Hans Journal of Agricultural Sciences
Vol.06 No.06(2016), Article ID:18931,8 pages
10.12677/HJAS.2016.66022

Research Progress of the Effects of Low CO2 on Plant

Yulou Sun*, Aihong Gu*, Mengqi Zong, Chunxia Wu#

College of Life Science, Shandong Normal University, Jinan Shandong

Received: Oct. 20th, 2016; accepted: Nov. 12th, 2016; published: Nov. 15th, 2016

Copyright © 2016 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

Atmospheric CO2 is the main carbon source for plant photosynthesis and the fundamental substrate for plant growth. The carbon fixation efficiency of plant is reduced and the growth and development are affected at low CO2. The effect of low CO2 on C3 and C4 plant is different because of their distinct photosynthetic pathway. Furthermore plant growth can be affected by the interactive effects of low CO2 with other environmental factors, such as water, temperature, and nutrients. In this review, the effects of low CO2 on plant growth and development are discussed in several aspects including biomass and its distribution, growth cycle, stoma, photosynthetic system and other environmental factors.

Keywords:Biomass, Growth, Low CO2, Photosynthesis

低浓度CO2对植物的影响研究进展

孙玉楼*,顾爱红*,宗梦琦,吴春霞#

山东师范大学生命科学学院,山东 济南

收稿日期:2016年10月20日;录用日期:2016年11月12日;发布日期:2016年11月15日

摘 要

CO2是植物光合作用的主要碳源。低浓度CO2能够降低植物的碳固定速率,影响植物的生长发育过程。由于C3与C4植物光合途径存在差异,所以对外界低CO2环境的应答反应不同。此外,生长环境中的其他因子如水分、温度、氮等也与低浓度CO2相互作用影响植物生长发育进程。本文从生物量及其分配、生长发育周期、气孔及光合系统,以及低CO2与其他环境因子相互作用等方面综述了低浓度CO2对植物的影响。

关键词 :生物量,生长发育,低CO2,光合作用

1. 引言

全球碳循环过程中,植物光合作用过程中的CO2同化是联系大气与生物圈的重要桥梁,CO2存在于空气中且能够自由扩散,分散于整个陆地生态系统 [1] [2] 。C3、C4植物在低浓度CO2环境中的生长情况比较实验 [3] [4] ,模型评估 [5] [6] 以及古生态学研究 [5] [7] [8] [9] 都表明:低浓度CO2能够作为一种有效的光合筛选因子影响生态系统中种群的结构和进化轨迹,并且在C4植物形成发展过程中起着重要作用。与C3植物相比,C4植物具有较低的CO2补偿点,能在强光、高温、低浓度CO2下保持高的光合作用速率。面对越来越紧迫的粮食危机,将小麦(Triticum aestivum),水稻(Oryza sativa)等C3粮食作物改造为C4植物以提高粮食产量成为第二次“绿色革命”的主要目标(http://c4rice.irri.org)。因此,探究低浓度CO2对植物生长发育的影响并阐明其机制越来越受到研究者们的关注。本文从生物量及分配、生长发育周期、气孔及光合系统,以及低CO2与其他环境因子相互作用等方面综述了低浓度CO2对植物生长发育的影响。

2. 低浓度CO2对植物的影响

2.1. 低浓度CO2对植物生物量的影响

CO2作为植物的“食物”,低浓度CO2环境使植物处于“饥饿”状态,对植物生物量产生很大影响。苘麻生物量在350 μmol∙mol−1 CO2比150 μmol∙mol−1 CO2时高92% [10] ,大豆生物量在330 μmol∙mol−1 CO2比160 μmol∙mol−1 CO2时高61% [11] ,表明低浓度CO2能够明显降低C3植物生物量。C3植物在低浓度CO2下虽然具有较高的叶面积比(leaf area ratio, LAR),但净光合速率(net photosynthetic rate, NAR)降低导致瞬时相对生长率(instantaneous relative growth rate, IRGR)降低(IRGR = NAR × LAR) [11] [12] [13] ,在相同生长时间内,植物自身的碳积累降低,生物量也随之降低。Liu等 [14] 分析了拟南芥(Arabidopsis thaliana)在100 μmol∙mol−1与380 μmol∙mol−1 CO2条件下的基因表达差异发现,低浓度CO2抑制植物生长的主要原因是由于植物细胞壁和内膜系统相关基因表达量明显下调。与之相比,高浓度CO2 (800 μmol∙mol−1)条件能够促进植物生长是由于光合膜系统(特别是叶绿体膜)基因表达量明显上调。

与C3植物相比,低浓度CO2对C4植物生物量的影响不大。Polley等 [15] 研究表明C4植物裂稃草(Schizachyrium scoparium)在低浓度CO2 (200 μmol∙mol−1)时生长不受影响。低浓度CO2 (150 μmol∙mol−1)对C4植物反枝苋(Amaranthus retroflexus)生物量的影响也不大 [16] 。虽然低浓度CO2会引起C4植物NAR的降低,但生物量并没有发生变化 [15] [17] ,这可能与减少的呼吸作用和根部分泌物有关 [18] 。可见,C3植物对CO2浓度的变化更为敏感,而C4植物在低浓度CO2下相比C3植物具有更强的竞争优势,这也充分解释了中新世后期C4植物群落广泛扩张的现象 [5] [19] 。

2.2. 低浓度CO2对生物量分配的影响

在低浓度CO2下,相比地下部分,植物通常要分配更多的生物量给地上部分 [20] 。Dippery等 [10] 发现苘麻在低浓度CO2 (150 μmol∙mol−1)条件下,根冠比(root to shoot ratio, RSR)降低。大豆在160 μmol∙mol−1 CO2时也分配更多的生物量给地上部分 [11] 。这样虽然有利于提高地上部分CO2的吸收量,但是地下部分(根)生物量的减少造成根部氮摄取减少,进而减少了核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)的产生量,对CO2的同化产生消极影响 [4] 。以上研究均着眼于低浓度CO2对植物自养阶段生长的影响,研究发现,低浓度CO2对于植物异养阶段种子中营养的调用、分配及使用则不会产生影响 [21] 。C4植物在低浓度CO2下RSR基本保持不变,表明低浓度CO2对C4植物生物量分配的影响不大 [10] 。

2.3. 低浓度CO2对植物生长发育周期的影响

Ward等 [22] 发现,种植在低浓度CO2 (200 μmol∙mol−1)条件下的拟南芥开花时间平均延长9天,这个变化对于一个生长期只有40到60天的物种来说非常大。Ward等 [23] 以高种子数量为筛选标准,在低浓度CO2 (200 μmol∙mol−1)条件下,经过5代筛选得到的拟南芥开花期延长,衰老延缓。目前对于低浓度CO2延长C3植物营养生长时间的机制还不十分清楚。低浓度CO2可能通过改变植物体内的碳水化合物水平来影响此过程:延长植物营养生长时间有利于提高其进入生殖生长前根中的碳存储,增强植物在低浓度CO2条件下的适应性 [20] ;也可能作为一种环境刺激影响相关基因的表达 [24] 。Putterill [25] 研究发现,拟南芥中大约有80个基因在营养生长向生殖生长转变过程中发挥功能。这些基因的发现对于确定CO2如何参与到植物开花诱导信号转导途径中具有重要意义。对于C4植物来说,低浓度CO2对其发育时期几乎无影响 [10] 。

2.4. 低浓度CO2对植物生殖生长的影响

生殖生长与植物的生存发展紧密相关。低浓度CO2不仅能够延长C3植物的营养生长时间,而且对C3植物的种子重量及数量也有很大影响 [22] 。Campbell等 [26] 研究发现,烟草百粒重在和150 μmol∙mol−1比100 μmol∙mol−1 CO2条件下高出15%,百粒萌发率高出30%。Ward等 [24] 比较了6个拟南芥生态型在低CO2 (200 μmol∙mol−1)与正常(350 μmol∙mol−1)条件下的种子数量情况,发现200 μmol∙mol−1 CO2时减少了38%~81%,总体适应性(存活率与种子总量的乘积)降低59%~87%。Tonsor等 [27] 运用35个拟南芥生态型构建性状整合模型发现,低浓度CO2下碳的积累是生殖生物量的主要决定因素,碳积累的降低造成种子重量及数量的降低。相比C3植物而言,C4植物的生殖生长对低浓度CO2不敏感 [10] 。

