Journal of Organic Chemistry Research
Vol.04 No.04(2016), Article ID:19131,7 pages
10.12677/JOCR.2016.44013

Study on the Condensation Reaction of Hydrazide with Benzylideneacetophenone Catalyzed by Phosphotungstic Acid

Yang Wu, Xuejian Xing, Liuzhuang Xing, Yadong Hou, Jinghui Yang, Yonghai Hui*

College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi Xinjiang

Email: *hyhai97@126.com

Received: Nov. 1st, 2016; accepted: Nov. 28th, 2016; published: Dec. 2nd, 2016

Copyright © 2016 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

The condensation of hydrazide with benzylideneacetophenone was studied by using phosphotungstic acid as catalyst. After a series of reaction conditions, the optimal reaction conditions were established, and the universality of the substrate was investigated. A series of acylhydrazones were obtained with the high yields, up to 99%. The reaction was simple and mild, which provided a new method for the synthesis of chalcone hydrazone.

Keywords:Heteropoly Acid, Condensation Reaction, Acylhydrazone

磷钨酸促进的酰肼与查尔酮缩合反应的研究

吴阳,邢雪建,邢刘桩,侯亚东,杨敬辉,惠永海*

新疆大学化学化工学院,新疆 乌鲁木齐

Email: *hyhai97@126.com

收稿日期:2016年11月1日;录用日期:2016年11月28日;发布日期:2016年12月2日

摘 要

本文以杂多酸–磷钨酸为催化剂,对酰肼与查尔酮的缩合反应进行了研究。经过一系列反应条件的筛选,确立了最佳反应条件,并对底物的普适性进行了考察,得到了一系列高产率的酰腙类目标产物,最高产率达到99%。本反应操作简单,条件温和,为查尔酮酰腙合成提供了一种新的方法。

关键词 :杂多酸,缩合反应,酰腙

1. 引言

酰腙是一类含有−CONHN = CH−基团的人工合成的化合物,通过酰肼与醛或酮缩合反应制得。因其分子结构中含有亚胺基(−CH = N−)故又属于席夫碱。在生物活性体系中体现出突出的抗菌、抗真菌、抗癌、脲酶抑制、抗氧化和抗糖化等良好的生理活性 [1] - [7] 。另外,酰腙类化合物与过渡金属、稀土金属等有着很强的配位能力,可以衍生出很多具有较高生物活性的金属配合物 [8] [9] [10] 。所以,在农药、医药、催化、分析和材料等方面有着广泛应用 [11] [12] [13] [14] [15] ,多年来一直备受人们的广泛关注。也引起了很多化学和生物学工作者们的极大兴趣,成为越来越活跃的研究领域之一。

本文以苯甲酰肼和查尔酮为原料,通过条件筛选得到最佳反应条件。在最佳条件下,合成了一系列收率较好的查尔酮苯甲酰腙衍生物。为合成酰腙的衍生物寻找一种简单的合成方法。

2. 实验部分

2.1. 试剂与仪器

薄层层析硅胶用GF254硅胶和300-400目柱层析硅胶(青岛海洋化工厂)。常见的显色方式有:ZF-2型三用紫外仪,碘缸,酸性溶液,茚三酮等,熔点是由X-4数字显示显微熔点仪测定。元素分析用EA-1110元素分析仪测定。核磁共振是有VARIAN INOVA-400型核磁共振波谱仪测定,核磁氢谱的内标为TMS (δ = 0.00),核磁碳谱的内标为CDCl3 (δ = 77.00)。常用试剂:石油醚、乙酸乙酯、甲醇、无水乙醇和二氯甲烷等分析纯试剂是由市售购买而来,未经处理直接使用。苯甲醛、苯乙酮、取代芳香醛、取代芳香酮和芳香胺等是购买于阿拉丁化学厂家,其中对有些不纯的底物在做反应时经过了纯化。

2.2. α,β-不饱和酮的合成

α,β-不饱和酮的合成参照文献 [16] 。

2.3. 目标化合物4a~4q的合成及结构分析

化合物4a~4q的合成反应如图1所示。以化合物4a为例,向反应管中依次加入查尔酮0.0208 g (0.10 mmol),

Figure 1. Synthesis of hydrazone derivatives of 1,3-diphenylallylidene)benzohydrazide (4a-4p)

