Hans Journal of Agricultural Sciences
Vol.07 No.09(2017), Article ID:22928,6 pages
10.12677/HJAS.2017.79083

Progress on Gene Discovery Related to Wheat Pre-Harvest Sprouting Resistance

Zhanwang Zhu1, Weiwei Zhu1, Ling Chen1, Yike Liu1, Hanwen Tong1, Yuqing Zhang1, Juan Zou1, Chunbao Gao1,2*

1Institute of Food Crops, Hubei Academy of Agricultural Science/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station on Central China, Ministry of Agriculture, Wuhan Hubei

2Hubei Collaborative Innovation Center for Grain Industry, Jingzhou Hubei

Received: Nov. 15th, 2017; accepted: Nov. 28th, 2017; published: Dec. 6th, 2017

ABSTRACT

Wheat pre-harvest sprouting (PHS) leads to significant loss of production. Use of host resistance in commercially cultivated wheat varieties is an economical, effective and environmentally-friendly method to manage PHS. With the progress of molecular biology, several genes related to PHS were discovered and diagnostic markers were developed. In this paper, we reviewed the progress on the discovery of PHS resistance related genes, such as R-1, Vp-1 and Sdr.

Keywords:Wheat, Pre-Harvest Sprouting, Progress

小麦穗发芽抗性相关基因研究进展

朱展望1,朱伟伟1,陈 泠1,刘易科1,佟汉文1,张宇庆1,邹 娟1,高春保1,2*

1湖北省农业科学院粮食作物研究所/粮食作物遗传改良与种质创新湖北省重点实验室/湖北省小麦工程技术研究中心/农业部华中地区小麦病害生物学科学观测实验站,湖北 武汉

2主要粮食作物产业化湖北省协同创新中心,湖北 荆州

收稿日期:2017年11月15日;录用日期:2017年11月28日;发布日期:2017年12月6日

摘 要

穗发芽会造成小麦籽粒产量和质量的下降,给小麦生产带来重大损失,选用抗性品种是降低穗发芽危害的经济有效手段。随着分子生物学的不断发展,小麦穗发芽抗性相关基因得到解析,并开发了育种可用的分子标记。本文对粒色基因、Vp-1、Sdr等和穗发芽抗性相关的重要基因的研究进展进行综述。

关键词 :小麦,穗发芽,研究进展

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

小麦是主要粮食作物之一,其产量占世界粮食总量的40% [1] ,提供人类所需能量和蛋白质的20%。小麦穗发芽(Pre-harvest sprouting, PHS)是指收获前遇到阴雨天气时小麦籽粒在穗上发芽的现象,穗发芽是一种世界性的小麦气象灾害,会造成小麦籽粒产量和质量的下降,在收获季节有持续性降雨的地区发生尤为严重。全球每年由小麦穗发芽引起的直接经济损失约为10亿美元 [2] ,我国长江流域冬麦区、东北春麦区、黄淮冬麦区及西南冬麦区等约占全国小麦总面积83%的种植区都发生过严重的穗发芽灾害。

小麦穗发芽发生程度与品种的抗性关系密切,选用抗性品种是降低赤霉病危害的经济有效手段。近年来,国内外学者对小麦穗发芽的影响因素、鉴定技术、分子遗传、育种等问题进行了广泛深入的研究,并取得一定进展 [3] 。近年来,随着分子生物学的发展,穗发芽抗性相关基因得以解析,并开发了育种可用的分子标记。本文将对粒色基因、Vp-1、Sdr等和穗发芽抗性相关的重要基因的研究进展进行综述。

2. 籽粒颜色基因R-1

红粒小麦通常比白粒小麦更抗穗发芽 [4] [5] [6] 。Flinthman [5] 研究发现,向白粒小麦品系NS-67导入一个红粒基因后,其籽粒休眠程度相应提高。Groos等 [7] 在白粒小麦和红粒小麦杂交构建的双亲遗传群体中定位到了同时控制籽粒颜色和穗发芽抗性的QTL,分别位于3AL、3BL、3DL和5A染色体上。此外,中国春和AUS1490的白粒突变体也表现为发芽特性的提高,也说明红粒基因可以提高穗发芽抗性 [6] [8] 。