2.5. 低浓度CO2对气孔的影响

气孔是CO2进入叶片的重要通道,CO2浓度的降低会导致植物气孔密度或者气孔导度的变化 [28] [29] ,影响叶片的光合速率。研究发现,在280 μmol∙mol−1 CO2条件下Selaginella selagenoides和Selaginella kraussiana气孔指数(气孔数/表皮细胞数)比360 μmol∙mol−1 CO2时增加约30% [30] 。Li等 [31] 研究发现,拟南芥下表皮气孔密度在低CO2 (100 μmol∙mol−1)时增加了约60% (见图1)。在此过程中HIGH TEMPERATURE 1 (HT1)蛋白激酶与OPEN STOMATA 1 (OST1)相互作用发挥着重要作用 [29] [32] 。

但是,在低浓度CO2下并不是所有植物气孔密度都增加,有时甚至会降低。例如,Maherali等 [33] 发现在低CO2 (220 μmol∙mol−1)条件下,Solanum dimidiatum和Bromus japonicus表现出气孔密度降低,但是却增大气孔的大小来提高CO2摄取。CO2浓度对气孔密度影响没有明确的规律性。种间差异、气孔密度/导度与CO2浓度的非线性关系、长期与短期实验的差异性都给这方面研究带来挑战 [34] [35] 。

低CO2 (100 μmol∙mol−1) 正常(380 μmol∙mol−1)

Figure 1. Effect of low CO2 on stomatal density in Arabidopsis [31] . Effect of low CO2 on stomatal density. Representative scanning electron micrographs of abaxial (lower) leaf blade epidermis of Arabidopsis grown under 100 μmol∙mol−1 CO2 and 380 μmol∙mol−1 CO2 for 6 weeks. Dashed lines indicate stomata. Bars = 20 μm

图1. 低浓度CO2对拟南芥气孔密度的影响 [31] 。拟南芥Col-0 6周时低CO2 (100 μmol∙mol−1)与正常(380 μmol∙mol−1)条件下叶片远轴端下表皮电镜扫描照片。虚线代表气孔。Bars = 20 μm

Ward等 [17] 发现,随着CO2浓度的增加,反枝苋(C4)净光合速率增加,气孔导度减少,并且蒸腾作用减少。200 μmol∙mol−1与340 μmol∙mol−1 CO2时相比,C4植物北美小须芒草气孔导度增加,光合速率降低 [15] 。狗尾草(C4)也表现出相同的变化趋势 [36] 。这些研究表明,C4植物对低浓度CO2也会表现出积极的生理反应。但是与C3植物相比,低浓度CO2对C4植物的影响较小。主要原因在于,C3植物固定CO2的过程是在叶肉细胞中发生,细胞间CO2浓度大约是外界空气的70%,植物体对外界CO2浓度的变化敏感 [37] ,而C4植物中存在特殊的“CO2泵”:叶肉细胞吸收的CO2,在磷酸烯醇式丙酮酸羧化酶(PEPC)作用下羧化磷酸烯醇式丙酮酸(PEP)生成草酰乙酸(OAA),然后被NADPH特异的苹果酸脱氢酶还原为苹果酸或者通过转氨作用转变为天冬氨酸。4C的CO2载体(苹果酸或者天冬氨酸)通过胞间连丝被转运到邻近的维管束鞘细胞,在这里脱羧生成丙酮酸并产生CO2,维管束鞘细胞中的CO2浓度能够达到1000~2000 μmol∙mol−1。所以C4植物受低浓度CO2影响较小。

2.6. 低浓度CO2对植物光合系统的影响

大量研究表明,低浓度CO2能够影响植物生长发育的各个方面,归根结底都是由于影响了植物的光合系统,减弱了植物的光合作用。低浓度CO2对C3植物光合系统的影响主要表现在三方面:第一,环境中低浓度CO2使植物叶片中的CO2扩散效率降低,虽然植物能够通过增加气孔密度或气孔导度来增加CO2的摄入量,但是相对气孔限制(relative stomatal limitation, RSL = (1 − A/A0) × 100%,A为正常CO2分压下的净光合速率,A0为无扩散阻力条件下的净光合速率)在低浓度CO2条件下约是正常条件下的三倍 [4] ,表明低浓度CO2严重影响了CO2在叶片中的扩散。第二,低浓度CO2能够影响卡尔文循环过程。CO2进入叶肉细胞后,在Rubisco的催化下与1,5二磷酸核酮糖(RuBP)发生反应进入卡尔文循环。在低CO2 (150 μmol∙mol−1)时,苘麻Rubisco活力(Vcmax,Rubisco的最大CO2固定率)下降了25%,含量下降了30%,并且可能由于低浓度CO2降低了Rubisco活化酶的氨甲酰化作用 [38] 导致Rubisco的活化状态比正常条件下低29%,同时,RuBP再生能力(Jmax,类囊体反应中电子传导能力介导的RuBP再生能力)和磷酸盐再生能力(PiRC,淀粉、蔗糖合成中磷酸盐的再生能力)与正常(350 μmol∙mol−1)相比也都降低了约25% [4] 。Liu等 [14] 通过分析不同CO2条件下的代谢通量发现,卡尔文循环通量会随着CO2浓度的降低而降低。这些证据充分表明低浓度CO2能够抑制整个卡尔文循环,减少植物体内糖类物质的合成量。第三,低浓度CO2能够影响植物的光呼吸。Rubisco在同一个活性位点可以结合CO2和O2 (羧化酶活性和加氧酶活性),O2能够竞争CO2的结合位点,产生的光呼吸现象不仅没有C的净积累,相反还要消耗羧化酶活性固定的有机碳,以热的形式散失掉。Liu等 [14] 发现光呼吸通量会随着CO2浓度的降低而升高,所以低浓度CO2会增强光呼吸,减少碳的积累 [39] 。

研究发现,低浓度CO2能够降低C4植物叶片中的叶绿素和淀粉含量,但是叶片氮含量并没有发生改变。在植物叶片中,氮主要来源于光合系统酶以及类囊体蛋白,所以氮含量与叶片光合能力紧密相关 [40] 。氮含量不变但是光合产物却降低,表明C4植物分配了更多的N给非光合元件来应对低浓度CO2胁迫 [4] ,但具体机制还不清楚。

3. 低浓度CO2与其他环境因子的相互作用

外界水分、温度、氮条件对植物生长发育起着重要作用,当外界CO2浓度降低时,碳积累的降低能够影响外界水分、温度、氮条件对植物造成的影响。同样地,水分、温度、氮条件的变化也能够影响植物在低浓度CO2下的应答反应。许多研究表明,低浓度CO2能够与这些因子交互作用共同影响植物的生长发育过程。

3.1. 水分

低浓度CO2能够影响植物的蒸腾速率和水分利用效率,主要是通过影响植物的气孔导度来实现的 [41] 。Overdieck [42] 研究表明,工业化之前植物比现在植物的气孔导度高约16%。大多数C3植物的气孔导度在更新世冰期(CO2浓度:180~200 μmol∙mol−1)比现在(CO2浓度:350~380 μmol∙mol−1)高出35%~50% [41] ,造成这种情况的主要原因是由于在CO2胁迫情况下,植物要抵抗这种胁迫就必须增加气孔导度/比叶面积来减少CO2进入叶片内部的阻力,这同时会引起植物蒸腾加快,增加水分散失,降低植物水分利用效率。Polley等 [16] 通过研究三种C3植物小麦(Triticum aestivum)、旱雀麦(Bromus tectorum)、腺牧豆树(Prosopis glandulosa)在低浓度CO2条件下的水分利用效率(水分利用效率=光合速率/气孔导度)发现,CO2浓度的降低与水分利用效率的降低成正比,表明低浓度CO2对水分利用率的影响简单直接。Ward等 [17] 研究发现缺乏水分能够极大降低低浓度CO2 (180 μmol∙mol−1)条件下植物的光合速率,并且C4植物对C3植物的竞争力也降低。

