设为首页 加入收藏

Asian Case Reports in Genetics
Vol.1 No.2(2013), Article ID:9828,6 pages DOI:10.12677/ACRG.2013.12002

Progress on Artificially Induced Gynogenesis Research of Fishes*

Min Du1,2, Baozhen Niu1,2, Yanhong Liu1,2#

1College of Life Science and Technology, Honghe University, Mengzi, Yunnan

2Key Laboratory of Crop High Quality and Efficient Cultivation and Security Control of College in Yunnan Province, Honghe University, Mengzi, Yunnan

Email: du2005min@126.com, niu2011bao@126.com, #kidliu1968@126.com

Received: Mar. 18th, 2013; revised: Apr. 13th, 2013; accepted: Apr. 21st, 2013

Copyright © 2013 Min Du et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT:

On the one hand, there is a significant value of fish sex control to production of aquaculture; on the other hand, it provides a basis to explicit the mechanism of fish sex differentiation and sex determination. In briefly, the paper introduces methods of fish sex-control, progress and future research direction of study on molecular markers concern fish sex control and several molecular markers of gynogenesis.

Keywords: Fishes; Sex-Control; Artificial Gynogenesis

鱼类人工雌核发育的研究进展*

杜  民1,2,牛宝珍1,2,刘艳红1,2#

1红河学院生命科学与技术学院,云南蒙自

2红河学院云南省高校农作物优质高效栽培与安全控制重点实验室,云南蒙自

Email: du2005min@126.com, niu2011bao@126.com, #kidliu1968@126.com

摘 要:

鱼类性别控制一方面对水产养殖具有重大的实用价值,另一方面为阐明鱼类性别分化和性别决定机制等理论问题提供依据。本文简述了鱼类性别控制的方法,介绍了鱼类性别控制及雌核发育相关的几种分子标记研究的进展状况及研究方向。

收稿日期:2013年3月18日;修回日期:2013年4月13日;录用日期:2013年4月21日

关键词:鱼类;性别控制;人工雌核发育

1. 鱼类性别控制概述

鱼类性别控制是通过人为手段对鱼类的生殖活动进行干预按照人们的意愿来繁殖所需性别鱼类后代的一种繁殖技术。性别控制时间分为受精之前和受精之后。前者是通过对精子的体外干预,使在受精之时便决定了后代的性别;后者是利用形态或者分子等手段对幼鱼性别进行鉴定,从而获得特定性别的后代。广义的性别控制还包括基因型雌性向生理型雄性转化,基因型雄性向生理型雌性逆转以及不育中性鱼的诱导方法等,影响鱼类性别分化的外部环境因素包括,温度、盐度、pH值、水质、光照、食物丰度等,种群内部因素也可能影响鱼类性别及其分化[1,2]。许多雌雄鱼类之间的经济性状,如生长率和个体大小等存在显著差异,因此通过控制性别的方法专门生产全雌或全雄苗种进行单性养殖可以大大提高经济效益。例如罗非鱼雄鱼比雌鱼生长明显要快得多,而比目鱼和鲑鱼则选择培养雌性[3]

鱼类性别控制的方法和途径主要有人工挑选法,种间杂交[4],激素处理[5],三系配套技术[6],人工诱导雌核发育[7],人工诱导雄核发育[8],人工诱导三倍体[9,10],自身免疫阉割[11],外科手术阉割[12],以及电离辐射和化学绝育等方法。但比较有效的是种间杂交,激素处理,雌核发育和三倍体的人工诱导等。此文仅对鱼类的性别相关的雌核发育有关的分子标记作一简述。

2. 鱼类人工雌核发育研究的种类

近三十年来,人工诱导鱼类雌核发育进展迅速,目前国内外水产工作者通过人工诱导鱼类雌核发育,已经成功地培育出雌核发育的后代:斑马鱼(Brachydanio rerio)[7]、金鱼(Carassius auratus)[13,14]、虹鳟(Oncorhynchus mykiss)[15,16]、牙鲆[17-23]、漠斑牙鲆[24,25]、大黄鱼(Larimichthys crocea)[26-29]、庸鲽(Hippoglossus hippoglossus)[30]、舌齿鲈(Dicentrarchus labrax L.) [31-34]、大菱鲆(Scophthalmus maximus)[34,35]、尖齿胡鲶(Clarias gariepinus)[36,37]、细鳞大麻哈鱼(Oncorhynchus gorbuscha)[38]、半滑舌鳎(Cynoglossus semilaevis)[39]、黄颡鱼(Pelteobagrus fulvidraco Richardson)[40]、建鲤(Cyprinus carpio Var. Jian)[41]、平鲷(Rhabolosargus sarba)[42]、鲢(Hypophthalmichthys molitrix)[43]、南方鲇(Silurus meridionalis)[44]、丁鲷(Tinca tinca L.)[45-47]、泥鳅(Misgurnus anguillicaudatus)[48]、鲫鱼(Crucian carp) [49]、条斑星鲽(Verasper moseri)[50,51]、尼罗罗非鱼(Oreochromis niloticus L.)[52]、莫桑比克罗非鱼(Oreochromis mossambicus)[53]、锦鲤(Ornamental carp)[54]、稀有鮈鲫(Gobiocypris rarus)[55]、草鱼(Ctenopharyngodon idell) [56,57]、银大麻哈鱼(Oncorhynchus kisutch)[58]、大西洋鲑(Salmo salar)[59]、硬头鳟(Salmo gairdneri)[60]、香鱼(Plecoglossus altivelis)[61,62]、真鲷(Pagrus major)[63]、北美狗鱼(Esox masquinongy)[64]、石鲽(Limanda yokohamae)[65]、高体鰟鮍(Rhodeus ocellatus)[66]、异育银鲫(Carassius auratus gibelio)[67-69]、琵琶鳟(Oncorhynchus rhodurus)[70]等,这些雌核发育后代为养殖新品种的开发以及性别决定机制、单性生殖等基础生物学研究提供了极为宝贵的素材。

