International Journal of Psychiatry and Neurology
Vol.3 No.1(2014), Article ID:13795,6 pages
DOI:10.12677/IJPN.2014.31001

Progress in Treatment of Neonatal Hypoxic-Ischemic Encephalopathy

Dongke Xie1, Juan Chen2, Deshuang Zhang3*

1Department of Pediatric Surgery, The Affiliated Hospital of Luzhou Medical College, Luzhou

2Department of Neonatology, West China Second University Hospital, Sichuan University, Chengdu

3Department of Neonatology, The Affiliated Hospital of Luzhou Medical College, Luzhou

Email: *bzhmczhdsh@163.com

Copyright © 2014 Dongke Xie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accordance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for Hans and the owner of the intellectual property Dongke Xie et al. All Copyright © 2014 are guarded by law and by Hans as a guardian.

Received: Jan. 12th, 2014; revised: Feb. 8th, 2014; accepted: Feb. 14th, 2014

ABSTRACT

Hypoxic-ischemic encephalopathy (HIE) in neonates is caused by perinatal asphyxia; severe HIE is one of the important reasons which can result in death during the newborn period and permanent neuropsychological handicaps. In recent years, with the deepening of the pathogenesis research on neonatal HIE, the treatment research is also in constant development and progress, and brings new opportunity for the treatment of neonatal HIE. Now, we will review the progress in treatment of neonatal hypoxic-ischemic encephalopathy.

Keywords: Neonates, Infants, Hypoxic-Ischemic Encephalopathy, Treatment

新生儿缺氧缺血性脑病治疗进展

谢东可1,陈  娟2,张德双3*

1泸州医学院附属医院小儿外科,泸州

2四川大学华西第二医院新生儿科,成都

3泸州医学院附属医院新生儿科,泸州

Email: *bzhmczhdsh@163.com

收稿日期:2014年1月12日;修回日期:2014年2月8日;录用日期:2014年2月14日

摘  要

新生儿缺氧缺血性脑病(HIE)是由围产期窒息引起的,其中,重度HIE为新生儿死亡及儿童致残的重要原因之一。近年来,随着对新生儿HIE发病机制研究的不断深入,其治疗研究亦在不断发展与进步,并为新生儿HIE的治疗带来了新的希望。现就本病的治疗进展予以综述。

关键词

新生儿,婴儿,缺氧缺血性脑病,治疗

1. 引言

新生儿缺氧缺血性脑病(hypoxic-ischemic encephalopathy, HIE)是由围产期窒息引起的缺氧缺血性脑损害,其中,重度HIE为新生儿死亡及儿童致残的重要原因之一[1]。据统计,全球范围内新生儿HIE的发

生率约为活产儿的5‰,其中25%~50%于新生儿期死亡,存活者25%以上可留有不同程度的永久性神经系统后遗症如脑性瘫痪(脑瘫)、智力落后、癫痫等,给社会和家庭带来了沉重的负担[2]

新生儿HIE是由一系列细胞因子及信号通路共同参与的复杂的瀑布式连锁反应的结果,主要包括原发性能量衰竭阶段(原发性细胞损伤)、能量恢复阶段(潜伏期)及继发性能量衰竭阶段(迟发性细胞损伤)三个环节[3],其中,最关键的环节为两次能量衰竭的发生,尤其是继发性能量衰竭阶段[4,5]。近年来,随着对新生儿HIE发病机制研究的不断深入,在传统“三支持、三对症”疗法基础上,其治疗研究亦在不断发展与进步。现就本病的治疗进展予以综述。

