已经深入到世界的许多发展中国家和发达国家,在新的发展条件和形势下,D. Sakr等[19]根据全球EIP的发展现状和趋势,基于全球视野,从共生商业关系(Symbiotic Business Relationship)、经济附加值(Added Economic Value)、意识和资源共享(Awareness and Information Sharing)、政策和规制框架(Policy and Regulatory Framework)、组织和制度设置(Organization and Institutional Setups)、技术因素(Technical Factors)、能力均衡(Balance between Capabilities)等7个方面对世界EIP发展的成功因素和限制因子进行了总结,为未来工业生态学建设和生态工业园区发展指明了方向。产业共生(Industrial Symbioses,ISs)则是工业生态学理论应用的另一个重要领域,体现了工业部门、相关企业在产品生产、废物利用、能源共享等方面可能存在的合作以及地理相近性,依据工业生态学理论开展ISs的研究也十分广泛[20-27],按照以上诸多学者的观点,产业共生从长期的经济利益关系中建立了合作伙伴关系,与此同时,各方创造了包括生产、经济等利益,企业通过能源串联、副产品多级利用等降低了交通成本、生产成本以及产品的市场价格[27]。实际上,在全球尺度,联合国环境署(UNEP)[28,29]已经把EIPs和ISs的开发建设作为持续生产系统的有力工具,早在1997年,UNEP就发布了工业园区环境管理技术报告,并为已有园区和新的工业园区建设提供了重要导向[27]

3. 工业系统的生态效率研究

1989年以来,许多研究机构界定了生态效率的概念,包括乌帕塔尔(Wuppertal)研究所和世界可持续发展工商理事会(WBCSD)[30],在生态经济研究文献中,生态效率被定义为价值增量与环境破坏增量之间的比率[31]。基于联合国2002年世界峰会工作报告,2005年芬兰发起了持续生产和消费战略项目(Commission for Sustainable Consumption and Production (KULTU Commission) 2005),该项目的核心目标就是通过生产链提高物质效率(Material-Efficiency)和生态效率(EcoEfficiency)[27]。许多学者则利用不同的技术方法,对工业系统生态效率进行了多角度的评估和分析研究,最具代表的方法和途经包括:过程综合[32]、火用分析[33-35]、物质流分析[36]、输入输出分析[37-40]、数据包络分析(DEA)[41]等,还有T. Van Gerven等[42]、C. Block等[43]通过6个关键生态效率分值,对工业部门的环境和经济综合绩效分析提出了9个方面的指标。S. Wursthorn等[44]从工业门类角度,划分了致癌影响(Carcinogenic Effects)、呼吸影响(Respiratory Effects)、气候变化(Climate Change)、臭氧层破坏(Ozone Layer Depletion)、生态毒性(Ecotoxicity)、酸雨化(Acidification)、富营养化(Eutrophication)7类99个生态指标,详细地描述了德国工业各个部门内部的环境–经济绩效状态。尽管相关概念和指标有所差异,但均涵盖了工业系统低物质化、增加资源生产力、减少物质排放毒性、延长产品寿命的核心特质[30,45-47],由于生态效率分析方法容易调查,相关数据的获取较为简便,这些指标和方法的主要目标均体现了以系统的、综合的、协调的方式为工业系统环境绩效、经济绩效提供有用的信息,是工业系统环境和发展协调研究的重要工具[48]。另一个与工业系统生态效率关联的重要概念和方法是“解耦”(decouping)分析[48-50],解耦意味着工业系统的环境影响弱于经济绩效,即环境影响的提高和降低程度要比经济绩效的增减程度小[48],近年来工业系统环境与经济的解耦研究日趋增加。生态效率的应用方面突显了不同工业行业、不同区域研究内容的扩展和延伸[51,52],在工业行业方面,主要包括造纸[53]、食品[54-56]、纺织[57]、化工[58]、矿产冶金与金属加工[59-62]、建材[63,64]等。区域应用方面的研究代表包括:P. Mickwitz等[65]、D. Z. Li等[66]学者对区域和城市水平生态效率应用研究,N. Jollands等[67]对新西兰、S. Erkko[68]对芬兰、R. L. Burritt和C. Saka[69]对日本、R. Côté[70]对加拿大、Y. Zhang和Z. F. Yang[71]对中国深圳、R. van Berkel[72]对澳大利亚、M. B. Fernández-Viñé等[73]对委内瑞拉等国家和地区的生态效率评估。

4. 工业系统的能值研究

1986年Odum[74]首次提出能值(Emergy)这一用词(取用Embodied和enERGY的前后缀),1997年Brown和Ulgiati利用资源再生性、能值指标评估整个经济系统的持续性[75,76]。许多学者借助能值量化社会经济系统资源、服务、商品、甚至信息,评估系统的环境绩效,为社会经济系统的持续性提供适用框架[77-84]。H. H. Lou等[85]利用扩展的能值方法分析了工业生态系统在不确定性条件下的环境和经济优化问题。在工业园区层次上,L. M. Wang[86,87]和Y. Geng等[88]分别将能值方法应用于工业园区的能源利用以及环境绩效和持续性分析,从园区尺度上提出了能值基础的系列评价指标,架起了园区工业系统和生态系统连接的桥梁,他们还以苏州生态工业园区、大连经济开发区等为实证对象,讨论了能值方法在园区层次应用的优劣势,他们认为,尽管该方法对数据要求较高,数据收集的难度也较大,但对于关注工业园区生态问题的管理者和行政主管者来说,能值法仍然是评估园区综合效率的有效工具。X. H. Zhang等[89]同样利用能值方法,评价了废物交换对四川省攀枝花市硫酸生产系统(SAPS)和二氧化钛生产系统(TDPS)两类工业系统持续性的影响,他们的研究表明,尽管两类系统有所差异,但废物交换明显促进了两类系统的持续性,这类研究为工业系统废物资源化,降低对自然系统环境压力带来了新的视野。类似的研究还包括H. F. Mu等[90]对能值指标的细分,开发了工业持续性的能值评判指标,并利用环境负荷率(Environmental Loading Ratio,ELR)、能值产出率(Emergy Yield Ratio,EYR)、能值持续性指数(Emergy Index of Sustainability,EIS)等不同的能值标准指标评估工业系统的持续性水平,这些指标能够较好地反映复杂系统的结构、功能,定量分析人与自然关系效应,尤其是在工业系统的废物再利用、资源恢复和科学管理方面体现了能值分类指标的优越性。B. Zhang等[91]利用能值方法测算了我国工业自1997年至2006年期间化石能源、矿产资源、农产品资源、进口材料等资源输入的变化,他们研究认为,在过去的10年内,我国工业系统的资源输入呈稳步上升趋势,不过单位工业增加值的资源投入密度呈下降趋势,总体上,目前我国工业发展主要沿用不可再生资源投入的增加、资源密集生产扩展、巨大环境压力的开发模式。