3.2. 温度

从地质角度来看,最近一次冰期全球的平均温度比现在低约8℃,CO2浓度则降至180~200 μmol∙mol−1 [43] [44] ,C3、C4植物在低浓度CO2下受温度影响的研究对于理解最近一次冰期植物间的竞争状况和植物丰度具有重要意义。在Ward等 [45] 的研究中,低CO2 (200 μmol∙mol−1)条件下将苘麻和反枝苋(C4)种植在两种温度(30℃/24℃和22℃/16℃)条件下发现,虽然低温(22℃/16℃)时苘麻的叶片面积及气孔导度有所降低,但是根部生物量的增加及光呼吸的降低使得总生物量基本不变。与之相比,反枝苋(C4)则受低温影响明显,生物量降低了65%,叶片面积降低了55%,比叶重降低了20%,虽然在此条件下反枝苋生物量仍是苘麻的5倍,但与30℃/24℃时的14倍相比降低明显。结合Sage [46] 的研究发现,Rubisco活性降低是导致这种现象的主要原因。在Sage的同一研究中,反枝苋在30℃与22℃相比,在360 μmol∙mol−1 CO2时净光合速率升高了约25%;在180 μmol∙mol−1 CO2时差距不大;而在100 μmol∙mol−1 CO2时则几乎没有差异。表明低浓度CO2能够降低C4植物对温度的敏感性,并且发现相似模式也存在于C3植物中 [46] 。

3.3. 氮

CO2能够影响植物对氮的吸收,但是影响程度比对水分利用率的影响要小,特别是在干旱条件下,植物对于水分需求大于对N的需求 [16] 。低浓度CO2能够减少植物氮的固定,降低叶片氮含量 [4] [15] 。在烟草中,低糖状态能够降低硝酸还原酶的转录,使植物同化所吸收氮的能力降低 [47] 。这种反应虽然能够降低碳的使用量,但是对于植物来说也是破坏性的,氮积累的减少会导致Rubisco含量的降低,从而引起光合潜能的下降,加重低浓度CO2对植物的影响 [4] 。如果CO2浓度低于一定阈值,那么植物将死亡 [20] 。Rogers等 [48] 研究表明,土壤中氮的缺乏能够降低植物对低浓度CO2的敏感性。在氮充足条件下,Aegilops kotschyi的生物量在440 μmol∙mol−1 CO2比280 μmol∙mol−1 CO2时高出40%,但是在氮缺乏条件下,生物量变化很小,这主要是由于低氮条件能够降低植物的碳同化量,控制植物生长的因素从碳需求转向了氮需求 [49] 。

4. 展望

通过研究植物对低浓度CO2胁迫的应答反应,能够帮助我们了解大气中CO2浓度较低时期植物怎样应对低浓度CO2环境,推测远古时期植物的生产力和生态系统的功能 [41] ,为寻找控制C4进化的关键因子奠定基础。现在研究中的实验对象都是经过长期进化而来,驯化反应以及植物自身的适应性能够改善外界环境对植物体的不利影响 [50] [51] ,通过单代、短期的实验结果还很难推断长期、渐变环境条件下低浓度CO2对植物的影响 [23] 。为了提高我们对这个领域的了解,我们尚需在分子水平上深入研究。本实验室在低CO2下种植拟南芥,通过分析其转录组变化,获得了在低CO2条件下表达变化明显的基因,目前正在对这些基因进行功能分析,可进一步提供低CO2对植物影响的分子证据。

基金项目

山东师范大学(国家级)大学生创新创业训练计划项目研究成果。

文章引用

孙玉楼,顾爱红,宗梦琦,吴春霞. 低浓度CO2对植物的影响研究进展
Research Progress of the Effects of Low CO2 on Plant[J]. 农业科学, 2016, 06(06): 145-152. http://dx.doi.org/10.12677/HJAS.2016.66022

参考文献 (References)

  1. 1. Tissue, D.T., Griffin, K.L., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. Oecologia, 101, 21-28. http://dx.doi.org/10.1007/bf00328895

  2. 2. Cerling, T.E., Harris, J.M., MacFadden, B.J., et al. (1997) Global Vegetation Change through the Miocene/Pliocene Boundary. Nature, 389, 153-158. http://dx.doi.org/10.1038/38229

  3. 3. Collatz, G.J., Berry, J.A. and Clark, J.S. (1998) Effects of Climate and Atmospheric CO2 Partial Pressure on the Global Distribution of C4 Grasses: Present, Past, and Future. Oecologia, 114, 441-454. http://dx.doi.org/10.1007/s004420050468

  4. 4. Cerling, T.E. (1999) Paleorecords of C4 Plants and Ecosystems. In: Sage, R.F. and Monson, R.K., Eds., C4 Plant Biology, Academic Press, USA, 445-469. http://dx.doi.org/10.1016/b978-012614440-6/50014-8

  5. 5. Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., et al. (2001) Climate Change as the Dominant Control on Glacial- Interglacial Variations in C3 and C4 Plant Abundance. Science, 293, 1647-1651. http://dx.doi.org/10.1126/science.1060143

  6. 6. Boom, A., Marchant, R., Hooghiemstra, H., et al. (2002) CO2- and Temperature-Controlled Altitudinal Shifts of C4- and C3-Dominated Grasslands Allow Reconstruction of Palaeo Atmospheric pCO2. Palaeogeography Palaeoclimatology Palaeoecology, 177, 151-168. http://dx.doi.org/10.1016/S0031-0182(01)00357-1

  7. 7. Levis, S., Foley, J.A. and Pollard, D. (1999) CO2, Climate, and Vegetation Feedbacks at the Last Glacial Maximum. Journal of Geophysical Research Atmospheres, 104, 31191-31198. http://dx.doi.org/10.1029/1999JD900837

  8. 8. Dippery, J.K., Tissue, D.T., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. I. Growth and Biomass Allocation. Oecologia, 101, 13-20. http://dx.doi.org/10.1007/BF00328894

  9. 9. Allen, L.H., Bisbal, E.C., Boote, K.J., et al. (1991) Soybean Dry Matter Allocation under Subambient and Superambient Levels of Carbon Dioxide. Agronomy Journal, 83, 875-883. http://dx.doi.org/10.2134/agronj1991.00021962008300050020x

  10. 10. Norby, R.J. and O’neill, E.G. (1991) Leaf Area Compensation and Nutrient Interactions in CO2-Enriched Seedlings of Yellow-Poplar (Liriodendron tulipifera L.). New Phytologist, 117, 515-528. http://dx.doi.org/10.1111/j.1469-8137.1991.tb00956.x

  11. 11. Bowler, J.M. and Press, M.C. (1993) Growth Responses of Two Contrasting Upland Grass Species to Elevated CO2 and Nitrogen Concentration. New Phytologist, 124, 515-522. http://dx.doi.org/10.1111/j.1469-8137.1993.tb03843.x

  12. 12. Liu, L., Shen, F., Xin, C.P., et al. (2016) Multi-Scale Modeling of Arabidopsis thaliana Response to Different CO2 Conditions: From Gene Expression to Metabolic Flux. Journal of Integrative Plant Biology, 58, 2-11. http://dx.doi.org/10.1111/jipb.12370

  13. 13. Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1994) Increasing CO2: Comparative Responses of the C4 Grass Schizachyrium and Grassland Invader Prosopis. Ecology, 75, 976-988. http://dx.doi.org/10.2307/1939421