3. 人工雌核发育的原理方法及应用

人工雌核发育是利用灭活的精子激活卵子,然后再通过一些处理,使卵子本身的染色体加倍而形成二倍体子代。在整个过程中,子代的遗传物质全部来自卵子,故称为雌核发育。在人工雌核发育过程中,通常采用抑制激活卵第二次成熟分裂(减数分裂)后期第二极体的形成和排出、形成杂合二倍体的减数雌核发育方式,而不采用抑制激活卵第一次卵裂(有丝分裂)产生纯合二倍体的卵裂雌核发育方式;雌核发育是快速建立纯系和控制性别的有效方法。例如性染色体为XX-XY配子类型的鱼类,雌核发育形成的二倍体子代都是雌性。用灭活的异源精子形成的异精雌核发育的二倍体雌鱼,有的在生长上有明显的优势(例如异育银卿鱼);用雌核发育技术与性反转手段相结合,可以获得大量正常的全雌鱼。

3.1. τ0度量法温度休克处理参数方法的运用

τ0度量法是一种利用相对时值代替绝对时值来优化温度休克处理参数的方法。该方法已被运用到锦鲤的雌核发育诱导中[54]。赵晓勤等[13]引入相对胚龄τ0作为计时单位,通过抑制第一次卵裂的起始时间,以实现对金鱼雌核发育诱导过程中的卵子染色体加倍操作进行处理参数优化的目的。研究表明,在固定热休克处理温度下,热休克处理时间固定的前提下,用不同预处理水温组的孵化率与正常仔鱼产量曲线都形成一个单一的峰,验证了以τ0单位度量热休克处理时机的准确性以及该优化方法在鲤科鱼类雌核发育操作中的通用性。

3.2. 冷冻精子用于人工雌核发育

Chen et al.[39]首次利用冷冻保存4年的鲈鱼冷冻精子成功诱导了半滑舌鳎雌核发育。Luckenbach et al. (2004)[71]利用同源精子和异源的鲻(Mugil cephalus)精子诱导漠斑牙鲆卵雌核发育获得了正常发育的二倍体鱼苗。Piferrera et al.(2004)[34]利用同源精子诱导大菱鲆卵雌核发育。苏鹏志等[72]采用冷冻保存的鲈鱼精液解冻后直接与大菱鲆卵进行杂交,发现单倍体实验组卵与雌核发育二倍体实验组卵在发育过程中有明显的差异,这种差异最早出现在8细胞期。单倍体胚胎头部发育不正常,眼泡较小,身体短且扭曲较严重,从肌节期开始沉积大量的黑色素颗粒。仔鱼孵化1周内单倍体即全部死亡。与正常二倍体对照组相比较,证明所得正常形态仔鱼即为雌核发育二倍体。

3.3. 人工雌核发育用于性别遗传机制分析

周丽青等[73]初步发现半滑舌鳎具异型性染色体,

其核型为2n = 42,单倍体为n = 21,并断定半滑舌鳎性别决定类型为ZW/ZZ,Chen et al.[39]等利用分子生物学技术证实半滑舌鳎性别决定类型为ZW/ZZ,雌性性染色体基因型为ZW。李静等[74],马洪雨等[75]分别采用AFLP技术,利用选择性引物组合(E-ACT/M-CAA)从半滑舌鳎中筛选到一条雌性特异的AFLP标记。并成功地将其转化为SCAR(Sequence characterized amplified regions)标记,该SCAR标记是雌性特异的,并可用于半滑舌鳎个体遗传性别鉴定。Chen et al.[76]应用AFLP技术,利用64对选择性引物组合对半滑舌鳎基因组进行扫描,筛选到7个雌性特异标记;利用人工雌核发育技术建立了半滑舌鳎遗传性别快速鉴定的PCR技术。Chen SL et al.[77]运用外源性雄性激素生产出伪雄鱼(基因型为ZW而表现型为雄鱼),通过SCAR标记可以快速对所生产的鱼苗进行基因型鉴定,伪雄鱼与正常的雌鱼交配产生出了基因型为WW的超雌鱼,为全雌半滑舌鳎的生产创造了条件。