图1. 查尔酮苯甲酰腙衍生物(4a~4p)的合成

苯甲酰肼0.0204 g (0.15 mmol),磷钨酸0.0042 g (0.15 mmol%),0.5 mL甲醇,在室温反应24 h,TLC跟踪反应情况,反应完毕后减压浓缩,得粗产物,经柱层析分离纯化,得到白色固体(洗脱液为V1(石油醚):V2(乙酸乙酯) = 1:30,1:20,1:10,1:5)。目标化合物的表征如下:

4a: (Z)-Nˊ-((E)-1,3-diphenylallylidene) benzohydrazide, White solid; 96% yield; m.p. 154~157˚C; 1H NMR (400 MHz, CDCl3): δ 8.98 (s, 1H), 7.66~7.27 (m, 15H), 6.42 (d, J = 16.4 Hz, 1 H). Anal. Calcd. (%) for C22H18N2O:C, 80.96; H, 5.56; N, 8.59. Found (%): C, 81.07; H, 5.52; N, 8.49.

4b: (Z)-Nˊ-((E)-1-(4-chlorophenyl)-3-phenylallylidene)benzohydrazide, Yellow solid; 92% yield; m.p. 161-163˚C; 1H NMR (400 MHz, CDCl3):δ 8.89(s, 1 H), 7.58~7.26 (m, 14 H), 6.38 (d, J = 16.4 Hz, 1 H). Anal. Calcd. (%) for C22H17ClN2O:C, 73.23; H, 4.75; N, 7.76. Found (%): C, 73.44; H, 4.71; N, 7.69.

4c: (Z)-Nˊ-((E)-1-(4-bromophenyl)-3-phenylallylidene) benzohydrazide, White solid; 94% yield; m.p. 173-175˚C; 1H NMR (400 MHz, CDCl3):δ 8.89 (s, 1 H), 7.87~7.19 (m, 14 H), 6.37 (d, 1 H, J = 16.8 Hz). Anal. Calcd. (%) for C22H17BrN2O: C, 65.20; H, 4.23; N, 6.91. Found (%): C, 65.37; H, 4.19; N, 6.84.

4d: (Z)-Nˊ-((E)-3-phenyl-1-(p-tolyl) allylidene) benzohydrazide, Yellow oil; 83% yield; 1H NMR (400 MHz, CDCl3): δ 9.03 (s, 1 H), 7.56 (d, J = 7.2 Hz, 1 H), 7.48~7.38 (m, 10 H ), 7.34~7.27 (m, 2 H), 6.44 (d, J = 16.2 Hz, 1H), 2.49 (s, 3 H). 13C NMR (100 MHz, CDCl3) δ: 163.16, 156.79, 140.25, 138.26, 136.13, 133.21, 131.99, 130.59, 129.16, 129.06, 128.95, 128.79, 128.67, 128.41, 128.10, 127.52, 1227.12, 21.52. Anal. Calcd. (%) for C23H20N2O: C, 81.15; H, 5.92; N, 8.23. Found (%): C, 81.29; H, 5.83; N, 8.11.

4e: (Z)-Nˊ-((E)-1-(4-methoxyphenyl)-3-phenylallylidene) benzohydrazide, Yellow oil; 90% yield; 1H NMR (400 MHz, CDCl3): δ 9.07 (s, 1 H), 7.59-7.57 (m, 2 H), 7.52-7.25 (m, 10 H), 7.15-7.13 (m, 2 H), 6.46 (d, J = 16.4 Hz, 1 H), 3.90 (s, 3 H). Anal. Calcd. (%) for C23H20N2O2: C, 77.51; H, 5.66; N, 7.86. Found (%): C, 77.75; H, 5.57; N, 7.73.

4f: (Z)-Nˊ-((E)-1-(3-chlorophenyl)-3-phenylallylidene) benzohydrazide, White solid; 75% yield; m.p. 122-124˚C; 1H NMR (400 MHz, CDCl3): δ 8.88 (s, 1 H), 7.99~7.83 (m, 2 H), 7.74~7. 57 (m, 3 H), 7.53~7.26 (m, 8 H), 7.28~7.26 (m, 1 H), 6.40 (d, J = 16 Hz, 1 H). Anal. Calcd. (%) for C22H17ClN2O: C, 73.23; H, 4.75; N, 7.76. Found (%): C, 73.38; H, 4.74; N, 7.71.