2. 新生儿HIE的治疗进展

2.1. 新生儿HIE的治疗历史

目前,尽管国内外学者对HIE的治疗观点不一,但对其传统的临床基本治疗早已达成共识,即“三支持、三对症”治疗。该治疗的目的是阻断缺氧缺血(hypoxic-ischemic, HI)原发事件的发生并且避免或减轻继发性脑损伤[6],为新生儿HIE的非特异性基础治疗措施,其他任何治疗措施都必须基于该基础治疗之上[7]。“三支持”疗法包括:①维持良好的通气与氧合,避免低氧血症与高碳酸血症的发生;②维持各脏器良好的血流灌注,避免低血压、高血压以及血液高凝状态的发生;③维持血糖水平在正常高值(4.2~5.6 mmol/L),避免低血糖与高血糖的发生。“三对症”处理包括:①控制惊厥:苯巴比妥为控制惊厥的一线用药,但不建议其作为HIE惊厥发生的预防用药;②治疗脑水肿:适当限制液体入量防治脑水肿,不建议常规使用甘露醇预防脑水肿;③消除脑干症状:国内治疗方案中,对HIE患儿出现脑干症状时,提倡及早应用纳洛酮。国外,未将纳洛酮纳入新生儿HIE的治疗方案中,建议将其用于母亲分娩前4 h内使用过麻醉剂所致呼吸窘迫的新生儿[8,9]

2.2. 新生儿HIE的治疗现状

在传统“三支持、三对症”治疗基础上,可酌情选用营养脑细胞、促进神经生长、抑制神经细胞凋亡等措施进行辅助治疗。目前,已在临床应用的措施包括亚低温疗法、高压氧以及神经节苷脂治疗[10-12]

2.2.1. 亚低温治疗

亚低温治疗,是指采用人工诱导方法将中心温度降低2℃~5℃,从而达到治疗目的。其作用机制主要包括[1,13]:①降低脑组织代谢率,防止细胞水肿及膜电位的丢失;②减少ATP能量的消耗;③抑制或减轻乳酸堆积及NO的合成;④抑制炎症级联反应;⑤抑制自由基的活化及脂质过氧化反应;⑥减轻继发性能量衰竭;⑦抑制细胞凋亡及坏死;⑧减轻脑损伤的程度。目前,多中心RCT临床实验已经证实亚低温治疗新生儿HIE的安全性及有效性[14-17],亚低温可有效降低中重度HIE患儿的病死率及远期致残率,并无明显副作用产生。低温的有效治疗与以下因素密切相关:①低温治疗的程度:理论上,温度越低,脑的保护效果越好,但温度越低,诸如心律失常、血小板减少症、顽固性低血压、新生儿硬肿症等的不良反应越多,故一般选择将中心温度降至亚低温(32℃~34℃)进行治疗;②低温治疗的开始时间:亚低温治疗必须在继发性能量衰竭之前进行,如果延迟至HI后8.5 h治疗,则无神经保护作用,故一般选择在HI后6 h内实施亚低温治疗,越早效果越好;③低温治疗的持续时间:有效而持久的亚低温治疗,需在HI后6 h内开始并持续至继发性能量衰竭的全过程,故亚低温治疗至少应持续至48 h以上,过短的治疗仅仅是延迟而不能阻断HI后迟发性细胞损伤的进展;④低温治疗的方法:主要有三种降温方法,选择性头部降温、全身降温及选择性头部降温联合轻度全身降温,其中,后者被认为是目前比较理想的降温方法,即头部通过低温帽降温,同时应用远红外线控制全身降温程度,这样既保证了大脑深部温度的降低(33℃~34℃),又不至于使全身温度降得过低(34℃~35℃)。

2.2.2. 高压氧治疗

高压氧(hyperbaric oxygen, HBO)治疗新生动物脑损伤模型的实验研究表明,HBO可明显降低其病死率,疗效显著[18],考虑与HBO能够改善有氧代谢及缺血周边部位微环境、减少自由基的形成及毒性氨基酸的释放、减轻脑水肿、抑制细胞凋亡等作用有关[19-23]。国内较多临床报道,肯定HBO对新生儿HIE的近期疗效,但均为小样本研究。Liu[24]等将我国HBO治疗新生儿HIE的临床文献进行Meta分析,结果显示,HBO能够明显降低HIE患儿的病死率及神经系统后遗症的发生,但同时指出,多数资料质量欠佳。而国外学者经相关研究认为,无科学证据证明HBO对HIE所致的脑瘫治疗有效。动物实验表明[25,26],HBO可引起视网膜病变,尽管在临床上尚未见相关报道,但应引起高度警惕。故HBO在临床中的应用仍存在较大分歧,因此,有效评估HBO治疗新生儿HIE的有效性及安全性,尚需大样本、多中心、随机对照研究进行长期随访与评估。