红粒小麦中的色素是经由类黄酮生物合成途径产生的儿茶酸和原花青素 [9] [10] ,其中儿茶酸可以抑制种子的萌发,进而提高对穗发芽的抗性 [8] [9] 。儿茶酸和原花青素合成途径中涉及查尔酮合成酶(CHS)、查尔酮异构酶(CHI)、黄烷酮3-羟化酶(F3H)和二羟基黄酮醇还原酶(DFR) [11] 。也有报道指出,除儿茶酸和原花青素之外,红色籽粒的色素还包括黄酮醇和二苯乙烯类物质 [12] 。

红粒对白粒是显性 [13] ,主要由3个同源基因控制,位于小麦第3同源群染色体长臂末端 [6] [7] ,被命名为R-1基因,位于3A、3B和3D上的该基因分别记为R-A1、R-B1和R-D1 [14] 。隐性等位基因记为a,显性等位基因记为b。如果一个小麦品种含纯和的R-A1a、R-B1a和R-D1a时,该品种即为白粒,含有任一显性等位基因,籽粒即表现为红色。Himi和Noda用同源克隆了R-1基因,为Myb类转录因子,R-A1、R-B1和R-D1分别为Tamyb10-A1、Tamyb10-B1和Tamyb10-D1。

Lin等 [15] 采用全基因组关联分析的方法在3AL (Tamyb10-A1)和3DL (Tamyb10-D1)上发现了同时控制籽粒颜色和穗发芽抗性的QTL,但3BL上控制籽粒颜色的QTL对穗发芽抗性没有显著效应。他们认为,Tamyb10-A1和Tamyb10-D1在田间条件下对穗发芽抗性具有一因多效的作用。王根英等 [4] 利用已开发的Tamyb10基因分子标记,检测119份来自不同麦区的红粒小麦材料,发现Tamyb10-D1对穗发芽抗性影响最大,Tamyb10-B1次之,Tamyb10-A1作用最小。

羟基黄酮醇还原酶(dihydroflavonol-4-reductase gene, DFR)是类黄酮合成途径基因之一,控制小麦粒色。在120个红粒中国小麦品种中,3A和3D染色体上TaDFR未发现功能性变异,在3B染色体上的TaDFR基因存在TaDFR-Ba和TaDFR-Bb两个等位基因,相对TaDFR-Ba,TaDFR-Bb启动子区存在8 bp插入,表现为抗穗发芽,并开发了分子标记 [16] 。

人们在红粒基因可以提高小麦穗发芽抗性这一点上已取得较为统一的看法,但不同的红粒基因对穗发芽抗性的效应大小,不同的研究结果却不尽相同。这可能与研究者所采用的材料和方法有关,也有可能和小麦穗发芽抗性遗传机制的复杂性有关 [17] 。

3. Vp-1基因

Viviparous-1 (Vp-1)基因在种子的成熟、干燥及休眠过程中起关键作用,是重要的小麦休眠相关转录因子,在ABA信号转导中起重要作用 [18] [19] 。小麦Vp-1的3个同源基因TaVp-1A、TaVp-1B和TaVp-1D分别位于3AL、3BL和3DL上,其中TaVp-1A、TaVp-1B两个位点的等位变异与穗发芽抗性相关,而TaVp-1D无等位变异。

最初研究表明,Vp-1B基因有三个等位基因,分别命名为Vp-1Ba、Vp-1Bb和Vp-1Bc,抗穗发芽品种为Vp-1Bb或者Vp-1Bc基因型 [20] 。与野生型相比,Vp-1Bb中含有193 bp的核苷酸插入,Vp-1Bc中含有83 bp的缺失 [20] [21] ,并据此开发了分子标记Vp1B3,可供抗穗发芽育种利用 [22] 。与Vp-1Ba基因型相比较,Vp-1Bb基因型具有更高的穗发芽抗性,Vp-1Bc基因型次之。事实上,许多抗穗发芽的地方品种含Vp-1Bb等位基因,它们都是抗穗发芽育种中非常有价值的资源 [23] 。随着研究的深入,发现了Vp-1B的更多等位基因,如欧洲小麦品种中的Vp-1Bd以及我国小麦地方品种万县白麦子中的Vp-1Bf等 [24] [25] [26] [27] 。