4g: (Z)-Nˊ-((E)-3-phenyl-1-(m-tolyl)allylidene) benzohydrazide, Yellow oil; 67% yield; 1H NMR (400 MHz, CDCl3): δ 9.01 (s, 1 H), 7.59 (d, J = 7.2 Hz, 1 H), 7.42-7.38 (m, 10 H ), 7.30~7.24 (m, 2 H), 6.42 (d, J = 16.6 Hz, 1 H), 2.42 (s, 3 H). Anal. Calcd. (%) for C23H20N2O: C, 81.15; H, 5.92; N, 8.23. Found(%): C, 81.26; H, 5.85; N, 8.17.

4h: (Z)-Nˊ-((E)-3-(4-fluorophenyl)-1-phenylallylidene) benzohydrazide, White solid; 85% yield; m.p. 114~116˚C; 1H NMR (400 MHz, CDCl3): δ 8.98 (s, 1 H), 7.98~7.88 (m, 1 H), 7.74~7.27 (m, 9 H), 7.12~6.99 (m, 2 H), 6.38 (d, J = 16.4 Hz, 1 H), 2.42 (s, 3 H). Anal. Calcd.(%) for C22H17FN2O: C, 76.73; H, 4.98; N, 8.13. Found (%):C, 76.88; H, 4.74; N, 8.21.

4i: (Z)-Nˊ-((E)-3-(4-chlorophenyl)-1-phenylallylidene)benzohydrazide A White solid; 87% yield; m.p. 118~121˚C; 1H NMR (400 MHz, CDCl3): δ 8.99 (s, 1 H), 8.01~7.94 (m, 1 H), 7.74~7.58 (m, 2 H), 7.53~7.52 (m, 9 H), 6.37 (d, J = 16.4 Hz, 1 H). Anal. Calcd.(%) for C22H17ClN2O: C, 73.23; H, 4.75; N, 7.76. Found(%): C, 73.41; H, 4.66; N, 7.62.

4j: (Z)-Nˊ-((E)-3-(4-bromophenyl)-1-phenylallylidene) benzohydrazide, Yellow solid; 65% yield; m.p. 112~114˚C; 1H NMR (400 MHz, CDCl3): δ 8.99 (s, 1 H), 7.65-7.62 (m, 3 H), 7.55~7.53 (m, 2 H), 7.50~7.44 (m, 3 H), 7.39-7.33 (m, 4 H), 7.27~7.25 (m, 2 H), 6.35 (d, J = 16.8 Hz, 1 H). Anal. Calcd. (%) for C22H17BrN2O: C, 65.20; H, 4.23; N, 6.91. Found (%): C, 65.34; H, 4.12; N, 6.88.

4k: (Z)-Nˊ-((E)-3-(4-methoxyphenyl)-1-phenylallylidene) benzohydrazide, Yellow solid; 88% yield; m.p. 106~109˚C; 1H NMR (400 MHz, CDCl3): δ 8.94 (s, 1 H), 7.65~7.46 (m, 6 H), 7.38~7.27 (m, 6 H), 6.86 (d, J = 8.8 Hz, 2 H), 6.37 (d, J = 16 Hz, 1 H), 3.86 (s, 3H). Anal. Calcd. (%) for C23H20N2O2: C, 77.51; H, 5.66; N, 7.86. Found (%): C, 77.68; H, 5.59; N, 7.78.

4l: (E)-Nˊ-((E)-4-(4-methoxyphenyl)but-3-en-2-ylidene)benzohydrazide, White solid; 92% yield; m.p. 202~204˚C; 1H NMR (400 MHz, CDCl3) δ: 9.01 (s, 1 H), 7.85 (s, 2 H), 7.55-7.36 (m, 5 H), 7.16-7.01 (m, 2 H), 6.99~6.88 (m, 2 H), 3.84 (s, 3 H), 2.18 (s, 3 H). 13C NMR (100 MHz, CDCl3) δ: 165.21, 161.20, 153.58, 134.42, 133.04, 129.90, 127.87, 128.49, 127.53, 126.76, 114.47, 55.36, 29.34. MS (ESI m/z) 317.1 [(M + Na+, 100%)]. Anal. Calcd. (%) for C18H18N2O2: C, 73.45; H, 6.16; N, 9.52. Found (%): C, 73.52; H, 6.09; N, 9.39.