3.4. 人工雌核发育用于获得纯系

理论上雌核发育可获得纯合度较高的子代,孙效文等[78]研究了鲤和牙鲆经两种雌核发育操作获得子代的基因型纯合情况。结果显示:抑制第一次卵裂的雌核发育可以得到纯合子,但比例并不是很高,如果要利用此技术获得纯合个体,要经基因型分析来确证;抑制第二极体的雌核发育技术基本上得不到纯合个体,对多数物种来说得到的子代群体纯合度并不高于全同胞自交得到的子代;两种雌核发育技术获得完全纯合子代的难易与物种的遗传特性有一定的相关性,要获得完全纯合的子代难度非常大。

4. 与性别有关的分子特异性标记

鱼类性别决定机制相当复杂,鱼类的表现型性别首先是由基因型决定,也受环境因子影响。鉴于鱼类的性别决定机制既有科学意义,又有实用价值,一直受到关注。采用分子标记技术筛选鱼类性别相关分子标记已成为发展趋势之一。

目前筛选到的性别特异分子标记大都是雄性特异的,我国已研究过的具有异型性染色体的15种鱼类,有12种是雌性同配性别[79],由于不同鱼类的遗传差异很大,其性别特异性标记一般不能通用,因此鱼类应该分离筛选各自性别特异的分子标记[80-82]

4.1. AFLP(Amplified Fragment Length Polymorphism,扩增片段长度多态性)技术在性别控制上的运用

目前利用AFLP技术筛选性别特异标记的报道有淡水鱼三棘刺鱼(Gasterosteus aculeatus L.)[83]和孔雀鱼(Poecilia reticulata)[84],而且筛选到与雄性性别相关的分子标记。Chen SL et al.[76]从DNA水平出发,利用AFLP技术建立了半滑舌鳎雌性性相关遗传性别鉴定的PCR技术。为研究半滑舌鳎性别决定机制、筛选具有性别特异功能的基因、以及全雌育种等奠定了重要基础。王晓清等[27]采用AFLP标记对人工雌核发育大黄鱼的两个家系比较分析表明,雌核发育个体之间的遗传差异最小,与雌亲的亲缘关系最近。研究表明,AFLP技术是鱼类雌核发育鉴定和遗传分析的有效方法之一。

4.2. SSR(Simple Sequence Repeats,简单序列重 复标记)技术在雌核发育上的运用

刘晓锋等[85]利用微卫星序列对雌核发育银鲫的研究表明:雌核发育银鲫的突变率明显偏高,这与天然雌核发育鱼类处在单性生殖和两性生殖的过度阶段有密切关系;序列分析表明,雌核发育银鲫的微卫星突变模式并不严格遵守逐步突变模型;季旭等[20]利用微卫星标记对雌核发育牙鲆进行亲子鉴定,其中部分子代在某些座位表现出与其母本不完全匹配的基因型。朱晓琛等[19]采用微卫星标记对稚鱼期雌核发育牙鲆的纯合度进行检验,发现卵裂雌核发育牙鲆在检测座位全部纯合,但减数雌核发育牙鲆中未发现在所有座位是全部纯合的。周裕华等[43]采用鲢微卫星引物,以野生鲢、养殖鲢、雄鲤作对照对人工雌核发育鲢近交F2及其亲本进行了微卫星分析。表明人工雌核发育鲢近交F2发生了一定程度的遗传分化,采用人工雌核发育、近交等育种手段会造成群体之间发生遗传变异,群体间遗传结构发生改变。鲁翠云等[86]对雌核发育银鲫特异个体及父母本5个微卫星位点的扩增条带进行了克隆测序,相似性比对结果显示,特异个体表现出父本特异DNA条带,在某些位点上保留有母本特异条带,而个体本身特异的DNA条带与父母本的相似性均较高。连续2代的繁育检测结果表明融合了父本特异条带的银鲫个体在繁殖过程中仍行雌核发育的生殖方式,变异条带能够传递给子代。王晓清等[26]采用微卫星标记引物对大黄鱼雌核发育的两个家系及对照组进行比较分析表明:有两条引物扩增结果显示子代全部为雌核发育产物,雌核发育使基因的纯合率提高了81.9%。研究表明雌核发育是促进基因纯合的一个有效途径,微卫星标记技术是鱼类雌核发育鉴定和遗传分析的一种有效方法。