5. 工业系统的风险和脆弱性研究

近年来,脆弱性概念逐步被应用于工业系统相关的研究领域[92,93]。尽管脆弱性的概念目前还没有统一的定义,但往往与风险概念相联系,Einarsson和Rausand[93]详细讨论了复杂工业系统内部、外部脆弱性的影响因素,分析了工业系统脆弱性和风险之间的联系和差异,初步建立了工业系统脆弱性分析和研究的框架。此后,Y. Perrodin等[94]从问题形成阶段、暴露特征阶段、影响特征阶段、最后风险阶段等风险评估研究的不同发展阶段,对工业系统的生态风险进行了系统梳理和综述,提出了未来工业系统生态风险评估应关注不同学科的交叉、优化不同模型的界面,提高不同方法的兼容性等重要研究方向。S. Anderson和B. A. Mostue[95]将风险分析和风险管理方法应用于挪威的石化工业,研究指出,针对工业综合运行(Integrated Operation,IO)概念而言,需要寻求其它的风险分析途径;针对人和组织问题,需要建立适当的评估方法,因为工业对技术设计问题的关注趋势十分明显,而影响主要事故风险的IO因素则主要是与人和组织相关的问题;针对风险评估过程而言,需要开发基于恢复的运行方法,强调日常工作的监测(Monitoring)、预期(Anticipating)、响应(Responding)以及认识(Learning);IO概念为风险管理过程的改进提供了组织和技术两个方面的机会,包括日常工作风险分析流程的改进、风险评估在日常规划中的实际应用、与分析师和硬件安装机构的紧密沟通、技术方案在风险分析中的利用等,均体现了利用IO来促进风险管理每一过程的思路。在L. Huang等人[96]的研究中,提出了双尺度系统评估化学工业集群环境风险的思路,在双尺度评估系统中,从厂级尺度、区域集群尺度设计了系列风险预警指标,在企业尺度,构建诸如灾害物质、关键设备运行、外部环境技术效率等评判指标,在区域尺度,量化环境、经济、社会条件、特殊的企业要素等关联的风险指标,并对江苏省5个化学工业集群进行了案例分析。

6. 工业系统的生态模拟研究

工业系统的生态模拟是工业生态学理念转向实践的重要路经,诸多学者对此展开了积极探索。以J. Korhonen为代表对工业生态系统实现条件进行了探索[97-99];C. Hardy和T. Graedel[100]以生态系统食物网作为切入点,分析了19个生态工业园区食物网系统,通过实证研究大大加深了对工业生态系统的理解;P. Desrochers[101]将工业链作为研究视角,开展工业生态系统和区域发展透视分析,论述了生产过程与工业链的关系;J. S. Baldwin[102]将工业生态系统与自然生态系统进行比拟,在他的研究中,强调了工业系统发展的系统结构和组织特征。C. H. Huo和L. H. Cai[103]依据生态工业系统的最大流原则(MFP),利用密度函数以及神经网络方法,对生态工业系统的形成和进化机制进行了理论分析,并利用自组织特征的人工神经网络模型对卡伦堡和中国鲁北两个生态工业园区案例进行了模拟,研究不仅发现了生态工业的结构增长模式,而且模拟研究大大加深了生态工业模式进化的理解,为生态工业园区设计、改进、内部结构保护提供了新的启示。近年来,随着复杂适应系统(Complex Adaptive System)概念的出现,基于Agent建模(AgentBased Modeling,ABM)方法在生态工业园区中的应用较为广泛,一般而言,复杂适应系统是基于系统内部之间以及系统内部和环境之间相互作用出现的复杂行为,即对环境变化的适应行为[104],复杂适应系统的核心理论是适应性创造了复杂性,由于生态工业系统是大量工厂自决策、相互作用、相互共生和耦合的进化结果,是较为典型的复杂适应系统[105],基于此,利用计算机技术进行多主体(Agent)的仿真方法在生态工业园区研究中得到应用,如Z. Zhou[105]从工厂主体、消费者主体、环境主体将生态工业系统划分为三个层次。K. Cao等[106]利用ABM模型,探讨了生态工业系统演进过程,指出通过园区工厂的共生、副产品的利用、创建新的产业链可以提升园区的持续性,内流能值(Internal-Flow Emergy,IFE)的增加可以作为生态工业系统演进方向的重要指标。C. H. Liu等[107]围绕区域工业生态系统发展的边界障碍是什么?什么因素限制了区域工业生态系统的发展?怎么能够超越边界较好地促进工业生态系统的形成等关键问题展开了工业生态系统构建的讨论,从案例分析的角度,指出了政府对园区企业共生关系、消除部门边界障碍,促进工业生态系统成型的作用。