在Vp-1A位点,我国小麦存丰富变异,至少有17种等位基因,变异主要发生在第3和第5内含子和第6外显子内,其中TaVp-1Agm穗发芽抗性最强,并据此开发了该位点分子标记Vp1A3 [28] ,该位点的穗发芽抗性在双亲群体中得到了验证 [29] 。

4. Sdr基因

小麦TaSdr基因与水稻控制种子休眠的OsSdr4同源,位于第2同源群,分别命名为TaSdr-A1、TaSdr-B1和TaSdr-D1。序列分析表明,TaSdr-A1a在643位核苷酸存在G/A变异,为G时较抗穗发芽,为A时,较感穗发芽,这两个等位基因分别记为TaSdr-A1a和TaSdr-A1b,并据此开发了分子标记,其与穗发芽抗性的关系在双亲群体和自然群体中得到了验证,研究还发现抗穗发芽等位基因TaSdr-A1a主要存在于中国小麦地方品种中 [30] 。

TaSdr-B1的编码区未发现变异,但在启动子区存在SNP,该位点为A时较抗穗发芽,为G时,较感穗发芽,这两个等位基因分别命名为TaSdr-B1a和TaSdr-B1b,并据此开发了分子标记Sdr2B,其与穗发芽的抗性的关联性在双亲群体和自然群体得到验证,并在韩国小麦品种中得到了验证 [31] 。研究还发现抗穗发芽等位基因TaSdr-B1a主要存在于日本、澳大利亚、阿根廷以及我国的长江中下游冬麦区和西南冬麦区的小麦品种中 [32] 。TaSdr-D1位点未发现多态性。

5. 展望

通过同源克隆等途径,穗发芽抗性基因发掘取得了较大的进展,并开发了育种可用的分子标记,但在以下几个方面仍需更深入的研究:1) 穗发芽抗性基因与连锁分析定位的QTL的关系需进一步研究。通过连锁分析,很多穗发芽抗性和种子休眠相关的QTL被定位,在小麦21条染色体上均有分布 [33] [34] [35] [36] ,通过物理位置的比较,穗发芽抗性基因可能与某些QTL位置相近,如TaSdr-A1就与QPhs.ccsu-2A.3在同一染色体位置,猜测TaSdr-A1可能就是QPhs.ccsu-2A.3 [30] 。2) 基因功能需验证。目前,一些基因的功能缺少功能验证试验的数据,建议通过转基因获基因编辑的方法进一步验证穗发芽抗性基因的功能。3) 应加强对我国南方小麦地方品种优异等位基因挖掘和利用。我国很多南方小麦地方品种是宝贵的抗穗发芽资源,如秃头麦4AL上有主效抗穗发芽QTL [37] [38] ,红和尚头和万县白麦子含有新的优异等位基因Vp-1Be和Vp-1Bf [24] [27] ,因此研究和利用好我国抗穗发芽小麦地方品种,对我国乃至世界范围内的抗穗发芽育种都有重要意义。

当前,我国抗穗发芽育种进展相对较慢 [39] 。借鉴国内外成功经验,提出3点抗穗发芽育种建议:1) 在抗源评价和利用上,选择农艺性状优良的抗穗发芽品种作亲本,黄淮麦区注意选用白粒抗穗发芽品种。2) 在育种方法上,常规育种与分子标记辅助选择相结合,利用分子标记将主要抗穗发芽基因导入当前主栽品种中。3) 加强与基础研究单位的合作,进一步解析主栽抗穗发芽品种抗病基因,及时在育种中利用最新分子生物学技术。