4m: (Z)-4-chloro-Nˊ-((E)-1,3-diphenylallylidene)benzohydrazide, Yellow solid; 99% yield; m.p. 175~176˚C; 1H NMR (400 MHz, CDCl3) δ: 8.91 (s, 1 H), 8.02 (s, 1 H), 7.65~7.60 (m, 3 H), 7.46-7.39 (m, 5 H), 9.34~7.26 (m, 5 H), 7.23 (s, 1 H), 7.43 (d, J = 16 Hz, 1 H). Anal. Calcd. (%) for C22H17ClN2O: C, 73.23; H, 4.75; N, 7.76. Found (%): C, 73.36; H, 4.68; N, 7.65.

4n: (Z)-4-bromo-Nˊ-((E)-1,3-diphenylallylidene) benzohydrazide, Yellow solid; 98% yield; m.p. 124~126˚C; 1H NMR (400 MHz, CDCl3) δ: 8.91 (s, 1 H), 8.02 (s, 1 H), 7.71~7.55 (m, 3 H), 7.53~7.50 (m, 2 H), 7.44~7.27 (m, 8 H), 6.43 (d, J = 16.4 Hz, 1 H). Anal. Calcd. (%) for C22H17BrN2O: C, 65.20; H, 4.23; N, 6.91. Found (%): C, 65.33; H, 4.18; N, 6.82.

4o: (Z)-Nˊ-((E)-1,3-diphenylallylidene)-4-methoxybenzohydrazide, Yellow solid; 78% yield; m.p. 204~207˚C; 1H NMR (400 MHz, CDCl3) δ: 8.92 (s, 1 H), 7.66-7.57 (m, 3 H), 7.52-7.49 (m, 2 H), 7.44-7.39 (m, 3 H), 7.35~7.27 (m, 4 H), 6.86 (d, J = 6 Hz, 2 H), 6.40 (d, J = 16.4 Hz, 1 H). Anal. Calcd. (%) for C23H20N2O2: C, 77.51; H, 5.66; N, 7.86. Found (%): C, 77.61; H, 5.53; N, 7.69.

4p: (Z)-2-chloro-Nˊ-((E)-1,3-diphenylallylidene) benzohydrazide, White solid; 86% yield; m.p. 163~165˚C; 1H NMR (400 MHz, CDCl3) δ: 9.26 (s, 1 H), 7.87~7.84 (m, 1 H), 7.60~7.52 (m, 4 H), 7.47~7.36 (m, 3 H), 7.32-7.29 (m, 6 H), 6.91 (d, J = 16.4 Hz, 1 H). Anal. Calcd.(%) for C22H17ClN2O: C, 73.23; H, 4.75; N, 7.76. Found(%): C, 73.41; H, 4.57; N, 7.59.

4q: (Z)-Nˊ-((E)-1,3-diphenylallylidene)-2-methylbenzohydrazide, Yellow oil; 85% yield; 1H NMR (400 MHz, CDCl3) δ:8.57 (s, 1 H), 7.60~7.51 (m, 3 H), 7.46~7.24 (m, 9 H), 7.21~7.13 (m, 2 H), 6.40 (d, J = 16.4 Hz, 1 H). Anal. Calcd. (%) for C23H20N2O: C, 81.15; H, 5.92; N, 8.23. Found (%): C, 81.31; H, 5.79; N, 8.12.

3. 结果与讨论

3.1. 最优反应条件的筛选

以查尔酮与苯甲酰肼反应为标准反应,分别进行了催化剂种类和用量、反应溶剂种类和用量、底物配比和反应时间等条件进行了优化,结果见表1

表1中可以看出,在没有加入催化剂时,反应不发生(表1,Entry 1);用杂多酸磷钨酸和磷钼酸分别催化时,磷钨酸表现出了较好的产率(表1,Entry 2);当用MCM-41固载的磷钨酸(磷钼酸)催化反应时,产率有所降低,所以我们选定磷钨酸作为催化剂。然后进行了催化剂的量筛选,实验结果表明磷钨酸量为0.15 mmol%产率最高。在对反应溶剂筛选时,发现甲醇作为溶剂,反应产率最高,89%。为了得到更高的产率,随后考察了其它溶剂对产率的影响。结果表明其它溶剂没有醇类溶剂的效果好,而在醇类溶剂中,反应产率依然在甲醇中得到最高。确定上述反应条件后,我们对底物比例进行了考察,分别对底物查尔酮:苯甲

Table 1. Optimization of reaction conditionsa

表1. 反应条件的优化a

a反应条件:查尔酮0.1 mmol,酰肼0.15 mmol催化剂量为0.15 mmol%在0.5 mL甲醇中室温反应24 h。b柱层析产率。cN.R = No Reaction。

