Advances in Clinical Medicine
Vol.4 No.02(2014), Article ID:13693,6 pages
DOI:10.12677/ACM.2014.42004

The Role of Immune Mechanism in the Process of Secondary Brain Injury

Dezhi Huang, Jinfu Yang*

The Department of Neurosurgery, The Third Xiangya Hospital of Central South University, Changsha

Email: *sjwkyjf@hotmail.com

Copyright © 2014 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Received: Apr. 3rd, 2014; revised: May 4th, 2014; accepted: May 16th, 2014

ABSTRACT

Many studies have shown that the immune response plays an important role in post-ischemic brain injury. Lymphocytes and innate immunity participate in the process of post-ischemic brain injury, and these immune cells are activated through the release of immune factors, which are involved in ischemic injury and ischemia-reperfusion injury. If we find relevant products of these immune cells and interfere its expression in the brain after ischemia, the cerebral ischemia and ischemia-reperfusion injury can be reduced in varying degrees. Research on the effects of immune system on brain injury has made progress. In this paper, the progress of the effects of immune system on brain damage in recent years will be presented.

Keywords:Immune Mechanism, Secondary Brain Injury, Cerebral Ischemia

免疫机制在脑继发性损伤过程中的作用

黄德智,杨金福

中南大学湘雅三医院神经外科, 长沙

Email: *sjwkyjf@hotmail.com

收稿日期:2014年4月3日;修回日期:2014年5月4日;录用日期:2014年5月16日

摘  要

目前许多研究表明,免疫反应在大脑缺血后的损伤中扮演着重要的角色。淋巴细胞及固有免疫都不同程度的参与继发性脑细胞损伤的过程,这些免疫细胞被激活后均通过释放相关免疫因子而引起不同程度的大脑缺血损伤及缺血再灌注损伤。而找到这些免疫细胞的相关产物,并干预其在大脑缺血后的表达,则可不同程度减小大脑缺血及缺血再灌注损伤。有关免疫系统对大脑损伤的研究在不断进步,本文将介绍有关免疫系统对大脑损伤近年来的研究进展。

关键词

免疫机制,继发性脑损伤,脑缺血

1. 引言

中枢神经系统(CNS)的损伤是一系列复杂的病理生理过程,包括缺血缺氧,兴奋性氨基酸和炎症。所有这些因素都可以对残存的神经元造成不利影响,从而加重首次脑损伤后的功能障碍。特别是细胞免疫反应受到广泛关注,作为继发性脑损伤的重要介质。目前已知神经系统中发挥作用的免疫细胞包括:T淋巴细胞,B淋巴细胞,自然杀伤细胞(NK),小胶质细胞,大胶质细胞,及其他的循环系统来源的白细胞等。正常情况下这些细胞共同参与中枢神经系统损伤后的免疫反应,但损伤后持续激活的这些细胞则可通过各自的效应如释放大量炎性因子等对大脑造成进一步的损伤[1] 。

2. 免疫细胞在继发性脑损伤中的作用

2.1. 胶质细胞的免疫作用

小胶质细胞目前被认为是中枢神经免疫反应中的一种主要的细胞[2] ,它广泛地分布于大脑和脊髓中。在形态学上,小胶质细胞主要有分支状和阿米巴状两种分类。前者为静息状态的小胶质细胞,缺乏吞噬功能,但具有吞饮功能和一定的迁移能力,并能释放生长因子以维持神经元存活。后者为激活状态的小胶质细胞,具有吞噬能力,可释放大量细胞因子包括IL-1、IL-6、TNF-α、IFN-γ等以发挥免疫调节作用,而这些细胞因子本身又有激活小胶质细胞的作用。相关研究表明,脑缺血性损伤中,缺氧可诱导小胶质细胞发生显著的学形态变化和表达免疫分子[3] [4] 。此外,激活的小胶质细胞还能释放一些蛋白酶,超氧化合物中间产物,NO等直接对大脑组织造成损伤。激活的小胶质细胞还可以释放大量谷氨酸、天冬氨酸,这些兴奋性氨基酸能直接造成NMDA受体(N-methyl-D-aspartic acid receptor,N-甲基-D-天冬氨酸受体)介导的神经损伤[5] 。同时研究表明,在弥漫性轴索损伤中损伤的轴突周围激活小胶质细胞和巨噬细胞的相互作用可以持续超过7天[6] 。所以,尽管其在轴突损伤中发挥的具体机制还不明确,但我们仍认为它在这个过程中起到重要作用。