2.2.3. 神经节苷脂(GM-1)治疗

GM-1是一种糖鞘脂,广泛存在于哺乳动物细胞,尤其是神经细胞的细胞膜上,在神经组织的发生、生长及其分化过程中起着重要作用。脑组织缺氧时,GM-1的水平会降低[27]。新生脑的血脑屏障发育不完善,加之HI后其完整性被破坏,故外源性应用GM-1易穿透血脑屏障,从而参与神经细胞的再生与分化,并修复受损的神经细胞,最终改善HI后脑组织的异常[28,29]。研究表明,GM-1对中枢神经系统病变具有良好的治疗作用[30,31]。Chen等对GM-1治疗新生儿HIE的文献进行Meta分析,结果表明GM-1可降低HIE患儿的远期神经系统后遗症,提高其神经行为学评分,并降低头颅CT的异常发生率[32]

2.3. 新生儿HIE的治疗进展

近年来,随着对新生儿HIE发病机制的不断了解与深入,一些新的、探索性的治疗措施不断出现,主要包括一般药物治疗、基因治疗及干细胞移植疗法三部分。

2.3.1. 一般药物治疗

(1) 促红细胞生成素

近年研究发现,促红细胞生成素(erythropoietin, EPO)可通过抑制细胞凋亡、促进神经再生、拮抗神经毒性、抑制炎症反应等[33-36]多重机制,发挥神经保护作用。Zhu等的临床试验(n = 153)表明,EPO可显著降低HIE患儿18月龄时的严重伤残率[37]。Elmahdy等的研究(n = 45)也发现,EPO可明显改善HIE患儿6月龄时的神经系统预后及其生长发育情况[38]。目前,关于EPO临床应用治疗新生儿HIE的剂量尚无统一标准,研究显示[37-39],300~2500 U/Kg、3次/周、共2~4个疗程的EPO均可起到有效的神经保护作用,并未发现明显副作用发生。然而,EPO的临床应用仅为少数单中心研究,其广泛应用于临床的安全、有效性尚需大样本、多中心的RCT研究以进一步证实、明确。

(2) 钙通道阻滞剂

HI时,Na+-k+-ATP酶活性降低,大量Ca2+内流,引起细胞内Ca2+超载,导致细胞内受Ca2+调节的蛋白酶、磷脂酶、核酸内切酶等被激活,磷脂分解、细胞骨架破坏,最终造成细胞不可逆性损伤。常见的钙通道阻滞剂有硫酸镁、硝苯地平、尼莫地平、东莨菪碱、川芎嗪等,其可阻止Ca2+内流发挥神经保护性作用[40,41]。但有研究表明,钙通道阻滞剂在发挥神经保护作用的同时会产生明显的心血管不良反应,故限制了该类药物在临床中的推广使用[42]

(3) 脑细胞代谢激活剂

目前,脑活素、胞二磷胆碱及1,-6二磷酸果糖为国内常用的脑细胞代谢激活剂。脑活素,为动物蛋白经酶降解而产生的器官特异性氨基酸与多肽的复合物,可通过血脑屏障进入神经细胞,促进蛋白质合成,增强脑组织的抗缺氧能力,进而改善脑组织的能量代谢。胞二磷胆碱,可促进软磷脂的合成,提高细胞膜的抗自由基能力,增强线粒体的呼吸功能,减轻脑水肿,改善脑组织代谢。1,-6二磷酸果糖,可跨越细胞膜(包括血脑屏障),从而调节脑细胞的代谢调节功能。尚处于研究阶段。