酰肼为1:1,1:1.2,1:1.5,1:2等比例下进行了筛选,结果见表1的Entries 14-17。从表中可以看到,随着酰肼量的增加,产率有所上升,在1:1.5时,达到96%的产率,当继续增加酰肼的量(比例为1:2)时,产率有所下降,所以最有底物比例为1:1.5。实验在常温条件下进行,这属于理想反应条件范畴。最后对反应时间进行了考察,结果列于表1的Entries 17-20。反应中,当反应时间延长到24 h时,反应产率得到最高值96%,继续延长反应时间,产率处于下降趋势。通过对实验条件的筛选,最佳反应条件为:室温下以0.15 mmol%的磷钨酸为催化剂,0.5 mL甲醇为溶剂,底物配比(查尔酮:苯甲酰肼)为1:1.5,反应24 h。

3.2. 底物结构对反应的影响

在最佳反应条件下,对底物进行了普适性的研究,结果详见表1

表2中,可以看到R2上的取代基无论是吸电子基团还是供电子基团,都能够很好地得到相应的目

Table 2. Substrate scopea

表2. 底物结构的拓展a

a反应条件:查尔酮0.1 mmol,酰肼0.15 mmol催化剂量为0.004 g在0.5 mL甲醇中室温反应24 h。b柱层析产率。

标产物;当同种取代基苯环上的位置不同时,其产率也有很大的变化,而且对位取代的产率要高于间位取代,如R2,氯取代对位时的产率要高于其间位取代(Entries 2, 6),对甲基比间甲基的产率高(Entries 4, 7)。对于R1苯环上的取代基,除了Br取代产率较低外,其它产率都能达到85%以上。在酰肼R3取代基的改变中,从表中可以看出,对位和邻位取代的酰肼都获得了较高的产率。

4. 结论

本文研究了查尔酮和酰肼的缩合反应。通过优化实验,最终得出了最优反应条件:0.004 g磷钨酸为催化剂、底物配比为1:1.5(查尔酮:酰肼),甲醇为溶剂,室温下反应24 h。在该反应条件下,获得了一系列高产率的酰腙类目标产物,最高产率达到99%。本反应具有反应条件温和,催化剂廉价易得等优点。

基金项目

国家自然科学基金(Nos. 21161026, 21362036)。

文章引用

吴 阳,邢雪建,邢刘桩,侯亚东,杨敬辉,惠永海. 磷钨酸促进的酰肼与查尔酮缩合反应的研究
Study on the Condensation Reaction of Hydrazide with Benzylideneacetophenone Catalyzed by Phosphotungstic Acid[J]. 有机化学研究, 2016, 04(04): 93-99. http://dx.doi.org/10.12677/JOCR.2016.44013

参考文献 (References)

  1. 1. Rollas, S. and Küçükgüzel, S.G. (2007) Biological Activities of Hydrazone Derivatives. Molecules, 12, 1910-1939. https://doi.org/10.3390/12081910

  2. 2. Vicini, P., Zani, F., Cozzini, P. and Doytchinova, I. (2002) Hydrazones of 1, 2-Benzisothiazole Hydrazides: Synthesis, Antimicrobial Activity and QSAR Investigations. European Journal of Medicinal Chemistry, 37, 553-564. https://doi.org/10.1016/S0223-5234(02)01378-8

  3. 3. Jayabharathi, J., Thangamani, A., Padmavathy, M. and Krishnakumar, B. (2007) Synthesis and Microbial Evaluation of Novel n (1)-arilidene-n (2)-t (3)-methyl-r(2), c (6)-diaryl-piperidin-4-one Azine Derivatives. Medicinal Chemistry Research, 15, 431-442. https://doi.org/10.1007/s00044-006-0014-0

  4. 4. Ragavendran, J.V., Sriram, D., Patel, S.K., Reddy, I.V., Bharathwajan, N. and Stables, J. (2007) Design and Synthesis of Anticonvulsants from a Combined Phthalimide-Gaba-Anilide and Hydrazone Pharmacophore. European Journal of Medicinal Chemistry, 42, 146-151. https://doi.org/10.1016/j.ejmech.2006.08.010

  5. 5. El-Hawash, S.A.M., Wahab, A.E.A. and El-Demellawy, M.A. (2006) Cyanoacetic Acid Hydrazones of 3-(and 4-)acetylpyridine and Some Derived Ring Systems as Potential Antitumor and Anti-HCV Agents. Archiv Der Pharmazie, 339, 14-23. https://doi.org/10.1002/ardp.200500161

