World Journal of Cancer Research
Vol.4 No.04(2014), Article ID:14289,5 pages
DOI:10.12677/WJCR.2014.44008

Review of the ERK5 Signaling Pathway Research

Song Luo*, Shengfa Su, Weiwei Ouyang#, Bing Lu#

Teaching and Research Section of Oncology, Guiyang Medical University, Guiyang

Email: 4567436@qq.com, #ouyangww103173@163.com, #lbgymaaaa@sohu.com

Copyright © 2014 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Received: Sep. 25th, 2014; revised: Oct. 16th, 2014; accepted: Oct. 20th, 2014

ABSTRACT

Extracellular signal regulated kinase 5 (ERK5) is an important part of mitogen activated protein kinase (MAPK) system, and also is a new signal transduction pathway of MAPK signaling system, which has attracted much attention in recent years. ERK5 can be activated by many stimulating factors and plays an important role in cell survival, proliferation and differentiation. Furthermore, ERK5 is closely related to vascular development and proliferation, and other critical functions. This paper focuses on the origin, structure, property, physiological features of ERK5, and the relationship between ERK5 and tumor and non-oncologic diseases, and reviews the research direction in the future.

Keywords:ERK5, Signaling Pathways, MAPK

ERK5信号通路研究现状

罗  松*,苏胜发,欧阳伟炜#,卢  冰#

贵阳医学院肿瘤学教研室,贵阳

Email: 4567436@qq.com, #ouyangww103173@163.com, #lbgymaaaa@sohu.com

收稿日期:2014年9月25日;修回日期:2014年10月16日;录用日期:2014年10月20日

摘  要

细胞外信号调节激酶5(extracellular signal regulated kinase, ERK5)是丝裂原活化蛋白激酶(mitogen activated protein kinase, MAPK)系统中的重要组成部分,也是MAPK信号转导通路中较新的一条通路,近几年备受人们关注。它可以被各种刺激因素激活,对细胞生存、增殖和分化有着重要作用,与血管发育、增殖等功能密切相关。本文从ERK5的来历、结构、性质、特点以及与肿瘤和非肿瘤疾病的关系,并对它以后的研究方向进行综述。

关键词

ERK5,信号通路,MAPK

1. MAPK简介

丝裂原活化蛋白激酶(mitogen activated protein kinase, MAPK)是哺乳动物内广泛存在的一类丝/苏氨酸蛋白激酶,可以被一系列的细胞外信号或刺激所激活,是自然界生物体内普遍存在的信号转导系统之一,可将胞外的刺激信号传递至胞核内,参与细胞的增殖、分化、转化及凋亡等不同功能[1] 。目前,基于序列的同源性和功能差异,已经确定有4条MAPK信号转导通路[2] :细胞外信号调节激酶1/2(extracellular signal regulated kinase, ERKl/2)、c-Jun氨基末端激酶(c-Jun amino-terminal kinase, JNK)/应急激活蛋白激酶(stress-activated protein kinase, SAPKs)、p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinause, p38MAPK)和细外信号调节激酶5(extracellular signal regulated kinase, ERK5)/大丝裂素活化蛋白激酶l(big MAP kinase l, BMKl)4条途径。

2. ERK5的来历

MAPK通路是细胞信号传导网络中最为重要的传导通路之一,几乎所有的生长因子及部分细胞因子的信号所诱发的细胞各种反应都离不开此通路。目前的研究表明,ERK5是MAPK系统中的重要组成部分,ERK5信号转导通路也是MAPK信号转导通路中较新的一条通路[3] 。最早是在1995年Zhou等通过PCR等方法获得MEK5基因的cDNA后,以MEK5为探针采用酵母双杂交筛选的方法发现了ERK5,并发现它只能被MEK5激活而不能被MEKl和MEK2激活[4] 。ERK5是一条非典型的MAPK通路,Lee等通过PCR扫描人类胎盘的cDNA文库后分离出一种新的MAPK信号通道分子,因其独特的大分子结构,被称为大MAPK通路[5] [6] 。

3. ERK5的结构

ERK5分子量较大,为115 kD,它是由816个氨基酸构成的120 kU蛋白,长度几乎是其他MAPK家族成员的2倍,与ERK1和ERK2有50%的相似性[7] 。ERK5的编码基因erk5包含2445碱基对编码6个外显子和5个内含子,通过不同的剪接方式可产生a、b、c三种亚型。其中仅ERK5a具有激酶活性,与ERK5a相比ERK5b、ERK5c的氨基端分别缺少69和139个氨基酸残基,ERK5b和ERK5c不具有激酶活性,但能阻断ERK5a与其上游激MEK5结合,抑制ERK5a的活化,并能抑制ERK5a-MEF2C通路的转录活性[8] 。