  14. 14. Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1995) Nitrogen and Water Requirements of C3 Plants Grown at Glacial to Present Carbon Dioxide Concentrations. Functional Ecology, 9, 86-96. http://dx.doi.org/10.2307/2390094

  15. 15. Ward, J.K., Tissue, D.T., Thomas, R.B., et al. (1999) Comparative Responses of Model C3 and C4 Plants to Drought in Low and Elevated CO2. Global Change Biology, 5, 857-867. http://dx.doi.org/10.1046/j.1365-2486.1999.00270.x

  16. 16. Norby, R.J. (1994) Issues and Perspectives for Investigating Root Responses to Elevated Atmospheric Carbon Dioxide. Plant & Soil, 165, 9-20. http://dx.doi.org/10.1007/BF00009958

  17. 17. Sage, R.F. (2004) The Evolution of C4 Photosynthesis. New Phytologist, 161, 341-370. http://dx.doi.org/10.1111/j.1469-8137.2004.00974.x

  18. 18. Sage, R.F. and Coleman, J.R. (2001) Effects of Low Atmospheric CO2 on Plants: More than a Thing of the Past. Trends in Plant Science, 6, 18-24. http://dx.doi.org/10.1016/S1360-1385(00)01813-6

  19. 19. Lehmeier, C.A., Schäufele, R. and Schnyder, H. (2005) Allocation of Reserve-Derived and Currently Assimilated Carbon and Nitrogen in Seedlings of Helianthus annuus under Sub-Ambient and Elevated CO2 Growth Conditions. New Phytologist, 168, 613-621. http://dx.doi.org/10.1111/j.1469-8137.2005.01531.x

  20. 20. Ward, J.K. and Strain, B.R. (1997) Effects of Low and Elevated CO2 Partial Pressure on Growth and Reproduction of Arabidopsis thaliana from Different Elevations. Plant, Cell & Environment, 20, 254-260. http://dx.doi.org/10.1046/j.1365-3040.1997.d01-59.x

  21. 21. Cowling, S.A., Cox, P.M., Jones, C.D., et al. (2008) Simulated Glacial and Interglacial Vegetation across Africa: Implications for Species Phylogenies and Trans-African Migration of Plants and Animals. Global Change Biology, 14, 827-840. http://dx.doi.org/10.1111/j.1365-2486.2007.01524.x

  22. 22. Sage, R.F. (1995) Was Low Atmospheric CO2 during the Pleistocene a Limiting Factor for the Origin of Agriculture? Global Change Biology, 1, 93-106. http://dx.doi.org/10.1111/j.1365-2486.1995.tb00009.x

  23. 23. Tissue, D.T., Griffin, K.L., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. Oecologia, 101, 21-28. http://dx.doi.org/10.1007/bf00328895

  24. 24. Cerling, T.E., Harris, J.M., MacFadden, B.J., et al. (1997) Global Vegetation Change through the Miocene/Pliocene Boundary. Nature, 389, 153-158. http://dx.doi.org/10.1038/38229

  25. 25. Collatz, G.J., Berry, J.A. and Clark, J.S. (1998) Effects of Climate and Atmospheric CO2 Partial Pressure on the Global Distribution of C4 Grasses: Present, Past, and Future. Oecologia, 114, 441-454. http://dx.doi.org/10.1007/s004420050468

  26. 26. Cerling, T.E. (1999) Paleorecords of C4 Plants and Ecosystems. In: Sage, R.F. and Monson, R.K., Eds., C4 Plant Biology, Academic Press, USA, 445-469. http://dx.doi.org/10.1016/b978-012614440-6/50014-8

  27. 27. Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., et al. (2001) Climate Change as the Dominant Control on Glacial- Interglacial Variations in C3 and C4 Plant Abundance. Science, 293, 1647-1651. http://dx.doi.org/10.1126/science.1060143

  28. 28. Ward, J.K., Antonovics, J., Thomas, R.B., et al. (2000) Is Atmospheric CO2 a Selective Agent on Model C3 Annuals? Oecologia, 123, 330-341. http://dx.doi.org/10.1007/s004420051019

  29. 29. Ward, J.K. and Kelly, J.K. (2004) Scaling up Evolutionary Responses to Elevated CO2: Lessons from Arabidopsis. Ecology Letters, 7, 427-440. http://dx.doi.org/10.1111/j.1461-0248.2004.00589.x

  30. 30. Putterill, J. (2001) Flowering in Time: Genes Controlling Photoperiodic Flowering in Arabidopsis. Philosophical Transactions of the Royal Society B. Biological Sciences, 356, 1761-1767. http://dx.doi.org/10.1098/rstb.2001.0963

  31. 31. Campbell, C.D., Sage, R.F., Kocacinar, F., et al. (2005) Estimation of the Whole-Plant CO2 Compensation Point of Tobacco (Nicotiana tabacum L.). Global Change Biology, 11, 1956-1967. http://dx.doi.org/10.1111/j.1365-2486.2005.01045.x

  32. 32. Tonsor, S.J. and Scheiner, S.M. (2007) Plastic Trait Integration across a CO2 Gradient in Arabidopsis thaliana. The American Naturalist, 169, E119-E140. http://dx.doi.org/10.1086/513493

  33. 33. Beerling, D.J. and Woodward, F.I. (1997) Changes in Land Plant Function over the Phanerozoic: Reconstructions Based on the Fossil Record. Botanical Journal of the Linnean Society, 124, 137-153. http://dx.doi.org/10.1111/j.1095-8339.1997.tb01787.x

  34. 34. Matrosova, A., Bogireddi, H., Mateo-Peñas, A., et al. (2015) The HT1 Protein Kinase Is Essential for Red Light- Induced Stomatal Opening and Genetically Interacts with OST1 in Red Light and CO2-Induced Stomatal Movement Responses. New Phytologist, 208, 1126-1137. http://dx.doi.org/10.1111/nph.13566

  35. 35. Boom, A., Marchant, R., Hooghiemstra, H., et al. (2002) CO2- and Temperature-Controlled Altitudinal Shifts of C4- and C3-Dominated Grasslands Allow Reconstruction of Palaeo Atmospheric pCO2. Palaeogeography Palaeoclimatology Palaeoecology, 177, 151-168. http://dx.doi.org/10.1016/S0031-0182(01)00357-1

  36. 36. Beerling, D.J. (2005) Evolutionary Responses of Land Plants to Atmospheric CO2. In: Ehleringer, J.R., Cerling, T. and Dearing, M.D., Eds., A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, Springer, New York, 114-132.

  37. 37. Li, Y.Y., Xu, J.J., Haq, N.U., Zhang, H. and Zhu, X.-G. (2014) Was Low CO2 a Driving Force of C4 Evolution: Arabidopsis Responses to Long-Term Low CO2 Stress. Journal of Experimental Botany, 65, 3657-3667. http://dx.doi.org/10.1093/jxb/eru193

  38. 38. Hashimoto, M., Negi, J., Young, J., Israelsson, M., Schroeder, J.I. and Iba, K. (2006) Arabidopsis HT1 Kinase Controls Stomatal Movements in Response to CO2. Nature Cell Biology, 8, 391-397. http://dx.doi.org/10.1038/ncb1387

  39. 39. Dippery, J.K., Tissue, D.T., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. I. Growth and Biomass Allocation. Oecologia, 101, 13-20. http://dx.doi.org/10.1007/BF00328894

  40. 40. Allen, L.H., Bisbal, E.C., Boote, K.J., et al. (1991) Soybean Dry Matter Allocation under Subambient and Superambient Levels of Carbon Dioxide. Agronomy Journal, 83, 875-883. http://dx.doi.org/10.2134/agronj1991.00021962008300050020x

  41. 41. Norby, R.J. and O’neill, E.G. (1991) Leaf Area Compensation and Nutrient Interactions in CO2-Enriched Seedlings of Yellow-Poplar (Liriodendron tulipifera L.). New Phytologist, 117, 515-528. http://dx.doi.org/10.1111/j.1469-8137.1991.tb00956.x

