Material Sciences
Vol.08 No.04(2018), Article ID:24645,6 pages
10.12677/MS.2018.84044

Study of Polarization Fatigue Rates on Bi3.5Nd0.5Ti3O12 Ferroelectric Thin Films

Qingfeng Zeng1, Mingfu Wang2, Chuanpin Cheng3, Yonghe Deng3*

1School of Physics, Guizhou University, Guiyang Guizhou

2Shenzhen Novsin Technology Co., Ltd., Shenzhen Guangdong

3College of Science, Hunan Institute of Engineering, Xiangtan Hunan

Received: Mar. 29th, 2018; accepted: Apr. 21st, 2018; published: Apr. 28th, 2018

ABSTRACT

Using Sol-Gel method, Bi3.5Nd0.5Ti3O12 (BNT) ferroelectric thin films was deposited on Pt(111)/Ti/ SiO2/Si(100). The ferroelectric measurements (P-E), fatigue behaviors and leakage current density (J-V) were carried out with a radiant technology precision ferroelectric workstation test system. It is found that more number of cycles, lower frequency and high amplitude of the driving electric field correspond to higher fatigue rates.

Keywords:Bi3.5Nd0.5Ti3O12, Ferroelectric Thin Films, Driving Electric Field, Polarization Fatigue

Bi3.5Nd0.5Ti3O12铁电薄膜的极化疲劳研究

曾庆丰1,王明福2,成传品3,邓永和3*

1贵州大学物理学院,贵州 贵阳

2深圳新则兴科技有限公司,广东 深圳

3湖南工程学院理学院,湖南 湘潭

收稿日期:2018年3月29日;录用日期:2018年4月21日;发布日期:2018年4月28日

摘 要

采用溶胶–凝胶法在Pt(111)/Ti/SiO2/Si(100)基底上沉积了Bi3.5Nd0.5Ti3O12(BNT)铁电薄膜。采用铁电分析仪测试铁电极化(P-E)特性、疲劳特性以及漏电流(J-V)特性。结果表明:极化翻转次数越多,驱动电场的频率越低,驱动电场的幅度越大,Bi3.5Nd0.5Ti3O12铁电薄膜的极化疲劳行为越显著。

关键词 :BNT,铁电薄膜,驱动电场,极化疲劳

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

因为铁电薄膜广泛的应用前景,广泛应用在铁电随机存储器(FeRAMs),振动器,传感器以及可调频的微波器件等方面 [1] 。在铋层状钙钛矿结构复合铁电薄膜材料中,V掺杂的BNT薄膜(BNTV)与BNT薄膜相比而言具有更大的剩余极化值,更低的漏电流密度以及更好的铁电极化抗疲劳性能 [2] [3] ,因为它具有很大的剩余极化值和优良的抗疲劳性能,Nd掺杂的Bi4Ti3O12 (简记为BNT)薄膜具有铋层状钙钛矿结构。经过很多次的极化翻转以后,剩余极化的数值将会逐渐降低,直至不再具有剩余极化值,也就是产生了所谓的铁电极化疲劳现象 [4] 。Sun等 [5] 发现V掺杂的SrBi4Ti4O15薄膜相较于纯相SrBi4Ti4O15薄膜表现出更好的抗疲劳特性,Sim等 [6] 报道了BNT/PZT层状结构的薄膜与单层的PZT薄膜相比,其抗疲劳特性也有明显的提高。为了弄清楚铁电薄膜中疲劳现象的演化过程,已经提出了多种关于疲劳机理的理论,如微裂缝导致的理论 [7] ,畴壁钉扎理论 [8] ,不可切换导致理论 [9] ,等等。本文详细研究了外加电场的幅度,频率,以及波形对Bi3.5Nd0.5Ti3O12铁电薄膜的极化疲劳行为所产生的影响。

2. Bi3.5Nd0.5Ti3O12铁电薄膜的制备

采用溶胶–凝胶法在Pt(111)/Ti/SiO2/Si(100)基底上沉积了Bi3.5Nd0.5Ti3O12薄膜,将薄膜置于快速热处理炉中,在750℃温度下持续600秒退火,得到晶态的Bi3.5Nd0.5Ti3O12薄膜样品。

采用θ-2θ扫描方法扫描的Bi3.5Nd0.5Ti3O12铁电薄膜的X射线衍射图样见图1。可以看到,

Figure 1. X Ray diffraction (XRD) pattern of Bi3.5Nd0.5Ti3O12 Ferroelectric Thin Films