ERK5蛋白是由蛋白激酶区和转录激活区两部分构成的,激酶区高度保守的双磷酸化位点(Thr, Tyr)位于N端,含有苏氨酸–谷氨酸–酪氨酸残基活化序列(TEY序列),TEY序列中所含的丝氨酸和苏氨酸残基是激酶区的两个磷酸化位点,丝氨酸和苏氨酸残基被上游激酶(MEK5)双磷酸化后导致ERK5/BMKl蛋白的激活。N端还有细胞质定位区(氨基酸1~77)MEK5结合区(氨基酸78~139),低聚反应区(氨基酸140~406)可以使底物磷酸化。ERK5独特的大梭基端部分,是转录激活区[9] 。

ERK5有一个唯一的COOH端和12区循环。ERK5在MAPK家族中的独特性就在于它的C端尾巴,这个独特的C末端包含有400个氨基酸的扩展,所以也被称作BMK1,这有别于MAPK家族的其他成员。Buschbeckl等[10] 逐渐删除C端区域后发现ERK5激酶活性大大降低,而ERK5激酶活性是依赖于其上游MAPK级联的,这就表明C端尾巴可能有自主抑制作用,他们还发现ERK5通过磷酸化C端尾巴,有自动激活C端尾巴活性的能力。ERK5几乎在所有细胞株中都有表达,并且在细胞核和细胞质中都有定位,而这种定位也取决于它的C端区域。

4. ERK5信号通路性质及特点

ERK5可以被各种刺激因素激活,包括一些有丝分裂原和一些细胞应激(例如氧化作用和渗压震扰)等[4] ,还能够被某些生长因子激活,如:表皮生长因子、神经生长因子和纤维生长因子等[11] 。它正常位于胞浆,当激活后转位至胞核,才可以调节转录因子活性,产生调控细胞生长、发育、分裂及细胞间功能的同步性等多种生理功能[12] 。ERK5的直接酶作用底物是转录因子肌细胞增强因子(myocyte enhancing factor-2C MEF2C),它的蛋白与ERK5的C端结合,被ERK5磷酸化后可以增强其转录的活性[13] 。

ERK5是一类高度保守的苏氨酸/酪氨酸蛋白激酶中的一个重要的一级激酶,ERK5信号通路是ERK通路中的重要组成部分。通过ERK5通路的磷酸化级联反应,多种刺激因素激活MAPKKK(MEKK3或MEKK2),再激活MAPKK(MKK5),最后激活ERK5,进而调节特定基因的表达[14] 。ERK5还可以磷酸化其上游激活因子MEK5而对自身的磷酸化过程进行反馈调节[15] 。

MEK5属于MAPKK家族的成员,免疫共沉淀法显示,MEK5是ERK5唯一且特异性上游激酶,它对于ERK5激酶具有高度特异性,即使在MEK5过表达的情况下也不激活MAPK家族的其他成员[16] 。MEK5有两种不同的亚型:MEK5α和MEK5β,两者是同分异构体。MEK5α主要分布在有丝分裂活跃的组织当中,而MEK5β则主要分布在终末分化的组织当中。研究发现,MEK5α对ERK5激酶活性的调节作用是至关重要的,MEK5α通过与ERK5分子的结合来诱导磷酸化反应的发生,而MEK5β则通过阻断MEK5α和ERK5的连接而对ERK5信号转导通路起着负性调节作用[17] 。

Cude[18] 等检测ERK5在不同细胞周期中的水平,研究结果表明:ERK5在细胞周期G2-M期激活,并且这种激活对于G2-M之间的转化具有十分重要的意义,发现阻断ERK5会下调细胞周期蛋白D1和细胞周期蛋白E的表达,导致细胞周期停滞于G1期和生长抑制[19] 。

5. ERK5与疾病的关系

由于ERK5有以上独特的结构、性质及特点,所以它在疾病中发挥着重要的作用,特别是在疾病的发病机制及治疗方面的作用尤为明显。ERK5在生理学上它能使细胞生存、增殖、变异,在病理学上具有致癌作用,同时可以诱导心肌细胞肥大、动脉硬化[20] 。