  42. 42. Bowler, J.M. and Press, M.C. (1993) Growth Responses of Two Contrasting Upland Grass Species to Elevated CO2 and Nitrogen Concentration. New Phytologist, 124, 515-522. http://dx.doi.org/10.1111/j.1469-8137.1993.tb03843.x

  43. 43. Liu, L., Shen, F., Xin, C.P., et al. (2016) Multi-Scale Modeling of Arabidopsis thaliana Response to Different CO2 Conditions: From Gene Expression to Metabolic Flux. Journal of Integrative Plant Biology, 58, 2-11. http://dx.doi.org/10.1111/jipb.12370

  44. 44. Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1994) Increasing CO2: Comparative Responses of the C4 Grass Schizachyrium and Grassland Invader Prosopis. Ecology, 75, 976-988. http://dx.doi.org/10.2307/1939421

  45. 45. Maherali, H., Reid, C.D., Polley, H.W., Johnson, H.B. and Jackson, R.B. (2002) Stomatal Acclimation over a Subambient to Elevated CO2 Gradient in a C3/C4 Grassland. Plant, Cell & Environment, 25, 557-566. http://dx.doi.org/10.1046/j.1365-3040.2002.00832.x

  46. 46. Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1995) Nitrogen and Water Requirements of C3 Plants Grown at Glacial to Present Carbon Dioxide Concentrations. Functional Ecology, 9, 86-96. http://dx.doi.org/10.2307/2390094

  47. 47. Ward, J.K., Tissue, D.T., Thomas, R.B., et al. (1999) Comparative Responses of Model C3 and C4 Plants to Drought in Low and Elevated CO2. Global Change Biology, 5, 857-867. http://dx.doi.org/10.1046/j.1365-2486.1999.00270.x

  48. 48. Roth-Nebelsick, A. (2005) Reconstructing Atmospheric Carbon Dioxide with Stomata: Possibilities and Limitations of a Botanical pCO2-Sensor. Trees, 19, 251-265. http://dx.doi.org/10.1007/s00468-004-0375-2

  49. 49. Norby, R.J. (1994) Issues and Perspectives for Investigating Root Responses to Elevated Atmospheric Carbon Dioxide. Plant & Soil, 165, 9-20. http://dx.doi.org/10.1007/BF00009958

  50. 50. Beerling, D.J. and Royer, D.L. (2002) Reading a CO2 Signal from Fossil Stomata. New Phytologist, 153, 387-397. http://dx.doi.org/10.1046/j.0028-646X.2001.00335.x

  51. 51. Sage, R.F. (2004) The Evolution of C4 Photosynthesis. New Phytologist, 161, 341-370. http://dx.doi.org/10.1111/j.1469-8137.2004.00974.x

  52. 52. Garbutt, K., Williams, W.E. and Bazzaz, F.A. (1990) Analysis of the Differential Response of Five Annuals to Elevated CO2 during Growth. Ecology, 71, 1185-1194. http://dx.doi.org/10.2307/1937386

  53. 53. Sage, R.F. and Coleman, J.R. (2001) Effects of Low Atmospheric CO2 on Plants: More than a Thing of the Past. Trends in Plant Science, 6, 18-24. http://dx.doi.org/10.1016/S1360-1385(00)01813-6

  54. 54. Lehmeier, C.A., Schäufele, R. and Schnyder, H. (2005) Allocation of Reserve-Derived and Currently Assimilated Carbon and Nitrogen in Seedlings of Helianthus annuus under Sub-Ambient and Elevated CO2 Growth Conditions. New Phytologist, 168, 613-621. http://dx.doi.org/10.1111/j.1469-8137.2005.01531.x

  55. 55. Ward, J.K. and Strain, B.R. (1997) Effects of Low and Elevated CO2 Partial Pressure on Growth and Reproduction of Arabidopsis thaliana from Different Elevations. Plant, Cell & Environment, 20, 254-260. http://dx.doi.org/10.1046/j.1365-3040.1997.d01-59.x

  56. 56. Ward, J.K., Antonovics, J., Thomas, R.B., et al. (2000) Is Atmospheric CO2 a Selective Agent on Model C3 Annuals? Oecologia, 123, 330-341. http://dx.doi.org/10.1007/s004420051019

  57. 57. Ward, J.K. and Kelly, J.K. (2004) Scaling up Evolutionary Responses to Elevated CO2: Lessons from Arabidopsis. Ecology Letters, 7, 427-440. http://dx.doi.org/10.1111/j.1461-0248.2004.00589.x

  58. 58. Beerling, D.J. and Woodward, F.I. (1996) Palaeo-Ecophysiological Perspectives on Plant Responses to Global Change. Trends in Ecology & Evolution, 11, 20-23. http://dx.doi.org/10.1016/0169-5347(96)81060-3

  59. 59. Sage, R.F. (1990) A Model Describing the Regulation of Ribu-lose-1,5-Bisphosphate Carboxylase, Electron Transport, and Triose Phosphate Use in Response to Light Intensity and CO2 in C3 Plants. Plant Physiology, 94, 1728-1734. http://dx.doi.org/10.1104/pp.94.4.1728

  60. 60. Cowling, S.A. (2001) Plant Carbon Balance, Evolutionary Innovation and Extinction in Land Plants. Global Change Biology, 7, 231-239. http://dx.doi.org/10.1046/j.1365-2486.2001.00410.x

  61. 61. Putterill, J. (2001) Flowering in Time: Genes Controlling Photoperiodic Flowering in Arabidopsis. Philosophical Transactions of the Royal Society B. Biological Sciences, 356, 1761-1767. http://dx.doi.org/10.1098/rstb.2001.0963

  62. 62. Evans, J.R. (1989) Photosynthesis and Nitrogen Relationships in Leaves of C3 Plants. Oecologia, 78, 9-19. http://dx.doi.org/10.1007/BF00377192

  63. 63. Gerhart, L.M. and Ward, J.K. (2010) Plant Responses to Low CO2 of the Past. New Phytologist, 188, 674-695. http://dx.doi.org/10.1111/j.1469-8137.2010.03441.x

  64. 64. Overdieck, D. (1989) The Effects of Preindustrial and Predicted Future Atmospheric CO2 Concentration on Lyonia mariana L.D. Don. Functional Ecology, 3, 569-576. http://dx.doi.org/10.2307/2389571

  65. 65. Petit, J.R., Jouzel, J., Raynaud, D., et al. (1999) Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature, 399, 429-436. http://dx.doi.org/10.1038/20859

  66. 66. Sigman, D.M. and Boyle, E.A. (2000) Glacial/Interglacial Variations in Atmospheric Carbon Dioxide. Nature, 407, 859-869. http://dx.doi.org/10.1038/35038000

  67. 67. Ward, J.K., Myers, D.A. and Thomas, R.B. (2008) Physiological and Growth Responses of C3 and C4 Plants to Reduced Temperature When Grown at Low CO2 of the Last Ice Age. Journal of Integrative Plant Biology, 50, 1388-1395. http://dx.doi.org/10.1111/j.1744-7909.2008.00753.x

  68. 68. Sage, R.F. (2002) Variation in the kcat of Rubisco in C3 and C4 Plants and Some Implications for Photosynthetic Performance at High and Low Temperature. Journal of Experimental Botany, 53, 609-620. http://dx.doi.org/10.1093/jexbot/53.369.609

  69. 69. Klein, D., Morcuende, R., Stitt, M. and Krapp, A. (2000) Regulation of Nitrate Reductase Expression in Leaves by Nitrate and Nitrogen Metabolism Is Completely Overridden When Sugars Fall below a Critical Level. Plant, Cell & Environment, 23, 863-871. http://dx.doi.org/10.1046/j.1365-3040.2000.00593.x

  70. 70. Rogers, A., Fischer, B.U., Bryant, J., et al. (1998) Acclimation of Photosynthesis to Elevated CO2 under Low-Nitrogen Nutrition Is Affected by the Capacity for Assimilate Utilization. Perennial Ryegrass under Free-Air CO2 Enrichment. Plant Physiology, 118, 683-689. http://dx.doi.org/10.1104/pp.118.2.683