7. 工业系统的绿色化与持续性管理研究

工业持续性管理研究主要涵盖工业持续性的指标体系、模型、设计、评估、管理以及工业对环境压力的认知和响应等方面,如A. Azapagic[108]、J. Dewulf[109]和IChemE[110]、L. Sokka等[111]、S. Pakarinen等[112]学者和机构对工业持续性指标的研究,从指标的构建方法上,主要包括状态–压力–响应模型、生态足迹、可持续性晴雨表(Barometer of Sustainability)、环境持续性指数等[113],持续性绩效指标、生命周期指标、持续性社会指标、环境脆弱性指数、福利指数等[114]。从指标的构建内容上,主要涵盖产业共生系统不可再生资源(金属循环、废物和副产品利用、化石能源使用)、废物排放(化学物质的限制排放量、灾害物质的排放量、废弃物排放量、废物处理和循环)、土地利用(森林资源开发、土地消费活动)、人类健康、生物多样性、区域社会持续性等度量指标[112,115],有些学者还从反映工业进步、社会贡献、环境管理、经济绩效等角度,对制造业竞争能力、就业贡献、环境保护和市场占有系数等进行持续指标的构造[116]。从工业行业方面,P. K. Singh等[117]为钢铁工业开发了综合持续性绩效指数方法,该方法从经济、环境、社会、技术以及组织管理5个维度进行了考虑;另外,A. Azapagic [118]为矿产开采和加工业建立了持续性指标体系,L. Stamford和A. Azapagic[119]在强调技术经济、环境和社会持续性问题的同时,选择了43个指标,对英国电力工业进行了持续性评估。近年来,比较明显的国际发展趋势是,工业持续性研究进一步向更加微观的企业层次拓展,企业持续性(Corporate Sustainability)是目前文献常见的行业术语[120],实际上,许多学者将可持续发展应用到了企业层次,如R. Gray[121]、D. S.Change等[113]、L. C. Roca等[122],在D. S. Change等[113]学者的研究中,从工业企业持续性尺度,采用DEA方法对16类工业效率进行赋分,以此评估工业持续性的综合水平;L. C. Roca等[122]人的研究,从2008年加拿大94个可持续发展报告,585个不同指标中,深入分析和系统总结了加拿大各产业领域企业持续性指标的应用情况,与此相类似,从工业企业方面,许多研究者使用工业企业环境绩效来测度公司或厂矿的持续性绩效[123-128],在环境绩效的研究方面,有些学者还强调了企业的社会责任[127,129]。在工业持续性研究的趋势方面,K. Fischer等[130]则认为工业绿色化是工业环境地理学的研究方向,描绘了千年工业绿色网络的蓝图,将工业清洁生产、绿色生产作为关键要素开拓工业生态化新途径;U. Diwekar[131]立足传统过程向绿色过程的转变,分析工业持续性的前景、重要方向;J. Plaut[132]、H. Strebel和A. Posch[133]依据贸易和环境关系,大大开拓了工业持续性宏观管理的研究视野;在J. S. Baldwin等[134]的研究中,则更加关注新技术和实践过程的效果,探究工业系统持续和非持续之间的本质差异,突出了新技术研究在工业持续性方面的作用、地位和方向。

8. 两点启示

从工业系统生态化研究的国际趋势和动向看,我们可以获得以下两点启示。

8.1. 工业系统生态化研究的战略视野由 “调整”转向“适应”

从国际研究现状和趋势看,关于工业生态化的很多研究大都围绕生态化评价、生态化模拟、生态效率以及调控管理展开的,当今区域生态调控的主流思想是以生态系统平衡为基本理念,以平衡管理与控制为目标指导区域生态系统发展,调控区域生态系统的演替。由于生态系统的复杂性、有限的可预测性,使得以平衡管理与控制的手段在解决一些区域性生态问题,遇到了难以解决的理论与实际问题。二十世纪90年代以来,出现了以生态系统恢复力为管理目标的生态系统适应性模式,使管理复杂的、难以预测的区域生态系统演替与发展有了新的理论与方法。从生态学演进趋势及启示看,自然进化已延续350亿年,现存生态系统体现了生态系统总体功能有效性以及适应外部环境变化的能力,自然生态系统的这种演进规律,可应用于工业系统的环境管理[1,107,135-137],利用自然生态系统的功能模仿人造系统的进化对工业系统来说是一种必然趋势,这将极大地促进工业系统向更为持续的方向发展[136,138,139]。可变、适应、自然选择是生态系统进化的重要机制,工业系统同样体现了类似的特征,然而,目前工业系统的生态适应性还远没有充分得到关注和理解,这将是生态系统进化论在工业系统适应性研究中的重要目标和任务[136]。适应性源于进化生态学,包含从单个有机体到整个生态系统的适应尺度,在社会经济领域,被认为是人造系统对环境灾害和人类脆弱性的反应[140]以及对新的、正在改变的生态环境的应对潜力[141]。由于工业系统的复杂性及过程性,工业系统的生态化需要从调整和适应双重角度开展研究,关于工业系统生态化的调整,一直是许多学者关注的焦点,诸如工业系统的生态效率、能值、脆弱性、生态模拟、持续性管理以及生态化模式构建和实现途经研究等均突出了影响、评估和调整研究内涵及其维度,而调整的核心是采用命令到控制(Command-to-Control)的路径,尽管调整是实现工业系统生态化的重要手段,但空间有限[142],为此,工业系统的生态化问题需要从影响评估、调整研究向适应优先转化,从自然角度保护工业系统(适应性),而不仅仅从工业系统角度保护自然(影响评估和削减)。从工业系统演进趋势及启示看,自从第一次工业革命以来,在核心技术、生产组织方法、社会发展影响下,全球的工业生产系统通过截然不同的发展阶段得到进化[143],而工业生产系统转向生态工业系统,需要战略性的生态位管理路径来实现。从历史看,工业生产系统转化是背景要素和社会结构和制度进化、经济变量和技术需求相互作用的结果,这是决定工业系统生态适应能力的必然要素和变化趋势[143]

8.2. 工业系统生态化研究的学科基础由 “单一”转向“综合”