(4) 自由基清除剂及抑制剂

机体HI期间可产生大量的自由基,细胞膜脂质的主要成分是多聚不饱和脂肪酸,易与自由基形成脂质过氧化反应,破坏细胞膜进而引起脑损伤。常用的自由基清除剂有维生素E、维生素C、复方丹参、N-乙酰半胱氨酸等,维生素E、C属于天然抗氧化剂,可减少脂质抗氧化反应,进而减轻脑损伤。复方丹参可调节微循环,改善脑组织缺血区域的血液供应,抑制神经细胞能量衰竭的发生。N-乙酰半胱氨酸为合成谷胱甘肽的前体,具有潜在的抗氧化作用,可通过降低氧化应激及炎症反应对缺血性脑损伤起到保护性作用[43]。依达拉奉为一种新型的自由基清除剂,可通过抑制脂质过氧化反应及一氧化氮(nitric oxide, NO)的合成对缺氧缺血性脑损伤(hypoxic ischemic brain damage, HIBD)发挥保护性作用,目前尚处于动物实验研究阶段[44,45]。别嘌呤醇为常用的自由基抑制剂,可抑制黄嘌呤氧化酶的活性,从而减少HI再灌注时次黄嘌呤在氧化酶作用下产生的氧自由基。有研究表明,别嘌呤醇可对生后窒息所致的HIBD发挥神经保护作用[46]。而Chaudhari等的Meta分析结果显示,别嘌呤醇不能显著降低足月儿HIE的病死率以及神经系统发育异常的发生率[47]

(5) 免疫疗法

脑组织缺血再灌注后的过度炎症反应,是导致脑损伤的重要原因之一。以往,大剂量静脉滴注免疫球蛋白(intravenous immunoglobulin, IVIG)被广泛用于免疫缺陷性疾病及自身免疫性疾病的治疗。近年来,人们发现IVIG含有IgG、IgA、IgM等抗炎因子,因此认为可利用IVIG治疗新生儿HIE。研究表明,IVIG可通过中和细胞因子、补体,抑制炎症等机制有效治疗缺血性脑损伤[48,49],并已初步应用于临床治疗重度HIE患儿且已取得较好疗效[50]

(6) 神经营养/生长因子

神经营养/生长因子对神经元的生长、分化及存活发挥着必不可少的作用。HI后各种神经营养/生长因子的表达量相应增加,从而发挥内源性神经保护作用[51,52]。因此,外源性应用神经营养/生长因子,可促进受损神经组织的再生与修复,进而改善神经系统功能。其中,研究较多的有碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF)、胰岛素样生长因子(insulin like growth factor, IGF)、脑源性神经营养因子(brain derived neuro-trophic factor, BDNF)等。这类因子主要通过抑制细胞凋亡、促进受损神经细胞的增殖与分化等机制达到神经修复作用,目前尚处于动物实验探索研究阶段[53-55]

2.3.2. 基因治疗

迟发性神经细胞损伤所导致的细胞凋亡阶段为新生儿HIE的关键环节,而细胞凋亡的发生与发展由调控基因进行调节,因此,对调控基因进行有效控制从而改变细胞凋亡的病理性进程,可以达到治疗效果。尽管,该项研究尚处于动物实验研究阶段,却为临床治疗新生儿HIE提供了新的思路。

2.3.3. 干细胞移植疗法

传统观念认为,中枢神经系统(central nervous system, CNS)内神经细胞为终末分化细胞,一旦受到损伤便不可再生。自19世纪末20世纪初以来,人们逐渐发现CNS也具有再生能力,脑组织中存在神经干细胞(neural stem cells, NSCs),可启动并通过自发修复反应进行再生,但其数量极其有限,并且随着年龄的增长,NSCs越来越少。因此,我们可以通过干细胞移植途径来弥补脑组织中NSCs的不足以实现神经组织的再生、修复。Luan等将人NSCs移植治疗重度新生儿HIE一例,其近期临床疗效得到了显著改善[56];之后,6例新生儿获得性脑损伤患者(1例为一氧化碳中毒所致的极重度脑损伤,1例是低血糖性脑损伤,余4例均为生后窒息缺氧导致的重度HIE)经NSCs移植后发现,NSCs移植对新生儿重度获得性脑损伤有治疗作用,可明显降低其致残率[57]。Ma等将胚胎干细胞(embryonic stem cell, ESCs)植入新生大鼠HIBD模型的同侧侧脑室,植入2月、8月后发现,ESCs能够在脑内生存,并向损伤部位迁移,同时观察到植入组大鼠的学习、记忆功能较对照组明显提高,损伤部位神经元数量较对照组明显增多[58]。还有学者将骨髓及脂肪MSCs植入HIBD新生大鼠脑内,观察到植入MSCs对缺氧缺血所致新生大鼠脑损伤具有明显的保护作用[59,60]