  71. 71. Grünzweig, J.M. and Körner, C. (2000) Growth and Reproductive Responses to Elevated CO2 in Wild Cereals of the Northern Negev of Israel. Global Change Biology, 6, 631-638. http://dx.doi.org/10.1046/j.1365-2486.2000.00346.x

  72. 72. Woodward, F.I. and Bazzaz, F.A. (1988) The Responses of Stomatal Density to CO2 Partial Pressure. Journal of Experimental Botany, 39, 1771-1781. http://dx.doi.org/10.1093/jxb/39.12.1771

  73. 73. Campbell, C.D., Sage, R.F., Kocacinar, F., et al. (2005) Estimation of the Whole-Plant CO2 Compensation Point of Tobacco (Nicotiana tabacum L.). Global Change Biology, 11, 1956-1967. http://dx.doi.org/10.1111/j.1365-2486.2005.01045.x

  74. 74. Tonsor, S.J. and Scheiner, S.M. (2007) Plastic Trait Integration across a CO2 Gradient in Arabidopsis thaliana. The American Naturalist, 169, E119-E140. http://dx.doi.org/10.1086/513493

  75. 75. Beerling, D.J. and Woodward, F.I. (1997) Changes in Land Plant Function over the Phanerozoic: Reconstructions Based on the Fossil Record. Botanical Journal of the Linnean Society, 124, 137-153. http://dx.doi.org/10.1111/j.1095-8339.1997.tb01787.x

  76. 76. Matrosova, A., Bogireddi, H., Mateo-Peñas, A., et al. (2015) The HT1 Protein Kinase Is Essential for Red Light- Induced Stomatal Opening and Genetically Interacts with OST1 in Red Light and CO2-Induced Stomatal Movement Responses. New Phytologist, 208, 1126-1137. http://dx.doi.org/10.1111/nph.13566

  77. 77. Beerling, D.J. (2005) Evolutionary Responses of Land Plants to Atmospheric CO2. In: Ehleringer, J.R., Cerling, T. and Dearing, M.D., Eds., A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, Springer, New York, 114-132.

  78. 78. Li, Y.Y., Xu, J.J., Haq, N.U., Zhang, H. and Zhu, X.-G. (2014) Was Low CO2 a Driving Force of C4 Evolution: Arabidopsis Responses to Long-Term Low CO2 Stress. Journal of Experimental Botany, 65, 3657-3667. http://dx.doi.org/10.1093/jxb/eru193

  79. 79. Hashimoto, M., Negi, J., Young, J., Israelsson, M., Schroeder, J.I. and Iba, K. (2006) Arabidopsis HT1 Kinase Controls Stomatal Movements in Response to CO2. Nature Cell Biology, 8, 391-397. http://dx.doi.org/10.1038/ncb1387

  80. 80. Maherali, H., Reid, C.D., Polley, H.W., Johnson, H.B. and Jackson, R.B. (2002) Stomatal Acclimation over a Subambient to Elevated CO2 Gradient in a C3/C4 Grassland. Plant, Cell & Environment, 25, 557-566. http://dx.doi.org/10.1046/j.1365-3040.2002.00832.x

  81. 81. Roth-Nebelsick, A. (2005) Reconstructing Atmospheric Carbon Dioxide with Stomata: Possibilities and Limitations of a Botanical pCO2-Sensor. Trees, 19, 251-265. http://dx.doi.org/10.1007/s00468-004-0375-2

  82. 82. Beerling, D.J. and Royer, D.L. (2002) Reading a CO2 Signal from Fossil Stomata. New Phytologist, 153, 387-397. http://dx.doi.org/10.1046/j.0028-646X.2001.00335.x

  83. 83. Garbutt, K., Williams, W.E. and Bazzaz, F.A. (1990) Analysis of the Differential Response of Five Annuals to Elevated CO2 during Growth. Ecology, 71, 1185-1194. http://dx.doi.org/10.2307/1937386

  84. 84. Beerling, D.J. and Woodward, F.I. (1996) Palaeo-Ecophysiological Perspectives on Plant Responses to Global Change. Trends in Ecology & Evolution, 11, 20-23. http://dx.doi.org/10.1016/0169-5347(96)81060-3

  85. 85. Sage, R.F. (1990) A Model Describing the Regulation of Ribu-lose-1,5-Bisphosphate Carboxylase, Electron Transport, and Triose Phosphate Use in Response to Light Intensity and CO2 in C3 Plants. Plant Physiology, 94, 1728-1734. http://dx.doi.org/10.1104/pp.94.4.1728

  86. 86. Cowling, S.A. (2001) Plant Carbon Balance, Evolutionary Innovation and Extinction in Land Plants. Global Change Biology, 7, 231-239. http://dx.doi.org/10.1046/j.1365-2486.2001.00410.x

  87. 87. Evans, J.R. (1989) Photosynthesis and Nitrogen Relationships in Leaves of C3 Plants. Oecologia, 78, 9-19. http://dx.doi.org/10.1007/BF00377192

  88. 88. Gerhart, L.M. and Ward, J.K. (2010) Plant Responses to Low CO2 of the Past. New Phytologist, 188, 674-695. http://dx.doi.org/10.1111/j.1469-8137.2010.03441.x

  89. 89. Overdieck, D. (1989) The Effects of Preindustrial and Predicted Future Atmospheric CO2 Concentration on Lyonia mariana L.D. Don. Functional Ecology, 3, 569-576. http://dx.doi.org/10.2307/2389571

  90. 90. Petit, J.R., Jouzel, J., Raynaud, D., et al. (1999) Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature, 399, 429-436. http://dx.doi.org/10.1038/20859

  91. 91. Sigman, D.M. and Boyle, E.A. (2000) Glacial/Interglacial Variations in Atmospheric Carbon Dioxide. Nature, 407, 859-869. http://dx.doi.org/10.1038/35038000

  92. 92. Ward, J.K., Myers, D.A. and Thomas, R.B. (2008) Physiological and Growth Responses of C3 and C4 Plants to Reduced Temperature When Grown at Low CO2 of the Last Ice Age. Journal of Integrative Plant Biology, 50, 1388-1395. http://dx.doi.org/10.1111/j.1744-7909.2008.00753.x

  93. 93. Sage, R.F. (2002) Variation in the kcat of Rubisco in C3 and C4 Plants and Some Implications for Photosynthetic Performance at High and Low Temperature. Journal of Experimental Botany, 53, 609-620. http://dx.doi.org/10.1093/jexbot/53.369.609

  94. 94. Klein, D., Morcuende, R., Stitt, M. and Krapp, A. (2000) Regulation of Nitrate Reductase Expression in Leaves by Nitrate and Nitrogen Metabolism Is Completely Overridden When Sugars Fall below a Critical Level. Plant, Cell & Environment, 23, 863-871. http://dx.doi.org/10.1046/j.1365-3040.2000.00593.x

  95. 95. Rogers, A., Fischer, B.U., Bryant, J., et al. (1998) Acclimation of Photosynthesis to Elevated CO2 under Low-Nitrogen Nutrition Is Affected by the Capacity for Assimilate Utilization. Perennial Ryegrass under Free-Air CO2 Enrichment. Plant Physiology, 118, 683-689. http://dx.doi.org/10.1104/pp.118.2.683

  96. 96. Grünzweig, J.M. and Körner, C. (2000) Growth and Reproductive Responses to Elevated CO2 in Wild Cereals of the Northern Negev of Israel. Global Change Biology, 6, 631-638. http://dx.doi.org/10.1046/j.1365-2486.2000.00346.x

  97. 97. Woodward, F.I. and Bazzaz, F.A. (1988) The Responses of Stomatal Density to CO2 Partial Pressure. Journal of Experimental Botany, 39, 1771-1781. http://dx.doi.org/10.1093/jxb/39.12.1771