神经损伤后的另一个特征性的反应时星形胶质细胞的激活。星形胶质细胞与小胶质细胞相互协调共同参与神经损伤过程。机械性神经损伤可诱导星形胶质细胞释放大量ATP,而ATP是小胶质细胞激活的重要介质,其可促进小胶质细胞向损伤区域聚集[7] [8] 。星形胶质细胞在脑损伤的反应中,出现较早,反应程度强烈,持续时间较长[9] 。在此基础上,有人进一步研究证明,脑损伤后修复过程中,胶质瘢痕增生的大胶质细胞主要是星形细胞[10] 。这些都是其参与继发性脑损伤的重要依据。

2.2. 巨噬细胞的免疫作用

巨噬细胞作为固有免疫中的一种重要细胞,在炎症反应所致脑损伤中也具有重要作用[11] [12] 。不仅摄取和消灭入侵的病原体,但负责清理死亡和垂死的宿主细胞。吞噬凋亡细胞的过程被早已理解为它在炎症消退的作用。研究发现脑外伤1天后巨噬细胞数量快速上升,并于第3天达到高峰,第5天后消失;同时小胶质细胞数量上升较缓慢,于第7天到达高峰[6] 。说明巨噬细胞参与脑损伤后的早期免疫反应。新的证据正在呈现,其生物本身的免疫力作用是把双刃剑,机体在稳态状况下免疫取到防御作用,而创伤或应急以后长时间的免疫反应同样产生不利因素,包括对正常细胞的损伤。

2.3. 淋巴细胞的免疫作用

T淋巴细胞作为特异性免疫中的重要组成部分,在炎症所致脑损伤中也发挥着作用[13] [14] 。正常情况下,脑组织所表达的抗原由于血脑屏障作用相对隔离,而脑损伤后由于血脑屏障的破坏导致抗原暴露,可引起自身免疫反应,同样会激活T淋巴细胞。研究表明,脉络膜上存在抗原能被CD4型T细胞识别[15] ,损伤后的抗原暴露也可导致CD4型T细胞在此处含量增高。而在无菌性脑损伤在正常型和免疫缺陷型大鼠的对照试验中,发现免疫缺陷组的大鼠损伤程度明显小于正常型组[16] 。由此推测活化的CD4型T细胞有可能造成大脑无菌性创伤的损伤加重。但是在淋巴细胞系统中并非都导致损伤的加重,B淋巴细胞则可通过表达IL-10从而抑制T细胞、单核细胞以及小胶质细胞的活化。试验显示在大脑中动脉闭塞60 min的模型中,恢复灌注48小时后,注入产IL-10的B淋巴细胞的大鼠,其梗死范围较B淋巴细胞缺陷组明显较小,损伤半球活化的T细胞及单核细胞的数量也明显较少[17] 。所以我们认为产IL-10的B淋巴细胞对大脑缺血性损伤有一定保护作用。

3. 细胞因子、细胞表达产物在继发性脑损伤中的作用

各种活化的免疫细胞主要通过各种细胞因子如IL-1、IL-6、TNF-α、IFN-γ等以发挥免疫调节作用,并以此相互影响协调免疫反应。因此,各种细胞因子、细胞表达产物同样在脑损伤过程中也发挥着重要的作用[18] -[20] 。IL-1作为一种重要的炎性细胞因子,在中枢神经系统中,其可由小胶质细胞和巨噬细胞等分泌[21] -[23] 。IL-1可使局部CD4型T淋巴细胞、小胶质细胞等活化,促进单核-巨噬细胞等APC的抗原递呈能力,吸引中性粒细胞并引起炎症细胞释放,刺激多种间质细胞释放蛋白酶并产生效应,并由此对局部组织产生免疫损伤。有试验也观察到[24] ,在人缺血脑组织中,缺血局部IL-1以及TNF-α的表达明显增多,其中IL-1表达在3~5天最显著,以后逐渐减少,TNF-α在2天内最显著,以后逐渐减少。表明IL-1与TNF-α参与脑缺血损伤的炎症反应,其与大鼠模型所得结果相类似。另有研究表明,34例中风患者的随机实验中,使用IL-1受体拮抗剂的患者在72 h,第5~7天及3月所测得的NIHSS评分(NIH Stroke Scale,美国国立卫生院神经功能缺损评分)明显低于对照组患者,其死亡率也明显低于对照组[25] 。所以,目前认为IL-1的表达能使脑缺血损伤加重,但其具体机制仍未被阐明,有人提出可能与IL-1能抑制对脑组织具有保护作用的IL-4的表达,从而产生对脑组织的损伤作用,但其具体通路尚未被阐明[26] [27] 。