3. 总结与展望

综上所述,HIE为新生儿期的一种常见而严重疾病。近年来,随着对新生儿HIE发病机制的不断认识与深入研究,在其治疗方面亦取得了较大进展,尤其是干细胞移植研究的重大突破为神经系统疾病的治疗带来了新的契机。尽管,目前关于干细胞移植疗法治疗新生儿HIE的研究给人们带来了新的希望,但其尚未正式应用于临床治疗新生儿HIE,主要考虑有以下几方面:①干细胞移植治疗新生儿HIE的机制尚未完全清楚,②干细胞移植的最佳时间窗、途径以及临界细胞剂量尚未达成统一,③干细胞移植后有无长期不良效应目前尚不完全清楚。因此,干细胞移植在新生儿HIE中的临床应用仍需医学研究者们继续不断努力,更多的多中心、大规模、前瞻性的实验与临床研究需进行,从而为干细胞移植治疗新生儿HIE提供更加坚实、可靠的依据。

参考文献 (References)

  1. [1]   Shankaran, S. (2012) Hypoxic-ischemic encephalopathy and novel strategies for neuroprotection. Clinics in Perinatology, 39, 919- 929.

  2. [2]   Kim, J.J., Buchbinder, N., Ammanuel, S., et al. (2013) Costeffective therapeutic hypothermia treatment device for hypoxic ischemic encephalopathy. Medical Devices (Auckland), 6, 1-10.

  3. [3]   Vento, M., Asensi, M., Sastre, J., et al. (2003) Oxidative stress in asphyxiated term infants resuscitated with 100% oxygen. Journal of Pediatrics, 142, 240-246.

  4. [4]   Nakka, V.P., Gusain, A., Mehta, S.L., et al. (2008) Molecular mechanisms of apoptosis in cerebral ischemia: Multiple neuroprotective opportunities. Molecular Neurobiology, 37, 7-38.

  5. [5]   Zhang, F., Yin, W. and Chen, J. (2004) Apoptosis in cerebral ischemia: Executional and regulatory signaling mechanisms. Neurological Research, 26, 835-845.

  6. [6]   Volpe, J.J. (2008) Neurology of the newborns. 15th Edition, Saunders, 448-461.

  7. [7]   Taeusch, H.W., Ballard, R. and Gleason, C. (2005) Avery’s diseases of the newborn. 8th Edition, Saunders, 969-987.

  8. [8]   McGuire, W., Fowlie, P.W. and Evans, D.J. (2004) Naloxone for preventing morbidity and mortality in newborn infants of greater than 34 weeks’ gestation with suspected perinatal asphyxia. Cochrane Database of Systematic Reviews, 1, CD003955.

  9. [9]   母得志 (2011) 新生儿缺氧缺血性脑病的诊断和治疗. 实用儿科临床杂志, 14, 1144-1147.

  10. [10]   Alkharfy, T.M. (2013) Induced hypothermia to treat neonatal hypoxic-ischemic encephalopathy. Review of literature with metaanalysis and development of national protocol. Neurosciences (Riyadh), 18, 18-26.

  11. [11]   Orozco-Gutierrez, A., Rojas-Cerda, L., Estrada, R.M., et al. (2010) Hyperbaric oxygen in the treatment of asphyxia in two newborn infants. Diving and Hyperbaric Medicine, 40, 218-220.

  12. [12]   李月凤, 姜毅 (2006) 神经节苷脂GM1治疗新生儿缺氧缺血性脑病疗效观察. 中国新生儿杂志, 21, 5-8.

  13. [13]   Wachtel, E.V. and Hendricks-Muñoz, K.D. (2011) Current management of the infant who presents with neonatal encephalopathy. Current Problems in Pediatric and Adolescent Health Care, 41, 132-153.

  14. [14]   Jacobs, S.E., Morley, C.J., Inder, T.E., et al. (2011) Whole-body hypothermia for term and near-term newborns with hypoxicischemic encephalopathy: A randomized controlled trial. Archives of Pediatrics Adolescent Medicine, 165, 692-700.

  15. [15]   Simbruner, G., Mittal, R.A., Rohlmann, F., et al. (2010) Systemic hypothermia after neonatal encephalopathy: Outcomes of neo. nEURO. Network RCT. Pediatrics, 126, e771-e778.