5.1. ERK5和肿瘤的关系

ERK5同其他的MAPK信号转导通路一样,对细胞生存、增殖和分化起着极其重要的作用[6] ;Kato等[21] 研究发现,ERK5可以促进细胞生存,抑制凋亡;ERK5与血管发育、增殖等功能密切相关[22] ;ERK5信号通路是血管分化发育必需的,ERK5对保护内皮细胞功能和维持血管的完整性起关键性作用[6] 。ERK5信号通路可引起细胞正常增殖周期紊乱,导致细胞过度增殖,从而导致肿瘤的发生。而且其不仅在肿瘤新生血管中发挥关键作用,也参与了调节肿瘤细胞的侵袭和迁移[23] 。

ERK5表达在许多肿瘤细胞中。在乳腺癌中,ERK5激活后能诱导正常乳腺上皮细胞及乳腺癌细胞增值,有20%的乳腺癌患者过表达ERK5,在早期复发乳腺癌组织中ERK5表达增加[24] ,Antoon等[25] 研究39例乳腺临床肿瘤样本发现有30例中ERK5被激活,占76.9%。ERK5通过调节有丝分裂促进肝癌细胞的增值[26] 。Sticht等人通过免疫组化的方法研究口腔鳞癌的石蜡切片,ERK5的表达率为27.4% (76/277);在头颈部鳞癌中,T1/2期ERK5的表达率20.3%(27/133),T3/4期ERK5的表达率34%(49/144),NO期ERK5的表达率19.3%(22/144),N1-3期ERK5的表达率33.1%(54/163),I-III期ERK5的表达率17.9%(19/106),IV期ERK5的表达率33.3%(57/171),所以,ERK5的高表达和肿瘤的分期及淋巴结转移有关[27] 。在头颈部鳞癌中,ERK5作为EGFR介导的下游底物,有可能会成为一个新的目标靶点,ERK5抑制剂阻止EGFR诱导肿瘤细胞的扩散,对增加西妥昔单抗的抗肿瘤作用也许是有效的[27] 。在ERK5与前列腺癌的研究中:①ERK5表达在前列腺癌中;②ERK5超表达提高前列腺的致癌作用;③ERK5蛋白表达在前列腺切除的前列腺癌病人中;④ERK5核染色可作为前列腺癌的一个独立预后标志[28] ;ERK5功能被损害后可以抑制前列腺癌细胞的侵袭,减少ERK5的表达量可以抑制前列腺癌细胞的侵袭能力[29] 。Ramos等研究发现恶性间皮瘤与ERK5信号通路有关[30] 。ERK5信号通路可以介导非霍奇金淋巴瘤表达某些特异性基因[31] 。在严重骨髓侵犯白血病中,ERK5信号通路抑制剂BIX02189能诱导白血病肿瘤细胞凋亡不影响健康捐赠者的T淋巴细胞[32] 。

ERK5信号通路在肿瘤侵袭和转移过程中起传递和放大信号的作用。Sticht等[27] 、Castro等[33] 、Zen等[26] 、Ramsay等[29] 的研究都表明ERK5信号通路在口腔鳞癌、乳腺癌、肝癌、前列腺癌侵袭和转移过程中起传递和放大信号的作用。还有研究表明,ERK5通过促进血管的形成和血管内环境的稳定对维持肿瘤的生长起重要作用[34] 。

5.2. ERK5和其它非肿瘤疾病的关系

ERK5信号通路不仅和许多肿瘤有密切的关系,在许多非肿瘤疾病中发挥同样发挥着重要的作用。在心脏疾病中,ERK5和心脏肥厚重塑及心肌细胞的生存有关,它通过调节下游因子MEF2的活动在调解心脏肥厚的重塑[35] ;Lee等研究发现HB-EGF通过EGFR-ERK5-MEF2A-COX-2信号通路途径诱导心脏肥大[20] 。在糖尿病内皮功能紊乱和动脉粥样硬化中,p90核糖体S6蛋白激酶(p90 ribosomal S6 kinase, p90RSK)/ERK5复合物可以作为介入治疗的一个新的靶点[36] ;在糖尿病视网膜病变中,ERK5的抑制作用可以调节葡萄糖诱导纤维连接蛋白的产生,从而成为一种糖尿病视网膜病变的辅助治疗措施[37] ;ERK5在肾小囊脏层细胞表达,并可作为糖尿病肾病的一个潜在治疗靶点[38] 。在慢性肾小球性肾炎实验模型中,激活ERK5可以提高细胞生存能力和细胞外基质的积聚[39] 。MEK5/ERK5/MEF2通路可介导丙肝病毒进入肝细胞,ERK5通路激活生长因子和其他细胞外信号诱导这一过程的实现[40] 。Li等研究表明特定条件下的流体剪切力可激活ERK5信号通路,这一通路的激活对于成骨细胞骨架结构与功能的维持以及促进成骨细胞的增殖都起到至关重要的作用[41] ,而且和骨关节炎软骨损伤发病机制密切相关[42] 。