4.3. RAPD(Random Amplified Polymorphic DNA,随机引物扩增多态性DNA)技术在雌 核发育上的运用

赵如榕等[58]采用多个随机引物进行RAPD-PCR 扩增,对两个人工雌核发育草鱼群体进行遗传纯合性分析表明:人工雌核发育草鱼群体的遗传纯合度高于普通草鱼,第一代人工雌核发育草鱼群体的遗传纯合性较第二代低;胡海星等[87]用RAPD和微卫星技术对经两代连续人工诱导,遗传背景一致的雌核发育草鱼以及母本草鱼和父本鲤鱼的基因组DNA进行比较分析,两种方法在雌核发育草鱼和鲤鱼中所检测到的位点均没有一个相同,表明经过紫外线照射处理,鲤鱼精子的遗传物质能够被完全破坏,不会对雌核发育草鱼的基因组造成遗传污染;刘良国等[88]采用随机扩增多态DNA技术,对彭泽鲫种群内两个不同雌核发育克隆进行比较分析,表明同一雌核发育克隆群体间遗传相似性和不同克隆群体间的遗传异质性,找到两个雌核发育克隆系的有效多态性标记。颜金鹏等[89]在对异源四倍体鲫鲤雌核发育后代及其亲本RAPD分析中表明异精雌核发育后代的遗传物质与母本相同。

4.4. 同工酶技术在雌核发育上的运用

赵俊等[90]分别用母本彭泽鲫和父本尖鳍鲤的精子与复合四倍体彭泽鲫的卵子受精,得到2种胚胎的后代群体。对2种胚胎10个时期的5种同工酶进行比较分析表明:不同来源的精子对胚胎的同工酶表型没有影响;复合四倍体彭泽鲫可能继承了母本种的雌核发育生殖方式;邹桂伟等[91]采用聚丙烯酰胺水平平板电泳法研究了人工雌核发育鲢近交的两个系、野生鲢、养殖鲢和雄鲤的肝、肾、心、眼和肌肉5种组织的酯酶和乳酸脱氢酶;表明雌核发育鲢近交的两个家系和野生鲢的同工酶谱基本一致;多态现象出现在雌核发育近交鲢F1Ⅱ系的群体内;鲢各群体的特异遗传标记没有发现。原因可能是雄鲤的酶溶液浓度过低,或者是雄鲤不适合用水平平板电泳法检测;也可能是点突变引起的氨基酸转换不能用常规酶谱技术进行识别,也可能是常规电泳分辨率有限的原因,导致不能从蛋白质水平上对雌核发育近交鲢Ⅰ系、Ⅱ系和养殖鲢、野生鲢进行区别。

4.5. 蛋白质组表达水平对雌核发育的研究

张玲等[92]对不同发育时期金鱼单倍体胚胎进行雌核发育单倍体的差异蛋白质组研究。质谱分析初步鉴定到了15个在金鱼雌核发育单倍体的发育中起着重要作用的不同蛋白质;为进一步阐明单倍体发育机制奠定了基础。杨彦豪等[93]通过对雄性银鲫精液的不同组份在荷包红鲤和雌性银鲫杂交作用分析表明,与比对照组相比,加入同源精子膜蛋白后的雌核发育银鲫异源受精卵的孵化率显著下降,并且存在有基因型基本和父本基因型相同的特殊子代。从而表明雌核发育银鲫卵子进行雄核发育的关键因素可能与精子膜蛋白有关。

5. 展望

人工诱导雌核发育在鱼类养殖中的应用已取得了一定的进展,但也存在一些问题。雌核发育成功并真正传至子代并稳定遗传的较少,同源或者异源精子遗传物质是否彻底失活,缺少从亚基因或者更高的水平上对雌核发育机制进行研究,利用分子手段对雌核发育分析的较多,但是真正用在生产上的准确的鉴定方法还是太少,对精子的生理、生化方面的基础研究也比较少,单倍体鱼类的相关研究较少,并且需要有新的假说来对雌核发育的基本原理进行丰富和完善。

对于雌核发育的超雌(WW)及超雄(YY)鱼的检测技术还要进行深入的研究,目前检测的方法有利用流式细胞仪来确认单倍体,利用染色体银染技术,染色体-G带技术,染色体-C带技术,来确认正常二倍体及雌核发育二倍体,但是只能对于小规模的检测。利用性别特异性连锁基因的鉴定来确认异型配子染色体是一个可行的方法,但是有的鱼类的与性别相关基因还没有发现。通过分子探针进行杂交可否进行还在探索中,如何利用分子手段快速鉴定基因型为WW 的YY鱼将成为目前的一个有意义的研究方向。而利用卵裂雌核发育后代的纯系可以进行鱼类遗传连锁图谱的构建也将成为今后研究的一个热点。

参考文献 (References)

[1]       C. A. Strüssmann, R. Patiňo. Temperature manipulation of sex differentiation in fish. F. W. Goetz, P. Thomas, Eds., Proceedings of the Fifth International Symposium on Reproductive Physiology of Fish, University of Texas at Austin, Austin, 7-12 July 1995: 153-157.

[2]       R. H. Devlin, Y. Nagahama. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture, 2002, 208(3): 191-364.