基金项目

国家重点研发计划(2016YFD0101802);现代农业产业技术体系(CARS-03);湖北省技术创新专项(2016AHB022)。

文章引用

朱展望,朱伟伟,陈 泠,刘易科,佟汉文,张宇庆,邹 娟,高春保. 小麦穗发芽抗性相关基因研究进展
Progress on Gene Discovery Related to Wheat Pre-Harvest Sprouting Resistance[J]. 农业科学, 2017, 07(09): 615-620. http://dx.doi.org/10.12677/HJAS.2017.79083

参考文献 (References)

  1. 1. Gill, B.S., Appels, R., Bothaoberholster, A.M., et al. (2004) A Workshop Report on Wheat Genome Sequencing: International Genome Research on Wheat Consortium. Genetics, 168, 1087-1096. https://doi.org/10.1534/genetics.104.034769

  2. 2. Black, M., Bewley, J.D. and Halmer, P. (2006) The Encyclopedia of Seeds Science, Technology and Uses. CABI Publishing, Oxfordshire, 528. https://doi.org/10.1079/9780851997230.0000

  3. 3. 刘莉, 王海庆, 陈志国. 小麦抗穗发芽研究进展[J]. 作物杂志, 2013(4): 6-11.

  4. 4. 王根平, 毕惠惠, 孙永伟, 等. 红粒小麦Tamyb10单倍型检测及其与穗发芽抗性的关系[J]. 作物学报, 2014, 40(6): 984-993.

  5. 5. Flintham, J.E. (2000) Different Genetic Components Control Coat-Imposed and Embryo-Imposed Dormancy in Wheat. Seed Science Research, 10, 43-50. https://doi.org/10.1017/S0960258500000052

  6. 6. Warner, R.L, Kudrna, D.A., Spaeth, S.C., et al. (2000) Dormancy in White-Grain Mutants of Chinese Spring Wheat (Triticum aestivum L.). Seed Science Research, 10, 51-60.

  7. 7. Groos, C., Gay, G., Perretant, M.R., et al. (2002) Study of the Relationship between Pre-Harvest Sprouting and Grain Color by Quantitative Trait Loci Analysis in a White × Red Grain Bread-Wheat Cross. Theoretical & Applied Genetics, 104, 39-47. https://doi.org/10.1007/s001220200004

  8. 8. Himi, E., Mares, D.J., Yanagisawa, A. and Noda, K. (2002) Effect of Grain Colour Gene (R) on Grain Dormancy and Sensitivity of the Embryo to Abscisic Acid (ABA) in Wheat. Journal of Experimental Botany, 53, 1569-1574. https://doi.org/10.1093/jxb/erf005

  9. 9. Miyamoto, T. and Everson, E.H. (1958) Biochemical and Physiological Studies of Wheat Seed Pigmentation. Agronomy Journal, 50, 733-734. https://doi.org/10.2134/agronj1958.00021962005000120005x

  10. 10. McCallum, J.A. and Walker, J.R.L. (1990) Proanthocyanidins in Wheat Bran. Cereal Chemistry, 67, 282-285.

  11. 11. Holton, T.A. and Cornish, E.C. (1995) Genetics and Biochemistry of Anthocyanin Biosynthesis. Plant Cell, 7, 1071. https://doi.org/10.1105/tpc.7.7.1071

  12. 12. Matus-Cádiz, M.A., Daskalchuk, T.E., Verma, B., et al. (2008) Phenolic Compounds Contribute to Dark Bran Pigmentation in Hard White Wheat. Journal of Agricultural & Food Chemistry, 56, 1644-1653. https://doi.org/10.1021/jf072970c

  13. 13. Nilsson-Ehle, H. Kreuzungsuntersuchungen an hafer und weizen. Lunds Universitets Arsskrift, 7, 3-82.

  14. 14. McIntosh, R.A., Hart, C.E., Devos, K.M., et al. (1998) Catalogue of Gene Symbols for Wheat. Proceedings of IX International Wheat Genetics Symposium, Saskatoon, 2-7 August 1998.