TNF-α和IL-1是强力的促炎性细胞因子,可由许多类型细胞产生,并参与中枢神经系统损伤、神经变性疾病、感染以及许多神经系统以外疾病的病理过程。TNF-α与IL-1常一起作为组织缺血损伤的检测指标,作为一种多效生物因子,其有多种生物效应,可分别作用于T淋巴细胞,B淋巴细胞,NK细胞,单核巨噬细胞等,在细胞水平上发挥作用[28] 。TNF-α可促使靶细胞溶酶体外泄,导致细胞溶解;作用于血管内皮细胞,引起内皮细胞损伤及血管功能紊乱;激活凝血系统活性,造成血管内血栓形成,引起组织缺血损伤;促进多重细胞因子的产生,激活免疫细胞,调节免疫功能;增加中性粒细胞活动,增强其吞噬功能,也促进其粘附到血管内皮细胞上[29] 。人脑缺血组织中,局部TNF-α(<2d)明显增多。同时大鼠大脑中动脉闭塞(MCAO)模型中也发现在建立模型前24h静脉给予TNF-α,可加重脑损伤,但若同时给予抗TNF-α抗体则可减轻脑损伤[30] [31] 。由此可知,TNF-α对脑组织缺血损伤的加剧也发挥了一定作用。部分学者认为其对脑缺血损伤的加剧是通过血管反应而加剧脑水肿,以及血管内血栓形成加剧局部缺血所造成的,但其具体机制如何有待进一步证明。

IL-6在体内许多组织中发挥的作用包括调节免疫功能、细胞生长及分化等功能[32] [33] 。同时,它也是血管内皮生长因子的激动剂。在右侧顶叶无菌损伤模型中,监测损伤后第1、4、7、14天损伤区域内坏死组织清除、炎性细胞浸润及局部血管重建情况,发现IL-6缺失的大鼠恢复明显较野生型的慢[34] 。由此得出在中枢神经损伤后恢复过程中,IL-6发挥着重要作用。

而作为一个炎症抑制因子,IFN-β则可减轻炎症反应进程对大脑的损伤[35] 。在脑缺血1天后的动物模型上,MRI测得接受过IFN-β治疗的损伤范围比未接受IFN-β治疗的要小70%,而3周后则要小85%。这种效果即使是在缺血6小时后使用IFN-β治疗也能观察到。而免疫组化定量分析显示,脑缺血24小时后IFN-β几乎能完全阻止中性粒细胞及单核细胞的浸润[36] 。这对脑缺血损伤的防治方面提供了重要信息。

近年来人们对脑缺血损伤的研究还涉及众多细胞表达产物等。趋化因子介导炎症细胞向损伤区域移动,对炎症反应的持续和加剧起到了重要作用。在小鼠大脑中动脉缺血模型(MCAO模型)中,有人观察到CD38缺陷的小鼠在缺血及缺血再灌注损伤中肥大细胞蛋白酶-1(MCP-1)表达明显较野生型少,同样的也观察到缺血灶巨噬细胞及CD8 T细胞浸润明显较少[37] 。我们考虑CD38可通过影响炎性细胞趋化作用而加剧局部缺血性脑损伤。