关于工业系统的生态化研究,涵盖了包括生态学、地理学、化学、经济学、管理学等各个学科、各个领域的专家学者,而各个学科在针对工业生态化的研究过程中,虽然有不同的研究角度、研究背景和研究对象,但对工业系统的生态重组和构建达成一种共识:工业活动和自然环境之间的关系不是截然不同的对立,而是柔性的、渐变的和有缓冲空间的。这种有层次的时空关系表现在“适应”层面上,使工业系统环境和自然环境之间的关系以“适应”为准绳,这种柔性促进了学科之间的多界面交结,从工业生态学发展看,作为以工业生态群落理论、工业代谢理论、工业生态重组理论、工业系统进化理论为基础的工业生态学科发展的新方向、新途经,工业系统的生态化研究更多地涉及以物质减量、清洁生产等物质形态环境,由于工业集聚和布局的核心基础是空间配置,空间环境的影响也是影响工业生态适应的关键,而且这一问题不断受到关注,这些物质形态环境通过各种管理策略的制定来实现工业生态所追求的目标和价值。根据工业既是资源配置器,又是资源消耗和污染物产生的控制体这一特征,在过程上促进从“资源–产品–废弃物”的开环流程到“资源–产品–资源”的闭环流程的转换,对产业共生关系和环境进行协调,从而使工业系统更加适于产业经济可持续发展。所以,从工业生态学这一新兴学科看,工业系统的生态化研究将有效促进工业生态学科由生态重组诸要素调控、整理,向开放、主动追求工业系统与所处环境高效和谐共存的趋势发展,并更加鲜明地体现多学科交叉性、综合性、集成性的特点和优势。

从地理学发展趋势看,在宏观层面上的综合集成、孕育和滋生统一地理学的同时,微观层面的深化依然是学科发展的主流和学科前沿的集中领域[144];方法上,综合集成是解析人地关系复杂巨系统问题的有效手段,地理学面对的“人地关系地域系统”是一个非常复杂的系统,在地理学学科建设过程中“综合性”即利用系统观和整体观研究地理环境,始终是地理学最高层面的科学难点问题,技术方法层面也没有取得实质性的突破[144-146],新世纪地理学应在综合研究上要有所提高,有所突破[147];内容上,经济全球化和全球环境变化的区域合成研究、区域生态经济理论与可持续发展模式研究、不同空间尺度区域人地关系优化调控与适应途径研究等是未来地理学,尤其是人文地理学的重要研究领域和方向,而工业系统的生态化和适应,正是从多学科综合交叉和多种技术手段综合实践的战略阵地,以工业系统为切入点,以生态适应为视角,以区域发展为主线,开展区域人地系统动态优化调控的示范、集成整合研究[144],在此过程中,人文地理学应具有重要责任,发挥重要角色。随着工业化的推进,工业发展与自然生态系统的内在关联愈加密切,与自然生态系统的相互作用愈加强烈,探索工业系统生态化和适应性,是对工业系统承受外部环境变化能力、应对生态风险潜能、协调人–地关系的规律认识,也是对社会经济阶段和技术发展水平的轨迹映射,而认知的理论基础需要地理学、生态学、经济学等多学科的高度综合。

参考文献 (References)

[1]       D. Hall. Industrial harm to an ecological dream. Corporate Environmental Strategy, 2000, 7(4): 379-387.

[2]       D. Frosch, N. Gallopoulos. Strategies for manufacturing. Scientific American, 1989, 261(3): 94-102.

[3]       H. Tibbs. Industrial ecology: A new environmental agenda for industry. Global Business Network, 1993. http://www.bfi.org/pdf/gbn_ecology.pdf

[4]       R. U. Ayres, L. Ayres. Industrial ecology-towards closing the materials cycle. Cheltenham: Edward Elgar; 1996: 278-280.

[5]       S. Erkman. Industrial ecology: A historical view. Journal of Cleaner Production, 1997, 5(1-2): 1-10.

[6]       M. R. Chertow. Industrial symbiosis: Literature and taxonomy. Annual Review of Energy Environment, 2000, 25: 313-337.

[7]       F. den Hond. Industrial ecology: A review. Regional Environmental Change, 2000, 1(2): 60-69.

[8]       J. Korhonen, D. Huisingh and A. S. F. Chiu. Applications of industrial ecology—An overview of the special issue. Journal of Cleaner Production, 2004, 12(8-10): 803-807.

[9]    T. E. Graedel, B. R. Allenby. Industrial ecology (second edition). 北京: 清华大学出版社, 2004.

[10]    R. Lifset, T. Graedel. Industrial ecology: Goals and definitions. In: R. U. Ayres, L. W. Ayres, Eds., A Handbook of Industrial Ecology, Cheltenham: Edward Elgar, 2002: 997-1010.

[11]    J. Korhonen. Industrial ecology in the strategic sustainable development model: Strategic applications of industrial ecology. Journal of Cleaner Production, 2004, 12(8-10): 809-823.

[12]    K. H. Robert, B. Schmidt-Bleek, J. A. de Larderel, et al. Strategic sustainable development—Selection, design and synergies of applied tools. Journal of Cleaner Production, 2002, 10: 197-214.

[13]    P. H. Templet. Partitioning of resources in production: An empirical analysis. Journal of Cleaner Production, 2004, 12(8-10): 841-853.

[14]    T. E. Casavant, R. P. Côté. Using chemical process simulation to design industrial ecosystems. Journal of Cleaner Production, 2004, 12(8-10): 901-908.

[15]    J. Korhonen. Two paths to industrial ecology: Applying the product-based and geographical approaches. Journal of Environmental Planning and Management, 2002, 45: 39-57.

[16]    R. Ayres, L. Ayres. Industrial ecology: Towards closing the materials cycle. Cheltenham: Edward Elgar, 1996.

[17]    D. Giurco, B. Cohen, E. Langham and M. Warnken. Backcasting energy futures using industrial ecology. Technological Forecasting and Social Change, 2011, 78(5): 797-818.

[18]    G. Finnveden, M. Z. Hauschild, T. Ekvall, J. Guinee, R. Heijungs, S. Hellweg, A. Koehler, D. Pennington and S. Suh. Recent developments in life cycle assessment. Journal of Environmental Management, 2009, 91(1): 1-21.

[19]    D. Sakr, L. Baas, S. El-Haggar and D. Huisingh. Critical success and limiting factors for eco-industrial parks: Global trends and Egyptian context. Journal of Cleaner Production, 2011, 19(11): 1158-1169.

[20]    M. Chertow. Industrial symbiosis: Literature and taxonomy. Annual Review of Energy and the Environment, 2000, 25: 313- 337.

[21]    M. Chertow. “Uncovering” industrial symbiosis. Journal of Industrial Ecology, 2007, 11(1): 11-30.

[22]    P. Desrochers. Industrial symbiosis: The case for market coordination. Journal of Cleaner Production, 2004, 12(8-10): 1099- 1110.