[3]       楼允东, 宋天复. 异育银鲫性别控制研究[J]. 水产学报, 1994, 18(3): 169-175.

[4]       C. F. Hickling. The Malacca tilapia hybrids. Genetics, 1960, 57(1): 1-10.

[5]       S. Gimeno, A. Gerritsen, T. Bowmer and H. Komen. Feminization of male carp. Nature, 1996, 384: 221-222.

[6]       杨永铨. 应用三系配套途径生产遗传上全雄莫桑比克图非鱼[J]. 遗传学报, 1980, 7(3): 241-246

[7]       G. Streisinger, C. Walker, N. Dower, et al. Producton of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature, 1981, 291(5813): 293-296.

[8]       A. B. J. Bongers, J. A. Boza, B. Z. Doulabi, E. H. Eding, J. Komen and C. J. J. Richter. Maternal influence on development of androgenetic clones of common carp, Cyprinus carpio L. Aquaculture, 1995, 137: 139-147.

[9]       M. Krisfalusi, P. A. Wheeler, G. A. Thorgaard, et al. Gonadal morphology of female diploid gynogenetic and triploid rainbow trout. Journal of Experimental Zoology, 2000, 286(5): 505-512.

[10]    桂建芳等. 人工三倍体水晶彩鲫的性腺发育[J]. 动物学报, 1991, 37(3): 297-304.

[11]    吴清江. 鱼类的H-Y抗原及其意义[J]. 水产学报, 1985, 9(4): 389.

[12]    L. H. Brown, R. H. Richard. Surgical gonadectomy of fish, a technique for veterinary surgeons. Veterinary Record, 1979, 104: 215.

[13]    赵晓勤, 李家乐, 汪桂玲. 金鱼雌核发育诱导的τ0度量法优化[J]. 上海水产大学学报, 2008, l17(5): 520-524.

[14]    H. Nagoya, T. Kimoto and H. Onozato. Diploid gynogenesis induced by suppression of the second or the third cleavage in the goldfish, Carassius auratus. Bulletin of National Research Institute of Aquaculture, 1990, 18: 1-6.

[15]    李胜忠, 陈琳, 杜劲松. 热休克诱导虹鳟二倍体雌核发育[J].动物学杂志, 1997, 32(5): 7-9.

[16]    S. Kyle, H. B. Kim, E. D. Robert, et al. Genetic analysis of a development rate QTL in backcrosses of clonal rainbow trout, Oncorhynchus mykiss. Aquaculture, 2005, 247: 75-83.

[17]    戈文龙, 张全启, 齐洁等. 异源精子诱导牙鲆雌核发育二倍体[J]. 中国海洋大学学报, 2005, 35(6): 1011-1016.

[18]    王伟, 尤锋, 高天祥等. 人工诱导牙鲆异质雌核发育群体的微卫星标记分析[J]. 高技术通讯, 2005, 15(7): 107-110.

[19]    朱晓琛, 刘海金, 孙效文等. 微卫星评价牙鲆雌核发育二倍体纯合性[J]. 动物学研究, 2006, 27(1): 63-67.

[20]    季旭, 孙效文, 杨立更等. 微卫星标记对牙鲆有丝分裂雌核发育家系的亲子鉴定[J]. 动物学研究, 2008, 29(1): 25-30.

[21]    刘海金, 王常安, 朱晓琛等. 牙鲆单倍体、三倍体、雌核发育二倍体和普通二倍体胚胎发育的比较[J]. 水产学院学报, 2008, 23(3): 161-167.

[22]    X.-P. Zhu, F. You, P.-J. Zhang, et al. Effects of cold shock on microtubule organization and cell cycle in gynogenetically activated eggs of olive flounder (Paralichthys olivaceus). Marine Biotechnology, 2007, 8(3): 312-318.

[23]    E. Yamamoto. Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temmincket Schlegel). Aquaculture, 1999, 173(1): 235-246.

[24]    J. M. Andrew, M. Ryan, A. Christopher, et al. Effective UV dose and pressure shock for induction ofmeiotic gynogenesis in southern flounder (Paralichthys lethostigma) using black sea bass (Centropristis striata) sperm. Aquaculture, 2006, 259: 290- 299.

[25]    J. L. Adam, G. John, V. D. Harry, et al. Induction of diploid gynogenesis in southern flounder (Paralichthys lethostigma) with homologous and heterologous sperm. Aquaculture, 2004, 237 (1-4): 499-516.

[26]    王晓清, 王志勇, 柳小春等. 大黄鱼人工诱导雌核发育后代的微卫星标记分析[J]. 遗传, 2006, 28(7): 831-837.

[27]    王晓清, 王志勇, 柳小春等. 人工雌核发育大黄鱼(Pseudosciaena crocea)的AFLP分析[J]. 海洋与湖沼, 2007, 38(1): 22- 28.