Toll样受体(Toll-like receptors,TLR)是参与非特异性免疫(天然免疫)的一类重要蛋白质分子,也是连接非特异性免疫和特异性免疫的桥梁。越来越多的证据表明,Toll样受体能被损伤脑组织释放的内源性蛋白所激活,并在脑缺血损伤及缺血再灌注损伤中起到至关重要的作用[38] 。其能与多种细胞因子相互影响,并产生广泛地相互作用,近年来许多有关TLRs的研究也让我们对其有了更深刻的了解。HSP60与TLR2及TLR的结合可引起髓样分化因子(MyD88)的激活,从而增加TNF-α的表达[39] 。HSP70与TLR2及TLR的结合可激活MyD88-IRAK-NF-κB通路,以促进TNF-α,IL-1β以及IL-6的转录及翻译[40] 。而TLR2及TLR4与高迁移率族蛋白(HMGB1)的结合,则可启动MyD88-TIRAP-IRAK通路而增加对TNF-α、可诱导型一氧化氮合酶(iNOS)以及细胞间黏附分子-1(ICAM-1)的释放[41] ;而学者正好能观察到HMGB1在急性脑损伤2~6小时内含量明显升高。这些都暗示着TLRs在免疫反应所致脑损伤过程中发挥着重要的作用。在MCAO模型的大鼠上也能观察到TLR2缺乏的大鼠缺血梗死的组织体积明显小于野生型大鼠[42] ,同样的也能观察到TLR4基因敲除的大鼠在缺血2小时恢复灌注24小时后的梗死体积明显小于野生型[43] 。还有研究显示人乳脂肪球EGF因子蛋白(MFGE8)可以通过抑制IL-1β的表达而起到对脑缺血损伤的保护作用[44] 。诸多证据显示细胞因子和表达产物都参与脑继发性损伤的复杂过程。

4. 补体系统在继发性脑损伤中的作用

补体系统作为免疫系统中重要的组成部分[45] [46] ,多位学者发现其广泛参与脑继发性损伤的病理过程[47] [48] 。特别是最近的几项研究,把激活先天免疫补体系统在脑损伤的继发性改变中的作用逐步纳入人们的视野。虽然循环系统血浆中补体蛋白在通常情况下不会通过血脑屏障而进入中枢神经系统,但目前已经表明,几乎所有的补体成分可以在中枢神经系统内合成[49] [50] 。Andrew F.等人发现[51] ,实验中在MCAO模型的小鼠腹腔内注射低剂量(1 mg/kg每天2次)的C3R受体抑制剂有助于损伤区域神经母细胞的增殖;C3R抑制剂可抑制T淋巴细胞在损伤区域的浸润,且能减小皮质下梗死灶的体积,减小死亡率以及改善预后。这些也提示着C3R在炎症损伤中发挥着一定作用。

近年研究提示补体激活在继发性脑损伤中起类似于淋巴系统同样重要的作用。在进行额叶或颞叶切除减压术治疗顽固性颅内高压的TBI患者中(伤后2~82小时),切除的脑组织进行补体因子分析。免疫反应显示补体C1q,C3,C4,C3b,C3d和C5b-9可检测到在脑挫伤区域的半暗带的神经元中[52] 。在TBI患者的脑脊液中,C3以及典型补体C1q,C4和B因子也升高,从而可能参与继发性脑损伤[53] [54] 。在动物模型中,补体C3被发现在病灶周围而不是在未受伤的对侧,而补体C9,作为膜攻击复合物的一个关键结构,在实验性脑挫伤后的损伤神经元中也能观察到[55] 。总的来说,这些研究结果表明,所有四个补体途径在TBI都被激活,并且补体系统的功能紊乱参与神经细胞凋亡这一论点已被广泛接受。

免疫反应对大脑损伤是一个复杂且重要的过程,其中涉及多种免疫细胞,细胞因子及细胞表达产物等,而他们的相互影响,相互关系仍未被探明。目前研究大多集中在免疫机制与中枢神经变性导致多种神经内科疾病之间的关系研究[56] -[58] ,对于创伤后急性期免疫系统对神经的损伤所致作用和机理仍不明朗,这仍是值得研究的地方,这些研究也能为对大脑继发性损伤的免疫治疗提供重要的思路。

参考文献 (References)

  1. [1]   Ren, X., Akiyoshi, K., Dziennis, S., et al. (2011) Regulatory B cells limit CNS inflammation and neurologic deficits in mrine experimental stroke. The Journal of Neuroscience, 31, 8556-8563.

  2. [2]   Perry, V.H. and Teeling, J. (2013) Microglia and macrophages of the central nervous system: The contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Seminars in Immunopathology, 35, 601-612.

  3. [3]   Kato, H. and Walz, W. (2000) The initiation of the microglial response. Brain Research, 10, 137-143.