  16. [16]   Shankaran, S., Pappas, A., Laptook, A.R., et al. (2008) Outcomes of safety and effectiveness in a multicenter randomized, controlled trial of whole-body hypothermia for neonatal hypoxicischemic encephalopathy. Pediatrics, 122, e791-e798.

  17. [17]   Rutherford, M., Ramenghi, L.A., Edwards, A.D., Brocklehurst, P., Halliday, H., Levene, M., Strohm, B., Thoresen, M., Whitelaw, A. and Azzopardi, D. (2010) Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: A nested substudy of a randomised controlled trial. Lancet Neurology, 9, 39-45.

  18. [18]   刘玲, 杨于嘉, 文秋生, 王鸿娟, 王多德 (2005) 高压氧治疗对新生大鼠缺氧缺血性脑损伤模型的保护作用. 实用儿科临床杂志, 6, 531-532.

  19. [19]   Badr, A.E., Yin, W., Mychaskiw, G. and Zhang, J.H. (2001) Dual effect of HBO on cerebral infarction in MCAO rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 280, R766-R770.

  20. [20]   Sunami, K., Takeda, Y., Hashimoto, M. and Hirakawa, M. (2000) Hyperbaric oxygen reduces infarct volume in rats by increasing oxygen supply to the ischemic periphery. Critical Care Medicine, 28, 2831-2836.

  21. [21]   Yang, Z.J., Xie, Y., Bosco, G.M., Chen, C. and Camporesi, E.M. (2010) Hyperbaric oxygenation alleviates MCAO-induced brain injury and reduces hydroxyl radical formation and glutamate release. European Journal of Applied Physiology, 108, 513-522.

  22. [22]   Jadhav, V., Ostrowski, R.P., Tong, W., Matus, B., Chang, C. and Zhang, J.H. (2010) Hyperbaric oxygen preconditioning reduces postoperative brain edema and improves neurological outcomes after surgical brain injury. Acta Neurochirurgica Supplementum, 106, 217-220.

  23. [23]   Li, J.S., Zhang, W., Kang, Z.M., Ding, S.J., Liu, W.W., Zhang, J.H., Guan, Y.T. and Sun, X.J. (2009) Hyperbaric oxygen preconditioning reduces ischemia-reperfusion injury by inhibition of apoptosis via mitochondrial pathway in rat brain. Neuroscience, 159, 1309-1315.

  24. [24]   Liu, Z., Xiong, T. and Meads, C. (2006) Clinical effectiveness of treatment with hyperbaric oxygen for neonatal hypoxic-ischaemic encephalopathy: Systematic review of Chinese literature. British Medical Journal, 333, 374.

  25. [25]   Gould, L.J., Leong, M. and Mushkudiani, I. (2003) Hyperbaric oxygen delays healing in an ischemic wound model. Journal of Surgical Research, 114, 262.

  26. [26]   Manzoni, P., Farina, D., Maestri, A., Giovannozzi, C., Leonessa, M.L., Arisio, R. and Gomirato, G. (2007) Mode of delivery and threshold retinopathy of prematurity in pre-term ELBW neonates. Acta Paediatrica, 96, 221-226.

  27. [27]   Zhang, J.Z., Jing, L., Ma, Y., Guo, F.Y., Chang, Y. and Li, P.A. (2010) Monosialotetrahexosy-1 ganglioside attenuates diabetesenhanced brain damage after transient forebrain ischemia and suppresses phosphorylation of ERK1/2 in the rat brain. Brain Research, 1344, 200-208.

  28. [28]   Ohmi, Y., Tajima, O., Ohkawa, Y., Mori, A., Sugiura, Y., Furukawa, K. and Furukawa, K. (2009) Gangliosides play pivotal roles in the regulation of complement systems and in the maintenance of integrity in nerve tissues. Proceedings of the National Academy of Sciences of the United States of America, 106, 22405-22410.

  29. [29]   Wei, J., Fujita, M., Nakai, M., Waragai, M., Sekigawa, A., Sugama, S., et al. (2009) Protective role of endogenous gangliosides for lysosomal pathology in a cellular model of synucleinopathies. American Journal of Pathology, 174, 1891-1909.