[23]    N. B. Jacobsen. Industrial symbiosis in Kalundborg, Denmark— A quantitative assessment of economic and environmental aspects. Journal of Industrial Ecology, 2006, 10(1-2): 239-255.

[24]    M. Mirata, T. Emtairah. Industrial symbiosis networks and the contribution to environmental innovation: The case of the Landskrona industrial symbiosis programme. Journal of Cleaner Production, 2005, 13 (10-11): 993-1002.

[25]    O. Salmi. Eco-efficiency and industrial symbiosis e a counterfactual analysis of a mining community. Journal of Cleaner Production, 2007, 15(17): 1696-1705.

[26]    R. van Berkel, T. Fujita, S. Hashimoto and Y. Geng. Industrial and urban symbiosis in Japan: Analysis of the Eco-Town program 1997-2006. Journal of Environmental Management, 2009, 90: 1544-1556.

[27]    S. Lehtoranta, A. Nissinen, T. Mattila and M. Melanen. Industrial symbiosis and the policy instruments of sustainable consumption and production. Journal of Cleaner Production, 2011, 19(16): 1865-1875.

[28]    United Nations Environment Programme. The environmental management of industrial estates. Paris: Industry and Environment Technical Report No. 39, 1997.

[29]    United Nations Environment Programme. Planning for change: Guidelines for national programmes on sustainable consumption and production, 2008.

[30]    M. Braungart, W. McDonough and A. Bollinger. Cradle-tocradle design: Creating healthy emissions—A strategy for ecoeffective product and system design. Journal of Cleaner Production, 2007, 15: 1337-1348.

[31]    M. Kortelainen. Dynamic environmental performance analysis: A Malmquist index approach. Ecological Economics, 2008, 64(4): 701-715.

[32]    M. El-Halwagi, M. Noureldin. Pollution prevention targets through integrated design and operation. Computers and Chemical Engineering, 2000, 24(2-7): 1445-1453.

[33]    O. Ozdogan, M. Arikol. Energy and exergy analyses of selected Turkish industries. Energy, 1995, 20: 73-80.

[34]    Y. Li, S. Y. Hu, D. J. Chen and D. W. Zhang. Exergy analysis on eco-industrial systems. Science in China: Series B Chemistry, 2006, 49(3): 281-288.

[35]    M. T. Oladiran, J. P. Meyer. Energy and exergy analyses of energy consumptions in the industrial sector in South Africa. Applied Energy, 2007, 84(10): 1056-1067.

[36]    C. Sendra, X. Gabarrell and T. Vicent. Material flow analysis adapted to an industrial area. Journal of Cleaner Production, 2007, 15: 1706-1715.

[37]    Y. P. Fang, H. Z. Zhou. Value flow analysis based on EAP industrial chain: Case of Huaning in Xichang, Sichuan. Journal of Cleaner Production, 2009, 17(2): 310-316.

[38]    R. Bailey, J. K. Allen and B. Bras. Applying ecological inputoutput flow analysis to material flows in industrial systems. Part I. Tracing flows. Journal of Industrial Ecology, 2004, 8(1): 45- 68.

[39]    R. Bailey, B. Bras and J. K. Allen. Applying ecological inputoutput flow analysis to material flows in industrial systems. Part II. Flow metrics. Journal of Industrial Ecology, 2004, 8(1): 69- 91.

[40]    R. Bailey, B. Bras and J. K. Allen. Measuring material cycling in industrial systems. Resources, Conservation and Recycling, 2008, 52(4): 643-652.

[41]    B. Zhang, J. Bi, Z. Y. Fan, Z. W. Yuan and J. J. Ge. Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecological Economics, 2008, 68: 306- 316.

[42]    T. Van Gerven, C. Block, G. Geens, C. Cornelis and C. Vandecasteele. Environmental response indicators for the industrial and energy sector in Flanders. Journal of Cleaner Production, 2007, 15(10): 886-894.

[43]    C. Block, T. Van Gerven and C. Vandecasteele. Industry and energy sectors in Flanders: Environmental performance and response indicators. Clean Technologies and Environmental Policy, 2007, 9: 43-51.

[44]    S. Wursthorn, W. R. Poganietz and L. Schebek. Economic-environmental monitoring indicators for European countries: A disaggregated sector-based approach for monitoring eco-efficiency. Ecological Economics, 2011, 70(3): 487-496.

[45]    E. A. Lowe, L. K. Evans. Industrial ecology and industrial ecosystems. Journal of Cleaner Production, 1995, 3(1-2): 47-53.

[46]    L. Baas. Cleaner production and industrial ecosystems, a Dutch experience. Journal of Cleaner Production, 1998, 6(3-4): 189- 197.

[47]    C. Cleveland, M. Ruth. Indicators of dematerialization and the materials intensity of use. Journal of Industrial Ecology, 1999, 2(3): 15-50.

[48]    J. Van Caneghem, C. Block, H. Van Hooste and C. Vandecasteele. Eco-efficiency trends of the Flemish industry: Decoupling of environmental impact from economic growth. Journal of Cleaner Production, 2010, 18(14): 1349-1357.

[49]    Indicators to Measure Decoupling of Environmental Pressure from Economic Growth. Organisation of Economic Co-Operation and Development (OECD). SG/SD(2002)1/FINAL, 2002.

[50]    H. F. Xu, Y. P. Fang and Y. W. Liu. Decoupling analysis of environmental pressure and economic development: A case of the industrial system in Panzhihua. International Conference on Electronics, Communications and Control (ICECC), 2011.

[51]    A. Bossilkov, T. Clark. Eco-efficiency in the metals industry. Perth: Centre of Excellence in Cleaner Production, 2002.

[52]    R. van Berkel. Cleaner production and eco-efficiency initiatives in Western Australia 1996-2004. Journal of Cleaner Production, 2007, 15: 741-755.

[53]    G. P. Kharel, K. Charmondusit. Eco-efficiency evaluation of iron rod industry in Nepal. Journal of Cleaner Production, 2008, 16(13): 1379-1387.

[54]    J. Van Caneghem, C. Block, P. Cramm, R. Mortier and C. Vandecasteele. Improving eco-efficiency in the steel industry: The ArcelorMittal gent case. Journal of Cleaner Production, 2010, 18(8): 807-814.