  4. [4]   Cheng, R.D., Ren, J.J., Zhang, Y.Y. and Ye, X.M. (2014) P2X4 receptors expressed on microglial cells in postischemic inflammation of brain ischemic injury. Neurochemistry International, 67, 9-13.

  5. [5]   Thomas, A.G., O’Driscoll, C.M., Bressler, J., et al. (2014) Small molecule glutaminase inhibitors block glutamate release from stimulated microglia. Biochemical and Biophysical Research Communications, 443, 32-36.

  6. [6]   Yu, L. and Liang, W. (2013) Inflammatory response following diffuse axond injury. International Journal of Medical Science, 10, 515-521.

  7. [7]   Raivich, G. (2005) Like cops on the beat: The active role of resting microglia. Trends in Neurosciences, 19, 312-318.

  8. [8]   Sanz, J.M., Chiozzi, P., Ferrari, D., et al. (2009) Activation of microglia by amyloid (beta) requires P2X7 receptor expression. The Journal of Immunology, 182, 4378-4385.

  9. [9]   Fujita, T., Yoshimine, T., et al. (1998) Cellular dynamics of macrophages and microglial cells in reaction to stab wounds in rat cerebral cortex. Acta Neurochirurgica, 140, 275-279.

  10. [10]   黄其林, 张可成 (2001) 脑穿刺伤灶愈合过程中大胶质细胞的变化. 基础医学与临床, 2, 158-162.

  11. [11]   Riabov, V., Gudima, A., Wang, N., et al. (2014) Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Frontiers in Physiology, 5, 75.

  12. [12]   Martin, C.J., Peters, K.N. and Behar, S.M. (2014) Macrophages clean up: Efferocytosis and microbial control. Current Opinion in Microbiology, 17, 17-23.

  13. [13]   Meola, D., Huang, Z., Ha, G.K., et al. (2013) Loss of neuronal phenotype and neurodegeneration: Effects of T lymphocytes and brain interleukin-2. Journal of Alzheimer’s Disease & Parkinsonism, 10, 3.

  14. [14]   Stichel, C.C. and Luebbert, H. (2007) Inflammatory processes in the aging mouse brain: Participation of dendritic cells and T-cells. Neurobiology of Aging, 28, 1507-1521.

  15. [15]   Baruch, K., Ron-Harel, N., Gal, H., et al. (2013) CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proceedings of the National Academy of Sciences of the United States of America, 110, 2264-2269.

  16. [16]   Fee, D., Crumbaugh, A., Jacques, T., Herdrich, B., Sewell, D., et al. (2003) Activated/effector CD4+ T cells exacerbate acute damage in the central nervous system following traumatic injury. Journal of Neuroimmunology, 136, 54-66.

  17. [17]   Bodhankar, S., Chen, Y., Vandenbark, A.A., Murphy, S.J. and Offner, H. (2013) IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke. Metabolic Brain Disease, 28, 375-386.

  18. [18]   Mignini, F., Giovannetti, F., Cocchioni, M., Raponi, I. and Giorgio, I. (2012) Neuropeptide expression and T-lymphocyte recruitment in facial nucleus after facial nerve axotomy. Journal of Craniofacial Surgery, 23, 1479-1483.

  19. [19]   Phillis, J.W., Horrocks, L.A. and Farooqui, A.A. (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Research Reviews, 52, 201-243.

  20. [20]   Folkerth, R.D. (2005) Neuropathologic substrate of cerebral palsy. Journal of Child Neurology, 20, 940-949.

  21. [21]   Denes, A., Wilkinson, F., Bigger, B., Chu, M., Rothwell, N.J. and Allan, S.M. (2013) Central and haematopoietic interleukin-1 both contribute to ischaemic brain injury in mice. Disease Models & Mechanisms, 6, 1043-1048.

  22. [22]   Denes, A., Pinteaux, E., Rothwell, N.J. and Allan, S.M. (2011) Interleukin-1 and stroke: Biomarker, harbinger of damage, and therapeutic target. Cerebrovascular Diseases, 32, 517-527.

  23. [23]   Dinarello, C.A. (2011) Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood, 117, 3720- 3732.