6. 展望

ERK5信号通路是细胞内一个非常重要的信号通路,在个体生长发育以及肿瘤的发生发展中起着重要的桥梁作用,它对于很多疾病(特别是肿瘤)的发病机制、治疗及预防有很大的作用,特别是肿瘤靶向治疗,新药开发具有很大的意义。MEK5-ERK5信号通路在原发性和转移性肿瘤中有重要作用,如何合理阻断ERK5信号通路或抑制MEK5/ERK5复合物的形成可能为肿瘤的治疗提供新的思路。由于它是一条较晚发现的信号通路,目前对于它的研究甚少,进一步探讨ERK5通路在各种疾病的发生、发展过程中的变化规律,对于揭示疾病的发生发展机制,从而采取合理的信号传导阻断方法治疗疾病具有重要价值,这也是以后的研究重点。

基金项目

吴阶平医学基金一般项目(320.6799.1129)。

参考文献 (References)

  1. [1]   Roberts, O.L., Holmes, K., Muller, J., et al. (2009) ERK5 and the regulation of endothelial cell function. Biochemical Society Transactions, 37, 1254-1259.

  2. [2]   Hayashi, M., Kim, S.W., Imanaka-Yoshida, K., et al. (2004) Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. Journal of Clinical Investigation, 113, 1138-1148.

  3. [3]   Wang, X. and Tournier, C. (2006) Regulation of cellular functions by the ERK5 signalling pathway. Cell Signal, 18, 753-760.

  4. [4]   Zhou, G., Bao, Z.Q. and Dixon, J.E. (1995) Components of a new human protein kinase signal transduction pathway. Journal of Biological Chemistry, 270, 12665-12669.

  5. [5]   Lee, J.D., Ulevitch, R.J. and Han, J. (1995) Primary structure of BMK1: A new mammalian map kinase. Biochemical and Biophysical Research Communications, 213, 715-724.

  6. [6]   Spiering, D., Schmolke, M., Ohnesorge, N., et al. (2009) MEK5/ERK5 signaling modulates endothelial cell migration and focal contact turnover. Journal of Biological Chemistry, 284, 24972-24980.

  7. [7]   Carter, E.J., Cosgrove, R.A., Gonzalez, I., et al. (2009) MEK5 and ERK5 are mediators of the pro-myogenic actions of IGF-2. Journal of Cell Science, 122, 3104-3112.

  8. [8]   Yan, C., Luo, H., Lee, J.D., et al. (2001) Molecular cloning of mouse ERK5/BMK1 splice variants and characterization of ERK5 functional domains. Journal of Biological Chemistry, 276, 10870-10878.

  9. [9]   Morimoto, H., Kondoh, K., Nishimoto, S., et al. (2007) Activation of a C-terminal transcriptional activation domain of ERK5 by autophosphorylation. Journal of Biological Chemistry, 282, 35449-35456.

  10. [10]   Buschbeck, M. and Ullrich, A. (2005) The unique C-terminal tail of the mitogen-activated protein kinase ERK5 regulates its activation and nuclear shuttling. Journal of Biological Chemistry, 280, 2659-2667.

  11. [11]   Kamakura, S., Moriguchi, T. and Nishida, E. (1999) Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. Journal of Biological Chemistry, 274, 26563-26571.

  12. [12]   Nithianandarajah-Jones, G.N., Wilm, B., Goldring, C.E., Müller, J. and Cross, M.J. (2012) ERK5: Structure, regulation and function. Cellular Signalling, 24, 2187-2196.

  13. [13]   Kasler, H.G., Victoria, J., Duramad, O. and Winoto, A. (2000) ERK5 is a novel type of mitogen-activated protein kinase containing a transcriptional activation domain. Molecular and Cellular Biology, 20, 8382-8389.