[55]    Y. T. Wang, J. Liu, L. Hansson, K. Zhang and R. Q. Wang. Implementing stricter environmental regulation to enhance eco-efficiency and sustainability: A case study of Shandong Province’s pulp and paper industry, China. Journal of Cleaner Production, 2011, 19(4): 303-310.

[56]    N. Honkasalo, H. Rodhe and C. Dalhammar. Environmental permitting as a driver for eco-efficiency in the dairy industry: A closer look at the IPPC directive. Journal of Cleaner Production, 2005, 13(10-11): 1049-1060.

[57]    D. Maxime, M. Marcotte and Y. Arcand. Development of ecoefficiency indicators for the Canadian food and beverage industry. Journal of Cleaner Production, 2006, 14(6-7): 636-648.

[58]    A. Ingaramo, H. Heluane, M. Colombo and M. Cesca. Water and wastewater eco-efficiency indicators for the sugar cane industry. Journal of Cleaner Production, 2009, 17(4): 487-495.

[59]    L. Breedveld, G. Timellini, G. Casoni, A. Fregni and G. Busani. Eco-efficiency of fabric filters in the Italian ceramic tile industry. Journal of Cleaner Production, 2007, 15(1): 86-93.

[60]    K. Charmondusit, K. Keartpakpraek. Eco-efficiency evaluation of the petroleum and petrochemical group in the map Ta Phut industrial estate, Thailand. Journal of Cleaner Production, 2011, 19(2-3): 241-252.

[61]    R. van Berkel. Eco-efficiency in the Australian minerals processing sector. Journal of Cleaner Production, 2007, 15(8-9): 772- 781.

[62]    R. van Berkel. Eco-efficiency in primary metals production: Context, perspectives and methods. Resources, Conservation and Recycling, 2007, 51(3): 511-540.

[63]    D. Z. Li, J. Zhu, E. C. M. Hui, B. Y. P. Leung and Q. M. Li. An emergy analysis-based methodology for eco-efficiency evaluation of building manufacturing. Ecological Indicators, 2011, 11(5): 1419-1425.

[64]    G. Oggioni, R. Riccardi and R. Toninelli. Eco-efficiency of the world cement industry: A data envelopment analysis. Energy Policy, 2011, 39(5): 2842-2854.

[65]    P. Mickwitz, M. Melanen, U. Rosenström and J. Seppälä. Regional eco-efficiency indicators—A participatory approach. Journal of Cleaner Production, 2006, 14(18): 603-611.

[66]    D. Z. Li, E. C. M. Hui, B. Y. P. Leung, Q. M. Li and X. Xu. A methodology for eco-efficiency evaluation of residential development at city level. Building and Environment, 2010, 45(3): 566-573.

[67]    N. Jollands, J. Lermit and M. Patterson. Aggregate eco-efficiency indices for New Zealand—A principal components analysis. Journal of Environmental Management, 2004, 73(4): 293- 305.

[68]    S. Erkko, M. Melanen and P. Mickwitz. Eco-efficiency in the Finnish EMAS reports—A buzz word? Journal of Cleaner Production, 2005, 13(8): 799-813.

[69]    R. L. Burritt, C. Saka. Environmental management accounting applications and eco-efficiency: Case studies from Japan. Journal of Cleaner Production, 2006, 14(14): 1262-1275.

[70]    R. Côté, A. Booth and B. Louis. Eco-efficiency and SMEs in Nova Scotia, Canada. Journal of Cleaner Production, 2006, 14(6-7): 542-550.

[71]    Y. Zhang, Z. F. Yang. Eco-efficiency of urban material metabolism: A case study in Shenzhen, China. Acta Ecologica Sinica, 2007, 27(8): 3124-3131.

[72]    R. van Berkel. Cleaner production and eco-efficiency initiatives in Western Australia 1996-2004. Journal of Cleaner Production, 2007, 15(8-9): 741-755.

[73]    M. B. Fernández-Viñé, T. Gómez-Navarro and S. F. Capuz-Rizo. Eco-efficiency in the SMEs of Venezuela. Current status and future perspectives. Journal of Cleaner Production, 2010, 18(8): 736-746.

[74]    H. T. Odum. Emergy in ecosystems. In: N. Polunin, Ed., Environmental Monographs and Symposia, New York: John Wiley, 1986: 337-369.

[75]    M. T. Brown, S. Ulgiati. Emergy-based indices and ratios to evaluate sustainability: Monitoring economies and technology toward environmentally sound innovation. Ecological Engineering, 1997, 9: 51-69.

[76]    J. R. Siche, F. Agostinho, E. Ortega and A. Romeiro. Sustainability of nations by indices: Comparative study between environmental sustainability index, ecological footprint and the emergy performance indices. Ecological Economics, 2008, 66(4): 628-634.

[77]    H. T. Odum. Environmental accounting. New York: Wiley, 1996.

[78]    M. T. Brown, R. A. Herendeen. Embodied energy analysis and emergy analysis: A comparative view. Ecological Economics, 1996, 19: 219-235.

[79]    S. Ulgiati, M. T. Brown. Monitoring patterns of sustainability in natural and man-made ecosystems. Ecological Modeling, 1998, 108: 23-26.

[80]    M. T. Brown, S. Ulgiati. Emergy evaluation of the biosphere and natural capital. Ambio, 1999, 28: 486-493.

[81]    M. T. Brown, S. Ulgiati. Emergy measures of carrying capacity to evaluate economic investments. Population and Environment, 2001, 22(5): 471-501.

[82]    M. T. Brown, V. Buranakarn. Emergy indices and ratios for sustainable material cycles and recycle options. Resources Conservation and Recycling, 2003, 38: 1-22.

[83]    K. P. Lei, Z. S. Wang and S. S. Ton. Holistic emergy analysis of Macao. Ecological Engineering, 2008, 32(1-3): 30-43.

[84]    K. P. Lei, Z. S. Wang. Emergy synthesis and simulation for Macao. Energy, 2008, 33(4): 613-625.