  24. [24]   钟照华, 李呼伦, 谷鸿喜, 赵文然, 田野, 李殿俊, 等 (2003) 人缺血脑组织中TNF-α和IL-1β的表达. 细胞与分子免疫学杂志, 19, 349-353.

  25. [25]   Emsley, H.C.A., Smith, C.J., Vail, A., Hopkins, S.J., Rothwell, N.J., et al. (2005) A randomised phase Ⅱ study of interleukin-1 receptor antagonist in acute stroke patients. Journal of Neurology, Neurosurgery & Psychiatry, 76, 1366- 1372.

  26. [26]   Xiong, X., Barreto, G.E., Xu, L., Ouyang, Y.B., Xie, X. and Giffard, R.G. (2011) Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke, 42, 2026-2032.

  27. [27]   Abbas, A.K., Murphy, K.M. and Sher, A. (1996) Functional diversity of helper T lymphocytes. Nature, 383, 787-793.

  28. [28]   van Hogezand, R.A. and Verspaget, H.W. (1996) Selective immunomodulation in patients with inflammatory bowel disease—Future therapy or reality? The Netherlands Journal of Medicine, 48, 64-67.

  29. [29]   Dai, C., Fu, Y., Chen, S., Li, B., Yao, B., Liu, W.H., et al. (2013) Preparation and evaluation of a new releasable PEGylated tumor necrosis factor-α (TNF-α) conjugate for therapeutic application. Science China Life Sciences, 56, 51-58.

  30. [30]   Yang, G.Y., Gong, C., Qin, Z., Ye, W., Mao, Y. and Bertz, A.L. (1998) Inhibition of TNFalpha attenuates infarct volume and ICAM-1 expression in ischemic mouse brain. Neuroreport, 9, 2131-2134.

  31. [31]   Barone, F.C., Arvin, B., White, R.F., Miller, A., Webb, C.L., Willette, R.N., et al. (1997) Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke, 28, 1233-1244.

  32. [32]   Huang, L.W., Hsieh, B.S., Cheng, H.L., Hu, Y.C., Chang, W.T. and Chang, K.L. (2012) Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells. Toxicology and Applied Pharmacology, 258, 199-207.

  33. [33]   Beeton, C.A., Chatfield, D., Brooks, R.A. and Rushton, N. (2004) Circulating levels of interleukin-6 and its soluble receptor in patients with head injury and fracture. The Bone & Joint Journal, 86, 912-917.

  34. [34]   Swartz, K.R., Liu, F., Sewell, D., Schochet, T., Campbell, I., Sandor, M., et al. (2001) Interleukin-6 promotes posttraumatic healing in the central nervous system. Brain Research, 896, 86-95.

  35. [35]   Owens, T., Khorooshi, R., Wlodarczyk, A. and Asgari, N. (2014) Interferons in the central nervous system: A few instruments play many tunes. Glia, 62, 339-355.

  36. [36]   Veldhuis, B., Derksen, J.W., Floris, S., van der Meide, P.H., de Vries, H.E., Schepers, J., et al. (2003) Interferon-beta blocks infiltration of inflammatory cells and reduces infract volume after ischemic stroke in the rat. Journal of Cerebral Blood Flow & Metabolism, 23, 1029-1039.

  37. [37]   Choe, C.U., Lardong, K., Gelderblom, M., Ludewig, P., Leypoldt, F., Koch-Nolte, F., et al. (2011) CD38 exacerbates focal cytokine production, postischemic inflammation and brain injury after focal cerebral ischemia. PLoS ONE, 6, e19046.

  38. [38]   Wang, Y., Ge, P. and Zhu, Y. (2013) TLR2 and TLR4 in the brain injury caused by cerebral ischemia and reperfusion. Mediators of Inflammation, 2013, Article ID: 124614.

  39. [39]   Vabulas, R.M., Ahmad-Nejad, P., da Costa, C., Miethke, T., Kirschning, C.J., Häcker, H., et al. (2001) Endocytosed HSP6os use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/ interleukin-1 receptor signaling pathway in innate immune cells. The Journal of Biological Chemistry, 276, 31332-31339.

  40. [40]   Zou, N., Ao, L., Cleveland Jr., J.C., Yang, X., Su, X., Cai, G.Y., et al. (2008) Critical role of extracellular heat shock cognate protein 70 in the myocardial inflammatory response and cardiac dysfunction after global ischemia-reperfusion. American Journal of Physiology, Heart and Circulatory Physiology, 294, H2805-H2813.