  14. [14]   Sun, W., Kesavan, K., Schaefer, B.C., Garrington, T.P., Ware, M., Johnson, N.L., Gelfand, E.W. and Johnson, G.L. (2001) MEKK2 associates with the adapter protein Lad/RIBP and regulates the MEK5-BMK1/ERK5 pathway. Journal of Biological Chemistry, 276, 5093-5100.

  15. [15]   Mody, N., Campbell, D.G., Morrice, N., Peggie, M. and Cohen, P. (2003) An analysis of the phosphorylation and activation of extracellular-signal-regulated protein kinase 5 (ERK5) by mitogen-activated protein kinase kinase 5 (MKK5) in vitro. Biochemical Journal, 372, 567-575.

  16. [16]   McCaw, B.J., Chow, S.Y., Wong, E.S., Tan, K.L., Guo, H. and Guy, G.R. (2005) Identification and characterization of mErk5-T, a novel Erk5/Bmk1 splice variant. Gene, 345, 183-190.

  17. [17]   English, J.M., Vanderbilt, C.A., Xu, S., Marcus, S. and Cobb, M.H. (1995) Isolation of MEK5 and differential expression of alternatively spliced forms. Journal of Biological Chemistry, 270, 28897-28902.

  18. [18]   Cude, K., Wang, Y., Choi, H.J., Hsuan, S.L., Zhang, H.L., Wang, C.Y. and Xia, Z.G. (2007) Regulation of the G2-M cell cycle progression by the ERK5-NFkappaB signaling pathway. Journal of Cell Biology, 177, 253-264.

  19. [19]   Ye, M., Luo, X., Li, L., Shi, Y., Tan, M., Weng, X.X., Li, W., Liu, J.K. and Cao, Y. (2007) Grifolin, a potential antitumor natural product from the mushroom Albatrellus confluens, induces cell-cycle arrest in G1 phase via the ERK1/2 pathway. Cancer Letters, 258, 199-207.

  20. [20]   Lee, K.S., Park, J.H., Lim, H.J. and Park, H.Y. (2011) HB-EGF induces cardiomyocyte hypertrophy via an ERK5- MEF2A-COX2 signaling pathway. Cellular Signalling, 23, 1100-1109.

  21. [21]   Kato, Y., Tapping, R.I., Huang, S., Watson, M.H., Ulevitch, R.J. and Lee, J.D. (1998) Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature, 395, 713-716.

  22. [22]   Zhao, Z., Geng, J., Ge, Z.M., Wang, W., Zhang, Y. and Kang, W.Q. (2009) Activation of ERK5 in angiotensin II-induced hypertrophy of human aortic smooth muscle cells. Molecular and Cellular Biochemistry, 322, 171-178.

  23. [23]   Lochhead, P.A., Gilley, R. and Cook, S.J. (2012) ERK5 and its role in tumour development. Biochemical Society Transactions, 40, 251-256.

  24. [24]   Montero, J.C., Ocana, A., Abad, M., Ortiz-Ruiz, M.J., Pandiella, A. and Esparís-Ogando, A. (2009) Expression of Erk5 in early stage breast cancer and association with disease free survival identifies this kinase as a potential therapeutic target. PLoS ONE, 4, e5565.

  25. [25]   Antoon, J.W., Martin, E.C., Lai, R., Salvo, V.A., Tang, Y., Nitzchke, A.M., et al. (2013) MEK5/ERK5 signaling suppresses estrogen receptor expression and promotes hormone-independent tumorigenesis. PLoS ONE, 8, e69291.

  26. [26]   Zen, K., Yasui, K., Nakajima, T., Zen, Y., Zen, K., Gen, Y., et al. (2009) ERK5 is a target for gene amplification at 17p11 and promotes cell growth in hepatocellular carcinoma by regulating mitotic entry. Genes, Chromosomes and Cancer, 48, 109-120.

  27. [27]   Sticht, C., Freier, K., Knopfle, K., Flechtenmacher, C., Pungs, S., Hofele, C., Hahn, M., Joos, S. and Lichter, P. (2008) Activation of MAP kinase signaling through ERK5 but not ERK1 expression is associated with lymph node metastases in oral squamous cell carcinoma (OSCC). Neoplasia, 10, 462-470.

  28. [28]   McCracken, S.R., Ramsay, A., Heer, R., Mathers, M.E., Jenkins, B.L., Edwards, J., et al. (2008) Aberrant expression of extracellular signal-regulated kinase 5 in human prostate cancer. Oncogene, 27, 2978-2988.