[85]    H. H. Lou, M. A. Kulkarni, A. Singh and Y. L. Huang. A game theory based approach for emergy analysis of industrial ecosystem under uncertainty. Clean Technologies and Environmental Policy, 2004, 6: 156-161.

[86]    L. M. Wang, W. D. Ni and Z. Li. Emergy evaluation of combined heat and power plant eco-industrial park (CHP plant EIP). Resources, Conservation and Recycling, 2006, 48(1): 56-70.

[87]    L. M. Wang, J. T. Zhang and W. D. Ni. Emergy evaluation of eco-industrial park with power plant. Ecological Modelling, 2005, 189(1-2): 233-240.

[88]    Y. Geng, P. Zhang, S. Ulgiati and J. Sarkis. Emergy analysis of an industrial park: The case of Dalian, China. Science of the Total Environment, 2010, 408(22): 5273-5283.

[89]    X. H. Zhang, S. H. Deng, Y. Z. Zhang, G. Yang, L. Li, H. Qi, H. Xiao, J. Wu, Y. J. Wang and F. Shen. Emergy evaluation of the impact of waste exchanges on the sustainability of industrial systems. Ecological Engineering, 2011, 37(2): 206-216.

[90]    H. F. Mu, X. Feng and K. H. Chu. Improved emergy indices for the evaluation of industrial systems incorporating waste management. Ecological Engineering, 2011, 37(2): 335-342.

[91]    B. Zhang, G. Q. Chen, Q. Yang, Z. M. Chen, B. Chen and Z. Li. How to guide a sustainable industrial economy: Emergy account for resources input of Chinese industry. Procedia Environmental Sciences, 2011, 5: 51-59.

[92]    H. D. Foster. Resilience theory and system evaluation. In: J. A. Wise, V. D. Hopkin and P. Stager, Eds., Verification and Validation of Complex Systems: Human Factors Issues, NATO Advances Science Institute. Series F: Computers and Systems Sciences, Vol. 110, Berlin: Springer Verlag, 1993.

[93]    S. Einarsson, M. Rausand. An approach to vulnerability analysis of complex industrial systems. Risk Analysis, 1998, 18(5): 535- 545.

[94]    Y. Perrodin, C. Boillot, R. Angerville, G. Donguy and E. Emmanuel. Ecological risk assessment of urban and industrial systems: A review. Science of the Total Environment, 2011, 409(24): 5162-5176.

[95]    S. Anderson, B. A. Mostue. Risk analysis and risk management approaches applied to the petroleum industry and their applicability to IO concepts. Safety Science, 2011, in press.

[96]    L. Huang, W. B. Wan, F. Y. Li, B. Li, J. Yang and J. Bi. A twoscale system to identify environmental risk of chemical industry clusters. Journal of Hazardous Materials, 2011, 186(1): 247-255.

[97]    J. Korhonen, S. Juha-Pekka. Analyzing the evolution of Industrial ecosystems: Concepts and application. Ecological Economics, 2005, 52: 169-186.

[98]    J. Korhonen. Industrial ecosystems-some conditions for success. The International Journal of Sustainable Development and World Ecology, 2001, 8: 29-39.

[99] J. Korhonen. Some suggestions for regional industrial ecosystems. Eco-Management and Auditing, 2001, 8: 57-69.

[100] C. Hardy, T. Graedel. Industrial ecosystems as food webs. Journal of Industrial Ecology, 2002, 6: 29-38.

[101] P. Desrochers. Regional development and inter-industry recycling linkages: Some historical perspectives. Entrepreneurship and Regional Development, 2002, 14: 49-65.

[102] J. S. Baldwin, R. Murray, B. Winder and K. Ridgway. A nonequilibrium thermodynamic model of industrial development: Analogy or homology? Journal of Cleaner Production, 2004, 12(8-10): 841-853.

[103] C. H. Huo, L. H. Chai. Physical principles and simulations on the structural evolution of eco-industrial systems. Journal of Cleaner Production, 2008, 16: 1995-2005.

[104] C. Rammel, S. Stagl and H. Wilfing. Managing complex adaptive systems—A co-evolutionary perspective on natural resource management. Ecological Economics, 2007, 63: 9-21.

[105] Z. Zhou. Study on the complex adaptive system of eco-industrial systems. Ph.D. Thesis, Department of Chemical Engineering, Beijing: Tsinghua University, 2005.

[106] K. Cao, X. Feng and H. Wan. Applying agent-based modeling to the evolution of eco-industrial systems. Ecological Economics, 2009, 68(11): 2868-2876.

[107] C. H. Liu, C. Y. Ma and K. Zhang. Going beyond the sectoral boundary: A key stage in the development of a regional Industrial ecosystem. Journal of Cleaner Production, 2012, 22(1): 42- 49.

[108] A. Azapagic, S. Perdan. Indicators of sustainable development for industry: A general framework. Trans IChemE, 2000, 78(B): 243-61.

[109] J. Dewulf, H. van Langenhove. Integrating industrial ecology principles into a set of environmental sustainability indicators for technology assessment. Resources, Conservation and Recycling, 2005, 43: 419-432.

[110] IChemE (Institute of Chemical Engineers). The sustainability metrics, sustainable development progress metrics recommended for use in the process industries. AIChE Journal, 2004, 49(8): 1928-1932.

[111] L. Sokka, M. Melanen and A. Nissinen. How can the sustainability of industrial symbioses be measured? Progress of Industrial Ecology—An International Journal, 2008, 5: 518-535.

[112] S. Pakarinen, T. Mattila, M. Melanen, A. Nissinen and L. L. Sokka. Sustainability and industrial symbiosis—The evolution of a Finnish forest industry complex. Resource, Conservation and Recycling, 2010, 54(12): 1393-1404.

[113] D. S. Chang, L. C. R. Kuo and Y. T. Chen. Industrial changes in corporate sustainability performance e an empirical overview using data envelopment analysis. Journal of Cleaner Production, 2011, in press.

[114] R. K. Singh, H. R. Murty, S. K. Gupta and A. K. Dikshit. An overview of sustainability assessment methodologies. Ecological Indicators, 2012, 15(1): 281-299.