  41. [41]   Park, J.S., Gamboni-Robertson, F., He, Q., Svetkauskaite, D., Kim, J.Y., Strassheim, D., et al. (2006) High mobility group box 1 protein interacts with multiple Toll-like receptors. American Journal of Physiology, Cell Physiology, 290, 917-924.

  42. [42]   Ziegler, G., Harhausen, D., Schepers, C., Hoffmannb, O., Röhra, C., Prinz, V., et al. (2007) TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochemical and Biophysical Research Communications, 359, 574- 579.

  43. [43]   Hyakkoku, K., Hamanaka, J., Tsuruma, K., Shimazawaa, M., Tanakab, H., Uematsu, S., et al. (2010) Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience, 171, 258-267.

  44. [44]   Deroide, N., Li, X., Lerouet, D., Van Vré, E., Baker, L., Harrison, J., et al. (2013) MFGE8 inhibits inflammasome-induced IL-1β production and limits postischemic cerebral injury. The Journal of Clinical Investigation, 123, 1176-1183.

  45. [45]   Noris, M. and Remuzzi, G. (2013) Overview of complement activation and regulation. Seminars in Nephrology, 33, 479-492.

  46. [46]   Carroll, M.C. and Isenman, D.E. (2012) Regulation of humoral immunity by complement. Immunity, 37, 199-207.

  47. [47]   Fluiter, K., Opperhuizen, A.L., Morgan, B.P., Baas, F. and Ramaglia, V. (2014) Inhibition of the membrane attack complex of the complement system reduces secondary neuroaxonal loss and promotes neurologic recovery after traumatic brain injury in mice. The Journal of Immunology, 192, 2339-2348.

  48. [48]   Brennan, F.H., Anderson, A.J., Taylor, S.M., Woodruff, T.M. and Ruitenberg, M.J. (2012) Complement activation in the injured central nervous system: Another dual-edged sword? Journal of Neuroinflammation, 9, 137.

  49. [49]   Woodruff, T.M., Ager, R.R., Tenner, A.J., Noakes, P.G. and Taylor, S.M. (2010) The role of the complement system and the activation fragment C5a in the central nervous system. NeuroMolecular Medicine, 12, 179-192.

  50. [50]   Veerhuis, R., Nielsen, H.M. and Tenner, A.J. (2011) Complement in the brain. Molecular Immunology, 48, 1592-1603.

  51. [51]   Ducruet, A.F., Zacharia, B.E., Sosunov, S.A., Gigante, P.R., Yeh, M.L., Gorski, J.W., et al. (2012) Complement inhibition promotes endogenous neurogenesis and sustained anti-inflammatory neuroprotection following reperfused stroke. PLoS ONE, 7, e38664.

  52. [52]   Bellander, B.M., Singhrao, S.K., Ohlsson, M., Mattsson, P. and Svensson, M. (2001) Complement activation in the human brain after traumatic head injury. Journal of Neurotrauma, 18, 1295-1311.

  53. [53]   Stahel, P.F., Morganti-Kossmann, M.C. and Kossmann, T. (1998) The role of the complement system in traumatic brain injury. Brain Research Reviews, 27, 243-256.

  54. [54]   Kossmann, T., Stahel, P.F., Morganti-Kossmann, M.C., Jones, J.L. and Barnum, S.R. (1997) Elevated levels of the complement components C3 and factor B in ventricular cerebrospinal fluid of patients with traumatic brain injury. Journal of Neuroimmunology, 73, 63-69.

  55. [55]   Bellander, B.M., von Holst, H., Fredman, P. and Svensson, M. (1996) Activation of the complement cascade and increase of clusterin in the brain following a cortical contusion in the adult rat. Journal of Neurosurgery, 85, 468-475.

  56. [56]   Hsiao, E.Y. (2013) Chapter nine, immune dysregulation in autism spectrum disorder. International Review of Neurobiology, 113, 269-302.

  57. [57]   Boutajangout, A. and Wisniewski, T. (2013) The innate immune system in Alzheimer’s disease. International Journal of Cell Biology, 2013, Article ID: 576383.

NOTES

*通讯作者。

期刊菜单