  6. 6. Todeschini, A.R., Miranda, A.L.P.D., Silva, K.C.M.D., Parrini, S.C. and Barreiro, E.J. (1998) Synthesis and Evaluation of Analgesic, Antiinflammatory and Antiplatelet Properties of New 2-Pyridylarylhydrazone Derivatives. European Journal of Medicinal Chemistry, 33, 189-199. https://doi.org/10.1016/S0223-5234(98)80008-1

  7. 7. Nath, M., Vats, M. and Roy, P. (2013) Tri- and Diorganotin(iv) Complexes of Biologically Important Orotic Acid: Synthesis, Spectroscopic Studies, In Vitro Anti-Cancer, DNA Fragmentation, Enzyme Assays and In Vivo Anti-Inflammatory Activities. European Journal of Medicinal Chemistry, 59, 310-321. https://doi.org/10.1016/j.ejmech.2012.11.023

  8. 8. Despaigne, A.A.R., Costa, F.B.D., Piro, O.E., Castellano, E.E., Louro, S.R.W. and Beraldo, H. (2012) Complexation of 2-Acetylpyridine- and 2-Benzoylpyridine-Derived Hydrazones to Copper (ii) as an Effective Strategy for Antimicrobial Activity Improvement. Polyhedron, 38, 285-290. https://doi.org/10.1016/j.poly.2012.03.017

  9. 9. Xu, Z.H., Zhang, X.W., Zhang, W.Q., Gao, Y.H. and Zeng, Z.Z. (2011) Synthesis, Characterization, DNA Interaction and Antibacterial Activities of Two Tetranuclear Cobalt (ii) and Nickel (ii) Complexes with Salicylaldehyde 2-Phenylquinoline-4-Carboylhydrazone. Inorganic Chemistry Communications, 14, 1569-1573. https://doi.org/10.1016/j.inoche.2011.06.005

  10. 10. El-Sayed, L., Iskander, M.F., Hawash, N.M. and Massoud, S.S. (1998) Synthesis and Characterization of Nickel(ii), Zinc(ii), Copper(ii), Cobalt(ii) and Cobalt(iii) complexes of α-Dicarbonylbis(aroylhydrazone). Polyhedron, 17, 199-206. https://doi.org/10.1016/S0277-5387(97)00191-5

  11. 11. Lal, R.A., Adhikari, S., Pal, A., Siva, A.N. and Ku-mar, A. (1997) Synthesis and Characterization of the Homobimetallic [bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazonato]bis(dioxomolybdenum(vi)) Tetrahydrate Complex and Its Reactivity towards Proton and Electron Donor Reagents. Journal of Chemical Research, 4, 122-123. https://doi.org/10.1039/a506810j

  12. 12. Aboraia, A.S., Yee, S.W., Gomaa, M.S., Shah, N., Robotham, A.C. and Makowski, B. (2010) Synthesis and CYP24AL Inhibitory Activity of N-(2-(1H-imidazol-1-yl)-2-phenylethyl)arylamides. Bioorganic & Medicinal Chemistry, 18, 4939-4946. https://doi.org/10.1016/j.bmc.2010.06.011

  13. 13. Fatmawati, S., Kondo, R. and Shimizu, K. (2013) Structure-Activity Relationships of Lanostane-Type Triterpenoids from Ganoderma Lingzhi, as α-Glucosidase Inhibitors. Bioorganic & Medicinal Chemistry Letters, 23, 5900-5903. https://doi.org/10.1016/j.bmcl.2013.08.084

  14. 14. Ma, J., Shi, W., Feng, L., Chen, Y., Fan, K. and Hao, Y. (2016) A Highly Selective and Sensitive Acylhydrazone- Based Turn-On optical Sensor for Al3+. RSC Advances, 6, 28034-28037. https://doi.org/10.1039/C6RA01589A

  15. 15. Hu, J.H., Li, J.B., Qi, J. and Sun, Y. (2015) Acylhydrazone Based Fluorescent Chemosensor for Zinc in Aqueous Solution with High Selectivity and Sensitivity. Sensors & Actuators B Chemical, 208, 581-587. https://doi.org/10.1016/j.snb.2014.11.066

  16. 16. 李在国, 王清民, 黄君珉. 有机中间体制备[M]. 第二版. 北京: 化学工业出版社, 1996: 51.

期刊菜单