  30. [30]   Qi, R., Mullen, D.G., Baker, J.R. and Banaszak Holl, M.M. (2010) The mechanism of polyplex internalization into cells: Testing the GM1/caveolin-1 lipid raft mediated endocytosis pathway. Molecular Pharmaceutics, 7, 267-279.

  31. [31]   Zhang, Y.P., Huang, Q.L., Zhao, C.M., Tang, J.L. and Wang, Y.L. (2011) GM1 improves neurofascin155 association with lipid rafts and prevents rat brain myelin injury after hypoxia-ischemia. Brazilian Journal of Medical and Biological Research, 44, 553- 561.

  32. [32]   Chen, J., Lin, L.X., Ma, B., et al. (2012) Meta-analysis of ganglioside treatment for hypoxic-ischemic encephalopathy in newborn infants. Journal of Applied Clinical Pediatrics, 27, 132- 135.

  33. [33]   Yis, U., Kurul, S.H., Kumral, A., Tuğyan, K., Cilaker, S., Yılmaz, O., Genç, Ş. and Genç, K. (2008) Effect of erythropoietin on oxygen-induced brain injury in the newborn rat. Neuroscience Letters, 448, 245-249.

  34. [34]   Iwai, M., Cao, G., Yin, W., Stetler, R.A., Liu, J.L. and Chen, J. (2007) Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke, 38, 2795-2803.

  35. [35]   Shang, Y., Wu, Y., Yao, S., Wang, X.J., Feng, D. and Yang, W.Q. (2007) Protective effect of erythropoietin against ketamine-induced apoptosis in cultured rat cortical neurons: Involvement of PI3K/Akt and GSK-3 beta pathway. Apoptosis, 12, 2187-2195.

  36. [36]   Juul, S.E., Beyer, R.P., Bammler, T.K., McPherson, R.J., Wilkerson, J. and Farin, F.M. (2009) Microarray analysis of highdose recombinant erythropoietin treatment of unilateral brain injury in neonatal mouse hippocampus. Pediatric Research, 65, 485-492.

  37. [37]   Zhu, C.L., Kang, W.Q., Xu, F.L., Cheng, X.Y., Zhang, Z., Jia, L.T., et al. (2009) Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics, 124, e218-e226.

  38. [38]   Elmahdy, H., El-Mashad, A.R., El-Bahrawy, H., El-Gohary, T., El-Barbary, A. and Aly, H. (2010) Human recombinant erythropoietin in asphyxia neonatorum: Pilot trial. Pediatrics, 125, e1135- e1142.

  39. [39]   Wu, Y.W., Bauer, L.A., Ballard, R.A., Ferriero, D.M., Glidden, D.V., Mayock, D.E., et al. (2012) Erythropoietin for neuroprotection in neonatal encephalopathy: Safety and pharmacokinetics. Pediatrics, 130, 683-691.

  40. [40]   Ichiba, H., Tamai, H., Negishi, H., Ueda, T., Kim, T.J., Sumida, Y., et al. (2002) Randomized controlled trial of magnesium sulfate infusion for severe birth asphyxia. Pediatrics International, 44, 505-509.

  41. [41]   Legido, A., Valencia, I., Katsetos, C.D. and Delivoria-Papadopoulos, M. (2007) Neuroprotection in perinatal hypoxic-ischemic encephalopathy. Effective treatment and future perspectives. Medicina (B Aires), 67, 543-555.

  42. [42]   Mobley III, L.W. and Agrawal, S.K. (2003) Role of calcineurin in calcium-mediated hypoxic injury to white matter. Spine Journal, 3, 11-18.

  43. [43]   Cuzzocrea, S., Mazzon, E., Costantino, G., Serraino, I., Dugo, L., Calabrò, G., Cucinotta, G., De Sarro, A. and Caputi, A.P. (2000) Beneficial effects of n-acetylcysteine on ischaemic brain injury. British Journal of Pharmacology, 130, 1219-1226.

  44. [44]   Noor, J.I., Ueda, Y., Ikeda, T. and Ikenoue, T. (2007) Edaravone inhibits lipid peroxidation in neonatal hypoxic-ischemic rats: An in vivo microdialysis study. Neuroscience Letters, 414, 5-9.