  29. [29]   Ramsay, A.K., McCracken, S.R., Soofi, M., Fleming, J., Yu, A.X., Ahmad, I., et al. (2011) ERK5 signalling in prostate cancer promotes an invasive phenotype. British Journal of Cancer, 104, 664-672.

  30. [30]   Ramos-Nino, M.E., Blumen, S.R., Sabo-Attwood, T., Pass, H., Carbone, M., Testa, J.R., Altomare, D.A. and Mossman, B.T. (2008) HGF mediates cell proliferation of human mesothelioma cells through a PI3K/MEK5/Fra-1 pathway. American Journal of Respiratory Cell and Molecular Biology, 38, 209-217.

  31. [31]   Nagel, S., Burek, C., Venturini, L., Scherr, M., Quentmeier, H., Meyer, C., Rosenwald, A., Drexler, H.G. and MacLeod, R.A. (2007) Comprehensive analysis of homeobox genes in Hodgkin lymphoma cell lines identifies dysregulated expression of HOXB9 mediated via ERK5 signaling and BMI1. Blood, 109, 3015-3023.

  32. [32]   Lopez-Royuela, N., Rathore, M.G., Allende-Vega, N., Annicotte, J.S., Fajas, L., Ramachandran, B., Gulick, T. and Villalba, M. (2014) Extracellular-signal-regulated kinase 5 modulates the antioxidant response by transcriptionally controlling Sirtuin 1 expression in leukemic cells. International Journal of Biochemistry & Cell Biology, 53, 253-261.

  33. [33]   Castro, N.E. and Lange, C.A. (2010) Breast tumor kinase and extracellular signal-regulated kinase 5 mediate Met receptor signaling to cell migration in breast cancer cells. Breast Cancer Research, 12, R60.

  34. [34]   Hayashi, M., Fearns, C., Eliceiri, B., Yang, Y. and Lee, J.D. (2005) Big mitogen-activated protein kinase 1/extracellular signal-regulated kinase 5 signaling pathway is essential for tumor-associated angiogenesis. Cancer Research, 65, 7699- 7706.

  35. [35]   Kimura, T.E., Jin, J., Zi, M., Prehar, S., Liu, W., Oceandy, D., et al. (2010) Targeted deletion of the extracellular signal-regulated protein kinase 5 attenuates hypertrophic response and promotes pressure overload-induced apoptosis in the heart. Circulation Research, 106, 961-970.

  36. [36]   Le, N.T., Heo, K.S., Takei, Y., Lee, H., Woo, C.H., Chang, E., et al. (2013) A crucial role for p90RSK-mediated reduction of ERK5 transcriptional activity in endothelial dysfunction and atherosclerosis. Circulation, 127, 486-499.

  37. [37]   Wu, Y.X., Feng, B., Chen, S.L. and Chakrabarti, S. (2012) ERK5 Regulates glucose-induced increased fibronectin production in the endothelial cells and in the retina in diabetes. Investigative Ophthalmology & Visual Science, 53, 8405-8413.

  38. [38]   Fryer, R.M., Boustany-Kari, C.M. and MacDonnell, S.M. (2014) Engaging novel cell types, protein targets and efficacy biomarkers in the treatment of diabetic nephropathy. Frontiers in Pharmacology, 5, 185.

  39. [39]   Urushihara, M., Takamatsu, M., Shimizu, M., Kondo, S., Kinoshita, Y., Suga, K., et al. (2010) ERK5 activation enhances mesangial cell viability and collagen matrix accumulation in rat progressive glomerulonephritis. American Journal of Physiology-Renal Physiology, 298, 167-176.

  40. [40]   Katsarou, K., Tsitoura, P. and Georgopoulou, U. (2011) MEK5/ERK5/mef2: A novel signaling pathway affected by hepatitis C virus non-enveloped capsid-like particles. Biochimica et Biophysica Acta, 1813, 1854-1862.

  41. [41]   Li, P., Ma, Y.C., Shen, H.L., Han, H., Wang, J., Cheng, H.J., Wang, C.F. and Xia, Y.Y. (2012) Cytoskeletal reorganization mediates fluid shear stress-induced ERK5 activation in osteoblastic cells. Cell Biology International, 36, 229- 236.

NOTES

*第一作者。

#通讯作者。

期刊菜单