[115] C. Labuschagne, A. C. Brent and R. P. G. van Erck. Assessing the sustainability performances of industries. Journal of Cleaner Production, 2005, 13: 373-385.

[116] S. X. Zeng, H. C. Liu, C. M. Tam and Y. K. Shao. Cluster analysis for studying industrial sustainability: An empirical study in Shanghai. Journal of Cleaner Production, 2008, 16(10): 1090- 1097.

[117] R. K. Singh, H. R. Murty, S. K. Gupta and A. K. Dikshit. Development of composite sustainability performance index for steel industry. Ecological Indicators, 2007, 7: 565-588.

[118] A. Azapagic. Developing a framework for sustainable development indicators for the mining and minerals industry. Journal of Cleaner Production, 2004, 12: 639-662.

[119] L. Stamford, A. Azapagic. Sustainability indicators for the assessment of nuclear power. Energy, 2011, 36(10): 6037-6057.

[120] R. Steurer, M. E. Langer, A. Konrad and A. Martinuzzi. Corporations, stakeholders and sustainable development I: A theoreticcal exploration of businesse society relations. Journal of Business Ethics, 2005, 61: 263-281.

[121] R. Gray. Is accounting for sustainability actually accounting for sustainability and how would we know? An exploration of narratives of organisations and the planet. Accounting, Organizations and Society, 2010, 35: 47-62.

[122] L. C. Roca, C. C. Searcy. An analysis of indicators disclosed in corporate sustainability reports. Journal of Cleaner Production, 2012, 20(1): 103-118.

[123] A. Möller, S. Schaltegger. The sustainability balanced scorecard as a framework for eco-efficiency analysis. Journal of Industrial Ecology, 2005, 9(4): 73-83.

[124] F. Figge, T. Hahn. The cost of sustainability capital and the creation of sustainable value by companies. Journal of Industrial Ecology, 2005, 9(4): 47-58.

[125] M. Wagner. Sustainability and competitive advantage: Empirical evidence on the influence of strategic choices between environmental management approaches. Environmental Quality Management, 2005, 14: 31-48.

[126] I. Holton, J. Glass and A. D. F. Price. Managing for sustainability: Findings from four company case studies in the UK precast concrete industry. Journal of Cleaner Production, 2010, 18(2): 152-160.

[127] M. Wagner. The role of corporate sustainability performance for economic performance: A firm-level analysis of moderation effects. Ecological Economics, 2010, 69(7): 1553-1660.

[128] K. H. Lee, R. F. Saen. Measuring corporate sustainability management: A data envelopment analysis approach. International Journal of Production Economics, 2011, in press.

[129] G. Parthasarathy, R. Hart, E. D. Jamro and L. Miner. Value of sustainability: Perspectives of a chemical manufacturing site. Clean Technologies and Environmental Policy, 2005, 7(2): 219- 229.

[130] K. Fischer, S. Kamolsiripichaiporn and T. de Bruijn. From environment to sustainability: The greening of industry network at the millennium. Bangkok: The 9th International Conference of the Greening of Industry Network, Sustainability at the Millennium: Globalization, Competitiveness and the Public Trust, 21- 24 January 2001.

[131] U. Diwekar. Green process design, industrial ecology, and sustainability: A systems analysis perspective. Resources, Conservation and Recycling, 2005, 44: 215-235.

[132] J. Plaut. Industrial management for the sustaining environment. Technology in Society, 2000, 22: 467-475.

[133] H. Strebel, A. Posch. Interorganisational cooperation for sustainable management in industry: On industrial recycling networks and sustainability networks. Progress in Industrial Ecology—An International Journal, 2004, 1(4): 348-362.

[134] J. S. Baldwin, P. M. Allen, B. Winder and K. Radgway. Modeling manufacturing evolution: Thoughts sustainable industrial development. Journal of Cleaner Production, 2005, 13: 887-902.

[135] E. J. Schwarz, K. W. Steininger. Implementing nature’s lesson: The industrial recycling network enhancing regional development. Journal of Cleaner Production, 1997, 5(1-2): 47-56.

[136] S. N. Nielsen. What has modern ecosystem theory to offer to cleaner production, industrial ecology and society? The views of an ecologist. Journal of Cleaner Production, 2007, 15: 1639- 1653.

[137] R. S. Wang, F. Li, D. Hu and B. L. Li. Understanding eco-comlexity: Social-economic-natural complex ecosystem approach. Ecological Complexity, 2011, 8(1): 15-29.

[138] H. Cabezas, H. W. Whitmore, C. W. Pawlowski and A. L. Mayer. On the sustainability of an integrated model system with Industrial, ecological, and macroeconomic components. Resources, Conservation and Recycling, 2007, 50(2): 122-129.

[139] G. Kallis, R. B. Norgaard. Coevolutionary ecological economics. Ecological Economics, 2010, 69(4): 690-699.

[140] B. Smit, J. Wandel. Adaptation, adaptive capacity and vulnerability. Global Environmental Change, 2006, 16: 282-292.

[141] M. J. Metzger, R. Leemans and D. Schröter. A multidisciplinary multi-scale framework for assessing vulnerabilities to global change. International Journal of Applied Earth Observation and Geoinformation, 2005, 7: 253-267.

[142] P. Oosterveer, S. Kamolsirichaiporn and R. Rasish. The “greening” of industry and development in Southeast Asia: Perspectives on industrial transformation and environmental regulation; introduction. Environment, Development and Sustainability, 2006, 8: 217-227.

[143] E. D. Adamides, Y. Mouzakitis. Industrial ecosystems as technological niches. Journal of Cleaner Production, 2009, 17: 172- 180.

[144] 樊杰. “人地关系地域系统”学术思想与经济地理学[J]. 经济地理, 2008, 28(2): 177-183.

[145] 陆大道. 关于地理学的“人地系统”理论研究[J]. 地理研究, 2002, 21(2): 135-145.

[146] 陆大道. 人文–经济地理学的方法论及其特点[J]. 地理研究, 2011, 30(3): 387-396.

[147] 李润田. 中国地理学发展的世纪回顾与展望[J]. 地理科学, 2008, 28(1): 10-14.

NOTES

*基金项目:国家自然科学基金项目(No. 40971304)资助。

期刊菜单