[28]    Y. Y. Li, M. Y. Cai, Z. Y. Wang, et al. Microsatellite-centromere mapping in large yellow croaker (Pseudosciaena crocea) using gynogenetic diploid families. Marine Biotechnology, 2008, 10: 83-90.

[29]    许建和, 尤锋, 吴雄飞等. 大黄鱼雌核发育二倍体的人工诱导[J]. 海洋科学, 2006, 30(12): 37-42.

[30]    H. B. Tvedt, T. J. Benfey, D. J. Martin-Robichaud, et al. Gynogenesis and sex determination in atlantic halibut (Hippoglossus hippoglossus). Aquaculture, 2006, 252: 573-583.

[31]    B. Daniela, C. Fulvio, L. Angelo, et al. Production of clonal founders in the European sea bass, Dicentrarchus labrax L., by mitotic gynogenesis. Aquaculture, 2005, 246(1): 115-124.

[32]    P. Stefno, C. Beatrice, S. Eric, et al. Production of meiotic gynogenetic and triploid sea bass, Dicentrarchus labrax L. 1. Performances, maturation and carcass quality. Aquaculture, 2004, 230: 41-64.

[33]    P. Stefano, C. Beatrice. Pressure and cold shock induction of meiotic gynogenesis and triploidy in the European sea bass, Dicentrarchus labrax L.: Relative efficiency of methods and parental variability. Aquaculture, 2000, 189(1): 23-37.

[34]    F. Piferrera, M. C. Rosa, G. Castora, et al. Induction of gynogenesis in the turbot (Scophthalmus maximus): Effects of UV irradiation on sperm motility, the Hertwig effect and viability during the first 6 months of age. Aquaculture, 2004, 238(1-4): 403- 419.

[35]    J.-H. Xu, F. You, W. Sun, et al. Induction of diploid gynogenesis in turbot Scophthalmus maximus with left-eyed flounder Paralichthys olivaceus sperm. Aquaculture International, 2008, 16(6): 623-634.

[36]    G. Peter, V. Fam and O. Frans. Gynogenesis in the African catfish Clarias gariepinus (Burchell, 1822) III. Induction of endomitosis and the presence of residual genetic variation. Aquaculture, 2000, 185: 25-42.

[37]    L. Várad, I. Benkó, J. Varga, et al. Induction of diploid gynogenesis using interspecific sperm and production of tetraploids in African catfish, Clarias gariepinus (Burchell 1822). Aquaculture, 1999, 173(1-4): 401-411.

[38]    P. A. Crandell, P. Matsuokam and W. Smokerw. Effects of timing of stripping and female on the viability of gynogenetic and nongynogenetic diploid pink salmon (Oncorhynchus gorbuscha). Aquaculture, 1995, 137(1): 109-119.

[39]    S.-L. Chen, Y.-S. Tian, J.-F. Yang, et al. Artificial gynogenesis and sex determination in half-smooth tongue sole (Cynoglossus semilaevis). Mar Biotech, 2009, 10(2): 243-251.

[40]    刘汉勤, 崔书勤, 侯昌春等. 从XY雌鱼雌核发育产生YY超雄黄颡鱼[J]. 水生生物学报, 2007, (31)5: 718-725.

[41]    张建森, 孙小异. 建鲤综合育种技术的公开和分析[J]. 中国水产, 2006, 9: 69-71.

[42]    蔡泽平, 胡超群, 牛文涛等. 平鲷雌核发育二倍体的人工诱导[J]. 海洋学报, 2007, 29(3): 114-119.

[43]    周裕华, 邹桂伟, 梁宏伟等. 人工雌核发育鲢近交F2微卫星DNA变异分析[J]. 淡水渔业, 2007, 37(4): 30-33.

[44]    吴风瑞, 张修月, 王德寿. 人工诱导南方鲇雌核发育的最适参数[J]. 动物学杂志, 2006, 41(1): 27-31.

[45]    V. Piačková, M. Flajšhans. Long-term examination of health conditions in monoculture of communally tested amphimictic diploid,diploid gynogenic and triploid tench, Tinca tinca (L.). Aquaculture International, 2006, 14: 43-59.

[46]    O. Linhart, P. Kvasnicka, J. Kanka, et al. The first results of induced gynogenesis by retention of the second polar body in common tench (Tinca tinca L.). Bulletin Vyzkumny Ustav Rybarsky a Hydrobiologicky Vodnany, 1986, 22(4): 3-8 (in czech).

[47]    J. X. Wang, H. J. Liu, W. Q. Min, et al. Induced meiotic gynogenesis in tench, Tinca tinca (L.) using irradiated heterogenic sperm. Aquaculture International, 2006, 14: 35-42.

[48]    K. Morishima, I. Nakayama and K. Arai. Genetic linkage map of the loach Misgurnus anguillicaudatus (Teleostei: Cobitedae). Genetica, 2008, 132: 227-241.