  98. 98. Chaves, M.M. and Pereira, J.S. (1992) Water Stress, CO2 and Climate Change. Journal of Experimental Botaty, 43, 1131-1139. http://dx.doi.org/10.1093/jxb/43.8.1131

  99. 99. Levis, S., Foley, J.A. and Pollard, D. (1999) CO2, Climate, and Vegetation Feedbacks at the Last Glacial Maximum. Journal of Geophysical Research Atmospheres, 104, 31191-31198. http://dx.doi.org/10.1029/1999JD900837

  100. 100. Cowling, S.A., Cox, P.M., Jones, C.D., et al. (2008) Simulated Glacial and Interglacial Vegetation across Africa: Implications for Species Phylogenies and Trans-African Migration of Plants and Animals. Global Change Biology, 14, 827-840. http://dx.doi.org/10.1111/j.1365-2486.2007.01524.x

  101. 101. Sage, R.F. (1995) Was Low Atmospheric CO2 during the Pleistocene a Limiting Factor for the Origin of Agriculture? Global Change Biology, 1, 93-106. http://dx.doi.org/10.1111/j.1365-2486.1995.tb00009.x

  102. 102. Tissue, D.T., Griffin, K.L., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. Oecologia, 101, 21-28. http://dx.doi.org/10.1007/bf00328895

  103. 103. Cerling, T.E., Harris, J.M., MacFadden, B.J., et al. (1997) Global Vegetation Change through the Miocene/Pliocene Boundary. Nature, 389, 153-158. http://dx.doi.org/10.1038/38229

  104. 104. Collatz, G.J., Berry, J.A. and Clark, J.S. (1998) Effects of Climate and Atmospheric CO2 Partial Pressure on the Global Distribution of C4 Grasses: Present, Past, and Future. Oecologia, 114, 441-454. http://dx.doi.org/10.1007/s004420050468

  105. 105. Cerling, T.E. (1999) Paleorecords of C4 Plants and Ecosystems. In: Sage, R.F. and Monson, R.K., Eds., C4 Plant Biology, Academic Press, USA, 445-469. http://dx.doi.org/10.1016/b978-012614440-6/50014-8

  106. 106. Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., et al. (2001) Climate Change as the Dominant Control on Glacial- Interglacial Variations in C3 and C4 Plant Abundance. Science, 293, 1647-1651. http://dx.doi.org/10.1126/science.1060143

  107. 107. Boom, A., Marchant, R., Hooghiemstra, H., et al. (2002) CO2- and Temperature-Controlled Altitudinal Shifts of C4- and C3-Dominated Grasslands Allow Reconstruction of Palaeo Atmospheric pCO2. Palaeogeography Palaeoclimatology Palaeoecology, 177, 151-168. http://dx.doi.org/10.1016/S0031-0182(01)00357-1

  108. 108. Dippery, J.K., Tissue, D.T., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. I. Growth and Biomass Allocation. Oecologia, 101, 13-20. http://dx.doi.org/10.1007/BF00328894

  109. 109. Allen, L.H., Bisbal, E.C., Boote, K.J., et al. (1991) Soybean Dry Matter Allocation under Subambient and Superambient Levels of Carbon Dioxide. Agronomy Journal, 83, 875-883. http://dx.doi.org/10.2134/agronj1991.00021962008300050020x

  110. 110. Norby, R.J. and O’neill, E.G. (1991) Leaf Area Compensation and Nutrient Interactions in CO2-Enriched Seedlings of Yellow-Poplar (Liriodendron tulipifera L.). New Phytologist, 117, 515-528. http://dx.doi.org/10.1111/j.1469-8137.1991.tb00956.x

  111. 111. Bowler, J.M. and Press, M.C. (1993) Growth Responses of Two Contrasting Upland Grass Species to Elevated CO2 and Nitrogen Concentration. New Phytologist, 124, 515-522. http://dx.doi.org/10.1111/j.1469-8137.1993.tb03843.x

  112. 112. Liu, L., Shen, F., Xin, C.P., et al. (2016) Multi-Scale Modeling of Arabidopsis thaliana Response to Different CO2 Conditions: From Gene Expression to Metabolic Flux. Journal of Integrative Plant Biology, 58, 2-11. http://dx.doi.org/10.1111/jipb.12370

  113. 113. Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1994) Increasing CO2: Comparative Responses of the C4 Grass Schizachyrium and Grassland Invader Prosopis. Ecology, 75, 976-988. http://dx.doi.org/10.2307/1939421

  114. 114. Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1995) Nitrogen and Water Requirements of C3 Plants Grown at Glacial to Present Carbon Dioxide Concentrations. Functional Ecology, 9, 86-96. http://dx.doi.org/10.2307/2390094

  115. 115. Ward, J.K., Tissue, D.T., Thomas, R.B., et al. (1999) Comparative Responses of Model C3 and C4 Plants to Drought in Low and Elevated CO2. Global Change Biology, 5, 857-867. http://dx.doi.org/10.1046/j.1365-2486.1999.00270.x

  116. 116. Norby, R.J. (1994) Issues and Perspectives for Investigating Root Responses to Elevated Atmospheric Carbon Dioxide. Plant & Soil, 165, 9-20. http://dx.doi.org/10.1007/BF00009958

  117. 117. Sage, R.F. (2004) The Evolution of C4 Photosynthesis. New Phytologist, 161, 341-370. http://dx.doi.org/10.1111/j.1469-8137.2004.00974.x

  118. 118. Sage, R.F. and Coleman, J.R. (2001) Effects of Low Atmospheric CO2 on Plants: More than a Thing of the Past. Trends in Plant Science, 6, 18-24. http://dx.doi.org/10.1016/S1360-1385(00)01813-6

  119. 119. Lehmeier, C.A., Schäufele, R. and Schnyder, H. (2005) Allocation of Reserve-Derived and Currently Assimilated Carbon and Nitrogen in Seedlings of Helianthus annuus under Sub-Ambient and Elevated CO2 Growth Conditions. New Phytologist, 168, 613-621. http://dx.doi.org/10.1111/j.1469-8137.2005.01531.x

  120. 120. Ward, J.K. and Strain, B.R. (1997) Effects of Low and Elevated CO2 Partial Pressure on Growth and Reproduction of Arabidopsis thaliana from Different Elevations. Plant, Cell & Environment, 20, 254-260. http://dx.doi.org/10.1046/j.1365-3040.1997.d01-59.x

  121. 121. Ward, J.K., Antonovics, J., Thomas, R.B., et al. (2000) Is Atmospheric CO2 a Selective Agent on Model C3 Annuals? Oecologia, 123, 330-341. http://dx.doi.org/10.1007/s004420051019

  122. 122. Ward, J.K. and Kelly, J.K. (2004) Scaling up Evolutionary Responses to Elevated CO2: Lessons from Arabidopsis. Ecology Letters, 7, 427-440. http://dx.doi.org/10.1111/j.1461-0248.2004.00589.x

  123. 123. Putterill, J. (2001) Flowering in Time: Genes Controlling Photoperiodic Flowering in Arabidopsis. Philosophical Transactions of the Royal Society B. Biological Sciences, 356, 1761-1767. http://dx.doi.org/10.1098/rstb.2001.0963

  124. 124. Campbell, C.D., Sage, R.F., Kocacinar, F., et al. (2005) Estimation of the Whole-Plant CO2 Compensation Point of Tobacco (Nicotiana tabacum L.). Global Change Biology, 11, 1956-1967. http://dx.doi.org/10.1111/j.1365-2486.2005.01045.x

  125. 125. Tonsor, S.J. and Scheiner, S.M. (2007) Plastic Trait Integration across a CO2 Gradient in Arabidopsis thaliana. The American Naturalist, 169, E119-E140. http://dx.doi.org/10.1086/513493

  126. 126. Beerling, D.J. and Woodward, F.I. (1997) Changes in Land Plant Function over the Phanerozoic: Reconstructions Based on the Fossil Record. Botanical Journal of the Linnean Society, 124, 137-153. http://dx.doi.org/10.1111/j.1095-8339.1997.tb01787.x

  127. 127. Matrosova, A., Bogireddi, H., Mateo-Peñas, A., et al. (2015) The HT1 Protein Kinase Is Essential for Red Light- Induced Stomatal Opening and Genetically Interacts with OST1 in Red Light and CO2-Induced Stomatal Movement Responses. New Phytologist, 208, 1126-1137. http://dx.doi.org/10.1111/nph.13566

  128. 128. Beerling, D.J. (2005) Evolutionary Responses of Land Plants to Atmospheric CO2. In: Ehleringer, J.R., Cerling, T. and Dearing, M.D., Eds., A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, Springer, New York, 114-132.