  45. [45]   Noor, J.I., Ikeda, T., Ueda, Y. and Ikenoue, T. (2005) A free radical scavenger, edaravone, inhibits lipid peroxidation and the production of nitric oxide in hypoxic-ischemic brain damage of neonatal rats. American Journal of Obstetrics & Gynecology, 193, 1703-1708.

  46. [46]   Gunes, T., Ozturk, M.A., Koklu, E., Kose, K. and Gunes, I. (2007) Effect of allopurinol supplementation on nitric oxide levels in asphyxiated newborns. Pediatric Neurology, 36, 17-24.

  47. [47]   Chaudhari, T. and McGuire, W. (2012) Allopurinol for preventing mortality and morbidity in newborn infants with hypoxicischemic encephalopathy. Cochrane Database of Systematic Reviews, 7, Article ID: CD006817.

  48. [48]   Walberer, M., Nedelmann, M., Ritschel, N., Mueller, C., Tschernatsch, M., Stolz, E., Bachmann, G., Blaes, F. and Gerriets, T. (2010) Intravenous immunoglobulin reduces infarct volume but not edema formation in acute stroke. Neuroimmunomodulation, 17, 97-102.

  49. [49]   Arumugam, T.V., Tang, S.C., Lathia, J.D., Cheng, A.W., Mughal, M.R., Chigurupati, S., et al. (2007) Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proceedings of the National Academy of Sciences of the United States of America, 104, 14104-14109.

  50. [50]   许建文, 陈艳霞 (2008) 大剂量免疫球蛋白治疗重度新生儿缺氧缺血性脑病的效果. 实用儿科临床杂志, 2, 140-141.

  51. [51]   Miyake, K., Yamamoto, W., Tadokoro, M., Takagi, N., Sasakawa, K., Nitta, A., Furukawa, S. and Takeo, S. (2002) Alterations in hippocampal GAP-43, BDNF, and L1 following sustained cerebral ischemia. Brain Research, 935, 24-31.

  52. [52]   Tyler, W.J. and Pozzo-Miller, L.D. (2001) BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. Journal of Neuroscience, 21, 4249-4258.

  53. [53]   尹晓娟, 刘冬云, 罗分平, 龙琦, 封志纯 (2009) 碱性成纤维细胞生长因子对缺氧缺血性脑损伤新生鼠骨形态发生蛋白4及其mRNA表达的影响. 中华儿科杂志, 11, 856-861.

  54. [54]   Lin, S., Fan, L.W., Rhodes, P.G. and Cai, Z. (2009) Intranasal administration of IGF-1 attenuates hypoxic-ischemic brain injury in neonatal rats. Experimental Neurology, 217, 361-370.

  55. [55]   王海燕, 朱晓峰, 王丽敏, 等 (2008) 脑源性神经营养因子及神经干细. 胞移植治疗新生大鼠缺氧缺血性脑损伤的实验研究. 中华儿科杂志, 7, 544-549.

  56. [56]   栾佐,尹国才,胡晓红, 等 (2005) 人神经干细胞移植治疗重度新生儿缺氧缺血性脑病一例. 中华儿科杂志, 8, 580-583.

  57. [57]   栾佐, 刘卫鹏, 屈素清, 等 (2011) 人神经前体细胞移植治疗新生儿获得性脑损伤的临床观察. 中华儿科杂志, 6, 445-450.

  58. [58]   Ma, J., Wang, Y., Yang, J., Yang, M., Chang, K.A., Zhang, L., Jiang, F., Li, Y., Zhang, Z., Heo, C. and Suh, Y.H. (2007) Treatment of hypoxic-ischemic encephalopathy in mouse by transplantation of embryonic stem cell-derived cells. Neurochemistry International, 51, 57-65.

  59. [59]   刘洋, 张萱, 代英, 等 (2008) 骨髓间充质干细胞对缺氧缺血性脑损伤新生大鼠学习记忆功能的重建作用. 中华儿科杂志, 9, 648-653.

  60. [60]   Wei, X., Du, Z., Zhao, L., Feng, D., Wei, G., He, Y., et al. (2009) IFATS collection: The conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. Stem Cells, 27, 478-488.

NOTES

*通讯作者。

期刊菜单