[49]    S. J. Liu, W. Duan, M. Tao, et al. Establishment of the diploid gynogenetic hybrid clonal line of red crucian carp × common carp. Science China Life Science, 2007, 50(2): 186-193.

[50]    Z. Lahrech, C. Kishioka and K. Morishima. Genetic verification of induced gynogenesis and microsatellite-centromere mapping in the barfin flounder, Verasper moseri. Aquaculture, 2007, 272 (Suppl. 1): S115-S124.

[51]    杨景峰, 陈松林, 苏鹏志等. 异源精子诱导条斑星鲽雌核发育的研究[J]. 水产学报, 2009, 33(3): 372-378.

[52]    M. T. Ezaz, J. M. Myers, S. T. Powell, et al. Sex ratios in theprogeny of androgenetic and gynogenetic YY male Nile tilapia, Oreochromis niloticus L. Aquaculture, 2004, 232: 205-214.

[53]    R. Campos-Ramos, S. C. Harvey, B. J. McAndrew, et al. Aninvestigation of sex determination in the Mozambique tilapia, Oreochromis mossambicus, using synaptonemal complex analysis, FISH, sex reversal and gynogenesis. Aquaculture, 2003, 221: 125-140.

[54]    N. B. Cherfas, G. Hulata and O. Kozinsky. Induced diploid gynogenesis and polyploidy in the ornamental (koi) carp, Cyprinus carpio L. 2. Timing of heat shock during the first cleavage. Aquaculture, 1993, 111(1-4): 281-290.

[55]    贾方钧, 王剑伟, 吴清江. 异源精子诱导稀有鮈鲫的人工雌核发育[J]. 水生生物学报, 2002, 26(3): 246-252.

[56]    李冰霞, 罗琛. 热休克法抑制第一次卵裂实现草鱼雌核发育的细胞学观察[J]. 水生生物学报, 2003, 27(2): 154-159.

[57]    赵如榕, 肖亚梅, 彭亮跃等. 两个人工雌核发育草鱼群体遗传纯合性分析[J]. 湖南师范大学自然科学学报, 2008, 31(2): 110-114.

[58]    T. Refstie, J. Stoss and E. M. Donaldson. Productionof all-female coho salmon (Oncorhynchus kisutch) by diploid gynogenesis using irradiated sperm and cold shocks. Aquaculture, 1982, 29 (1-2): 67-82.

[59]    A. Slettan, I. Olsaker and Y. Lie. Segregation studies and linkage analysis of Atlantic salmon microsatellites using haploid genetics. Heredity, 1997, 78(6): 620-627.

[60]    D. Chourrout. Thermal induction of diploid gynogenesis and triploidy in the eggs of the rainbow trout (Salmo gairdneri Richardson). Reproduction Nutrition Development, 1980, 20(3A): 727-733.

[61]    H. S. Han, N. Taniguchi and A. Tsujimura. Production of clonal ayu by chromosome manipulation and confirmation by isozyme marker and tissue grafting. Nippon Suisan Gakkaishi—Bulletin of the Japanese Society of Scientific Fisheries, 1991, 57(5): 825- 832.

[62]    M. Takagi, N. Taniguchi, M. Yamasaki, et al. Identification of clones induced by chromosome manipulation in ayu, Plecoglossus altivelis, by DNA fingerprinting with ri and non-ri labelled probes. Fisheries Science, 1995, 61(6): 909-914.

[63]    K. Kato, O. Murata, S. Yamamoto, et al. Viability, growth and external morphology of meioticand mitotic-gynogenetic diploids red sea bream, Pagrus major. Journal of Applied Ichthyology, 2001, 17(3): 97-103.

[64]    F. Lin, K. Dabrowski. Androgenesis and homozygous gynogenesis in muskellunge (Esox masquinongy): Evaluation using flow cytometry. Molecular Reproduction and Development, 1998, 49: 10-18.

[65]    Y. Kakimoto, S. Aida, K. Arai, et al. Induction of gynogenetic diploids by temperature and pressure treatments and sex reversal by immersion in methyltestosterone in marbled sole Limanda yokohamae. Journal of the Faculty of Applied Biological Science —Hiroshima University, 1994, 33: 113-124.

[66]    K. Kawamura. Sex determination system of the rosy bitterling, Rhodeus ocellatus ocellatus. Environmental Biology of Fishes, 1998, 52: 251-260.

[67]    桂建芳, 梁绍昌. 人工复合四倍体异育银鲫雌核发育生殖方式的初步证明[J]. 科学通报, 1992, 37(9): 836-836.

[68]    楼允东, 宋天复. 异育银鲫雌核发育子代性转化的研究[J]. 水产学报, 1994, 18(3): 169-175.

[69]    李建中, 刘少军, 张轩杰等. 异源四倍体鲫鲤雌雄差异的RAPD标记[J]. 水生生物学报, 2004, 28(6): 674-676.

[70]    T. Kobayashi, A. Ide, T. Hiasa, et al. Production of cloned amago salmon Oncorhynchus rhodurus. Fisheries Science, 1994, 60(3): 275-281.