  129. 129. Li, Y.Y., Xu, J.J., Haq, N.U., Zhang, H. and Zhu, X.-G. (2014) Was Low CO2 a Driving Force of C4 Evolution: Arabidopsis Responses to Long-Term Low CO2 Stress. Journal of Experimental Botany, 65, 3657-3667. http://dx.doi.org/10.1093/jxb/eru193

  130. 130. Hashimoto, M., Negi, J., Young, J., Israelsson, M., Schroeder, J.I. and Iba, K. (2006) Arabidopsis HT1 Kinase Controls Stomatal Movements in Response to CO2. Nature Cell Biology, 8, 391-397. http://dx.doi.org/10.1038/ncb1387

  131. 131. Chaves, M.M. and Pereira, J.S. (1992) Water Stress, CO2 and Climate Change. Journal of Experimental Botaty, 43, 1131-1139. http://dx.doi.org/10.1093/jxb/43.8.1131

  132. 132. Maherali, H., Reid, C.D., Polley, H.W., Johnson, H.B. and Jackson, R.B. (2002) Stomatal Acclimation over a Subambient to Elevated CO2 Gradient in a C3/C4 Grassland. Plant, Cell & Environment, 25, 557-566. http://dx.doi.org/10.1046/j.1365-3040.2002.00832.x

  133. 133. Roth-Nebelsick, A. (2005) Reconstructing Atmospheric Carbon Dioxide with Stomata: Possibilities and Limitations of a Botanical pCO2-Sensor. Trees, 19, 251-265. http://dx.doi.org/10.1007/s00468-004-0375-2

  134. 134. Beerling, D.J. and Royer, D.L. (2002) Reading a CO2 Signal from Fossil Stomata. New Phytologist, 153, 387-397. http://dx.doi.org/10.1046/j.0028-646X.2001.00335.x

  135. 135. Garbutt, K., Williams, W.E. and Bazzaz, F.A. (1990) Analysis of the Differential Response of Five Annuals to Elevated CO2 during Growth. Ecology, 71, 1185-1194. http://dx.doi.org/10.2307/1937386

  136. 136. Beerling, D.J. and Woodward, F.I. (1996) Palaeo-Ecophysiological Perspectives on Plant Responses to Global Change. Trends in Ecology & Evolution, 11, 20-23. http://dx.doi.org/10.1016/0169-5347(96)81060-3

  137. 137. Sage, R.F. (1990) A Model Describing the Regulation of Ribu-lose-1,5-Bisphosphate Carboxylase, Electron Transport, and Triose Phosphate Use in Response to Light Intensity and CO2 in C3 Plants. Plant Physiology, 94, 1728-1734. http://dx.doi.org/10.1104/pp.94.4.1728

  138. 138. Cowling, S.A. (2001) Plant Carbon Balance, Evolutionary Innovation and Extinction in Land Plants. Global Change Biology, 7, 231-239. http://dx.doi.org/10.1046/j.1365-2486.2001.00410.x

  139. 139. Evans, J.R. (1989) Photosynthesis and Nitrogen Relationships in Leaves of C3 Plants. Oecologia, 78, 9-19. http://dx.doi.org/10.1007/BF00377192

  140. 140. Gerhart, L.M. and Ward, J.K. (2010) Plant Responses to Low CO2 of the Past. New Phytologist, 188, 674-695. http://dx.doi.org/10.1111/j.1469-8137.2010.03441.x

  141. 141. Overdieck, D. (1989) The Effects of Preindustrial and Predicted Future Atmospheric CO2 Concentration on Lyonia mariana L.D. Don. Functional Ecology, 3, 569-576. http://dx.doi.org/10.2307/2389571

  142. 142. Petit, J.R., Jouzel, J., Raynaud, D., et al. (1999) Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature, 399, 429-436. http://dx.doi.org/10.1038/20859

  143. 143. Sigman, D.M. and Boyle, E.A. (2000) Glacial/Interglacial Variations in Atmospheric Carbon Dioxide. Nature, 407, 859-869. http://dx.doi.org/10.1038/35038000

  144. 144. Ward, J.K., Myers, D.A. and Thomas, R.B. (2008) Physiological and Growth Responses of C3 and C4 Plants to Reduced Temperature When Grown at Low CO2 of the Last Ice Age. Journal of Integrative Plant Biology, 50, 1388-1395. http://dx.doi.org/10.1111/j.1744-7909.2008.00753.x

  145. 145. Sage, R.F. (2002) Variation in the kcat of Rubisco in C3 and C4 Plants and Some Implications for Photosynthetic Performance at High and Low Temperature. Journal of Experimental Botany, 53, 609-620. http://dx.doi.org/10.1093/jexbot/53.369.609

  146. 146. Klein, D., Morcuende, R., Stitt, M. and Krapp, A. (2000) Regulation of Nitrate Reductase Expression in Leaves by Nitrate and Nitrogen Metabolism Is Completely Overridden When Sugars Fall below a Critical Level. Plant, Cell & Environment, 23, 863-871. http://dx.doi.org/10.1046/j.1365-3040.2000.00593.x

  147. 147. Rogers, A., Fischer, B.U., Bryant, J., et al. (1998) Acclimation of Photosynthesis to Elevated CO2 under Low-Nitrogen Nutrition Is Affected by the Capacity for Assimilate Utilization. Perennial Ryegrass under Free-Air CO2 Enrichment. Plant Physiology, 118, 683-689. http://dx.doi.org/10.1104/pp.118.2.683

  148. 148. Grünzweig, J.M. and Körner, C. (2000) Growth and Reproductive Responses to Elevated CO2 in Wild Cereals of the Northern Negev of Israel. Global Change Biology, 6, 631-638. http://dx.doi.org/10.1046/j.1365-2486.2000.00346.x

  149. 149. Woodward, F.I. and Bazzaz, F.A. (1988) The Responses of Stomatal Density to CO2 Partial Pressure. Journal of Experimental Botany, 39, 1771-1781. http://dx.doi.org/10.1093/jxb/39.12.1771

  150. 150. Chaves, M.M. and Pereira, J.S. (1992) Water Stress, CO2 and Climate Change. Journal of Experimental Botaty, 43, 1131-1139. http://dx.doi.org/10.1093/jxb/43.8.1131

  151. 151. Levis, S., Foley, J.A. and Pollard, D. (1999) CO2, Climate, and Vegetation Feedbacks at the Last Glacial Maximum. Journal of Geophysical Research Atmospheres, 104, 31191-31198. http://dx.doi.org/10.1029/1999JD900837

  152. 152. Cowling, S.A., Cox, P.M., Jones, C.D., et al. (2008) Simulated Glacial and Interglacial Vegetation across Africa: Implications for Species Phylogenies and Trans-African Migration of Plants and Animals. Global Change Biology, 14, 827-840. http://dx.doi.org/10.1111/j.1365-2486.2007.01524.x

  153. 153. Sage, R.F. (1995) Was Low Atmospheric CO2 during the Pleistocene a Limiting Factor for the Origin of Agriculture? Global Change Biology, 1, 93-106. http://dx.doi.org/10.1111/j.1365-2486.1995.tb00009.x

*第一作者。

#通讯作者。

期刊菜单