  15. 15. Lin, M., Zhang, D., Liu, S., et al. (2016) Genome-Wide Association Analysis on Pre-Harvest Sprouting Resistance and Grain Color in U.S. Winter Wheat. BMC Genomics, 17, 794. https://doi.org/10.1186/s12864-016-3148-6

  16. 16. Bi, H.H., Sun, Y.W., Xiao, Y.G., et al. (2014) Characterization of DFR Allelic Variations and Their Associations with Pre-Harvest Sprouting Resistance in a Set of Red-Grained Chinese Wheat Germplasm. Euphytica, 195, 197-207. https://doi.org/10.1007/s10681-013-0986-z

  17. 17. 朱展望, 李君辉, 佟汉文, 等. 小麦红粒性状遗传研究进展[J]. 湖北农业科学, 2016, 55(24): 6321-6323.

  18. 18. Nakamura, S. and Toyama, T. (2001) Isolation of a VP1 Homologue from Wheat and Analysis of Its Expression in Embryos of Dormant and Non-Dormant Cultivars. Journal of Experimental Botany, 52, 875-876. https://doi.org/10.1093/jexbot/52.357.875

  19. 19. Mckibbin, R.S., Wilkinson, M.D., Bailey, P.C., et al. (2002) Transcripts of Vp-1 Homeologues Are Misspliced in Modern Wheat and Ancestral Species. Proceedings of the National Academy of Sciences, 99, 10203-10208. https://doi.org/10.1073/pnas.152318599

  20. 20. Yang, Y., Ma, Y.Z., Xu, Z.S., et al. (2007) Isolation and Characterization of Viviparous-1 Genes in Wheat Cultivars with Distinct ABA Sensitivity and Pre-Harvest Sprouting Tolerance. Journal of Experimental Botany, 58, 2863. https://doi.org/10.1093/jxb/erm073

  21. 21. Chang, C., Zhang, H.P., Feng, J.M., et al. (2010) Identifying Alleles of Viviparous-1B Associated with Pre-Harvest Sprouting in Micro-Core Collections of Chinese Wheat Germplasm. Molecular Breeding, 25, 481-490. https://doi.org/10.1007/s11032-009-9346-z

  22. 22. Yang, Y., Zhao, X.L., Xia, L.Q., et al. (2007) Development and Validation of a Viviparous-1, STS Marker for Pre-Harvest Sprouting Tolerance in Chinese Wheats. Theoretical & Applied Genetics, 115, 971-980. https://doi.org/10.1007/s00122-007-0624-z

  23. 23. Wang, J., Liu, Y., Wang, Y., et al. (2011) Genetic Variation of Vp1 in Sichuan Wheat Accessions and Its Association with Pre-Harvest Sprouting Response. Genes & Genomics, 33, 139-146. https://doi.org/10.1007/s13258-010-0125-3

  24. 24. Chang, C., Feng, J.M., Si, H.Q., et al. (2010) Validating a Novel Allele of Viviparous-1 (Vp-1Bf) Associated with High Seed Dormancy of Chinese Wheat Landrace, Wanxianbaimaizi. Molecular Breeding, 25, 517-525. https://doi.org/10.1007/s11032-009-9350-3

  25. 25. Xia, L.Q., Yang, Y., Ma, Y.Z., et al. (2009) What Can the Viviparous-1 Gene Tell Us about Wheat Pre-Harvest Sprouting? Euphytica, 168, 385-394. https://doi.org/10.1007/s10681-009-9928-1

  26. 26. Xia, L.Q., Ganal, M.W., Shewry, P.R., et al. (2008) Exploiting the Diversity of Viviparous-1 Gene Associated with Pre-Harvest Sprouting Tolerance in European Wheat Varieties. Euphytica, 159, 411-417. https://doi.org/10.1007/s10681-007-9576-2

  27. 27. Yang, Y., Chen, X.M., He, Z.H., et al. (2009) Distribution of Vp-1 Alleles in Chinese White-Grained Landraces, Historical and Current Wheat Cultivars. Cereal Research Communications, 37, 169-177. https://doi.org/10.1556/CRC.37.2009.2.3