[71]    J. A. Luckenbach, J. Godwin, H. V. Daniels, et al. Induction of diploid gynogenesis in southern flounder (Paralichthys lethostigma) with homologous and heterologous sperm. Aquaculture, 2004, 237: 499-516.

[72]    苏鹏志, 陈松林, 杨景峰等. 异源冷冻精子诱导大菱鲆的雌核发育[J]. 中国水产科学, 2008, 15(5): 715-721.

[73]    周丽青, 杨爱国, 柳学周等. 半滑舌鳎染色体核型分析[J]. 水产学报, 2005, 29(3): 417-419.

[74]    李静, 陈松林, 邓思平等. 半滑舌鳎雌性特异AFLP分子标记的筛选[J]. 水产学报, 2007, 31(5): 591-597.

[75]    马洪雨, 陈松林, 李静等. 半滑舌鳎雌性特异AFLP标记CseF783的克隆及其在遗传性别鉴定中的应用[J]. 遗传, 2009, 31(1): 88-94.

[76]    S. L. Chen, J. Li, S. P. Deng, et al. Isolation of female-specific AFLP markers and molecular identification of genetic sex in half-smooth tongue sole (Cynoglossus semilaevis). Mar. Biotech., 2007, 9(2): 273-280.

[77]    S.-L. Chen, S.-P. Deng, H.-Y. Ma, et al. Molecular marker-assisted sex control in half-smooth tongue sole Cynoglossus semilaevis. Aquaculture, 2008, 283(1-4): 7-12.

[78]    孙效文, 张研, 季旭等. 鲤和牙鲆的两种雌核发育子代的基因型分析[J]. 水产学报, 2008, 32(4): 545-550.

[79]    杨东, 余来宁. 鱼类性别与性别鉴定[J]. 水生生物学报, 2006, 30(2): 221-226.

[80]    P. Iturra, J. F. Medrano, M. Bagley, et al. Identification of sex chromosome molecular markers using RAPDs and fluorescent in situ hybridization in rainbow trout. Genetica, 1997, 101(3): 209- 213.

[81]    P. Iturra, M. Bagley, N. Vergara, et al. Development and characterization of DNA sequence Omy P9 associated with the sex chromosomes in rainbow trout. Heredity, 2001, 86: 412-419.

[82]    J. N. Volff, M. Kondo and M. Schartl. Medaka dmY/dmrt1Y is not the universal primary sex-determining gene in fish. Trends Gene, 2003, 19(4): 196-199.

[83]    R. Griffiths, K. J. Orr, A. Adam, et al. DNA sex identification in the three-spined stickleback. Journal of Fish Biology, 2000, 57 (5): 1331-1334.

[84]    T. Watanabe, M. Yoshida, M. Nakajima, et al. Linkage mapping of AFLP and microsatellite DNA markers with the body color and sex-determining loci in the guppy (Poecilia reticulata). Zoological Science, 2005, 22(8): 883-889.

[85]    刘晓锋, 鲁翠云, 曹顶臣等. 雌核发育银鲫微卫星突变速率和突变模式[J]. 遗传, 2008, 30(4): 483-490.

[86]    鲁翠云, 曹顶臣, 张义凤等. 雌核发育银鲫子代中微卫星特异序列分析[J]. 动物学报, 2007, 53(3): 537-544.

[87]    胡海星, 郑康, 陈金辉等. 异源精子遗传物质对雌核发育草鱼基因组的影响分析[J]. 水生生物学报, 2008, 32(5): 701-710.

[88]    刘良国, 赵俊, 陈湘. 彭泽鲫两个雌核发育克隆的RAPD分析[J]. 水生生物学报, 2008, 32(2): 213-219.

[89]    颜金鹏, 刘少军, 刘筠. 异源四倍体鲫鲤雌核发育后代及其亲本RAPD分析[J]. 水生生物学报, 2007, 31(6): 905-908.

[90]    赵俊, 董成稳, 庆宁等. 复合四倍体彭泽鲫雌核发育生殖方式的胚胎同工酶证据[J]. 华南师范大学学报(自然科学版), 2007, 2: 98-113.

[91]    邹桂伟, 郑蓓蓓, 罗相忠等. 酯酶和乳酸脱氢酶在人工雌核发育鲢近交F1不同组织中的表达[J]. 淡水渔业, 2006, 36(6): 12-15.

[92]    张玲, 周新文, 谢锦云等. 金鱼雌核发育单倍体发育过程中的比较蛋白质组学研究[J]. 中国生物工程杂志, 2008, 28(8): 78-83.

[93]    杨彦豪, 孙效文, 雷清泉. 精子膜蛋白在异精雌核发育银鲫中的作用[J]. 上海水产大学学报, 2006, 15(4): 488-492.

NOTES

*资助项目:红河学院大学生创新项目。

#通讯作者。

期刊菜单