  28. 28. Yang, Y., Zhang, C.L., Liu, S.X., et al. (2014) Characterization of the Rich Haplotypes of Viviparous-1A in Chinese Wheats and Development of a Novel Sequence-Tagged Site Marker for Pre-Harvest Sprouting Resistance. Molecular Breeding, 33, 75-88. https://doi.org/10.1007/s11032-013-9935-8

  29. 29. Zhou, S.H., Lin, F.U., Qiu-Hong, W.U., et al. (2017) QTL Mapping Revealed TaVp-1A Conferred Pre-Harvest Sprouting Resistance in Wheat Population Yanda 1817×Beinong 6. Journal of Integrative Agriculture, 16, 435-444. https://doi.org/10.1016/S2095-3119(16)61361-8

  30. 30. Zhang, Y., Xia, X. and He, Z. (2016) The Seed Dormancy Allele TaSdr-A1a, Associated with Pre-Harvest Sprouting Tolerance Is Mainly Present in Chinese Wheat Landraces. Theoretical & Applied Genetics, 1-9.

  31. 31. Zhang, Y., Miao, X., Xia, X., et al. (2014) Cloning of Seed Dormancy Genes (TaSdr) Associated with Tolerance to Pre-Harvest Sprouting in Common Wheat and Development of a Functional Marker. Theoretical & Applied Genetics, 127, 855-866. https://doi.org/10.1007/s00122-014-2262-6

  32. 32. Kim, K.H., Shin, S.H., Lee, H.S., et al. (2014) Relationship between Pre-Harvest Sprouting and Functional Markers, TaVp-1A, TaSdr-B1 and TaPHS1 in Korean Wheat Cultivars. Research on Crops, 15, 604. https://doi.org/10.5958/2348-7542.2014.01384.9

  33. 33. Mohan, A., Kulwal, P., Singh, R., et al. (2009) Genome-Wide QTL Analysis for Pre-Harvest Sprouting Tolerance in Bread Wheat. Euphytica, 168, 319-329. https://doi.org/10.1007/s10681-009-9935-2

  34. 34. Munkvold, J.D., Tanaka, J., Benscher, D., et al. (2009) Mapping Quantitative Trait Loci for Preharvest Sprouting Resistance in White Wheat. Theoretical & Applied Genetics, 119, 1223-1235. https://doi.org/10.1007/s00122-009-1123-1

  35. 35. Kulwal, P., Ishikawa, G., Benscher, D., et al. (2012) Association Mapping for Pre-Harvest Sprouting Resistance in White Winter Wheat. Theoretical & Applied Genetics, 125, 793-805. https://doi.org/10.1007/s00122-012-1872-0

  36. 36. Rehman Arif, M.A., Neumann, K., Nagel, M., et al. (2012) An Association Mapping Analysis of Dormancy and Pre-Harvest Sprouting in Wheat. Euphytica, 188, 409-417. https://doi.org/10.1007/s10681-012-0705-1

  37. 37. Chen, C.X., Cai, S.B. and Bai, G.H. (2008) A Major QTL Controlling Seed Dormancy and Pre-Harvest Sprouting Resistance on Chromosome 4A in a Chinese Wheat Landrace. Molecular Breeding, 21, 351-358. https://doi.org/10.1007/s11032-007-9135-5

  38. 38. Lin, M., Cai, S., Wang, S., et al. (2015) Genotyping-by-Sequencing (GBS) Identified SNP Tightly Linked to QTL for Pre-Harvest Sprouting Resistance. Theoretical & Applied Genetics, 128, 1385-1395. https://doi.org/10.1007/s00122-015-2513-1

  39. 39. 董静, 秦丹丹, 许甫超, 等. 小麦穗发芽抗性的分子机制和育种研究进展[J]. 湖北农业科学, 2015, 54(22): 5509-5514.

  40. NOTES

    *通讯作者。

期刊菜单