图1. Bi3.5Nd0.5Ti3O12铁电薄膜的X射线衍射图样

Bi3.5Nd0.5Ti3O12铁电薄膜具有典型的铋层状钙钛矿结构铁电体的多晶态结构。除了铋层状钙钛矿结构的(00L)方向的衍射峰外,还有(111)、(117)、(1115)以及(137)方向的衍射峰。图示表明Bi3.5Nd0.5Ti3O12铁电薄膜通过在750℃高温下退火以后具有良好的结晶度。

3. Bi3.5Nd0.5Ti3O12铁电薄膜的性能

3.1. 电场强度、频率及极化翻转次数对薄膜剩余极化值的影响

Bi3.5Nd0.5Ti3O12铁电薄膜电滞回线(P-E关系曲线)见图2图2(a)给出了分别在250 kV/cm、400 kV/cm和500 kV/cm的电场强度下测得的BNT铁电薄膜电滞回线。其中在外加500 kV/cm的电场条件下测得的剩余极化(2Pr)值约为22 μC/cm2。这个值相比较文献 [10] 中报道的BNTV薄膜的剩余极化值是比较小。造成这个实验结果有多种因素,主要为BNT薄膜的高度c轴取向和薄膜的制备工艺等因素。

外加电场频率在100 Hz到10 kHz之间变化时,BNT铁电薄膜电滞回线与外加电场频率之间的关系见图2(b)。可以看到BNT铁电薄膜电滞回线的形状是受到外加电场的频率变化影响的,剩余极化值随着外加电场频率的增加而减小,与Wang等人 [11] 研究的结果一致,主要原因是在薄膜内部的直流电场导致畴壁界面处不参与畴壁极化翻转的部分不断增厚,存在一个动态积累的过程,导致剩余极化值一直在减小。

不同极化翻转次数以后BNT铁电薄膜的电滞回线见图2(c),起始电滞回线的形状非常饱满,具有很高的剩余极化值。随着极化翻转次数的增加,BNT铁电薄膜电滞回线的形状有缓慢的形变,不再饱满,剩余极化值也在逐渐的减少。

3.2. 电场强度和频率对薄膜极化疲劳损失的影响

极化疲劳损失是衡量薄膜极化过程重要的物理量,反映经过一定翻转次数后,极化强度是初始强度的比值。BNT铁电薄膜经过归一化后的剩余极化强度与外加电场频率之间的关系如图3所示。从图中得知外加电场的频率越低,经过相同的极化翻转次数以后,BNT铁电薄膜的极化疲劳损失就越高,要使BNT铁电薄膜的极化疲劳损失达到90%(与初始值相比),在外加电场的频率为10 kHz时,需要的极化翻转次数为1.4 × 108;而在外加电场的频率为100 Hz时,需要的极化翻转次数仅仅为1.0 × 104。研究结果与锆钛酸铅薄膜外加电场的频率并不影响锆钛酸铅薄膜的极化疲劳性能有明显的不同 [12] 。

为了使外加电场的频率对BNT铁电薄膜的极化疲劳的这种影响更加直观的被观察到,在图4中给出了BNT铁电薄膜的N/f值与疲劳特性参数(剩余极化值)之间的函数关系曲线,这里N是极化翻转次数,f为外加电场的频率,能清楚地显示出了外加电场的频率对BNT铁电薄膜的极化疲劳行为影响的一个普遍规律。图4中的实线(拟合线)满足以下经验公式:

P = P i n i exp [ ( N / f τ ) β ]

式中, P i n i 剩余极化的初始值, β 是一个常数,称为拉伸因子, τ 为时间参数。在我们的实验中,图4中的拟合线的 β 的值等于3, τ 的取值等于13.31秒。

3.3. 电场强度度和频率对薄膜极化疲劳损失的影响

锆钛酸铅铁电薄膜中外加电场的幅度对其极化疲劳行为的影响是反方向的 [13] ,也就是说低的驱动电压对应高的疲劳率。图5显示了BNT铁电薄膜的极化疲劳随着驱动电场强度的关系,从图中可以得到BNT铁电薄膜的极化疲劳随着驱动电场强度的增加而明显地增加。要达到95%的剩余极化疲劳损失,在外加400 kV/cm的电场时,需要的极化翻转次数为1.5 × 108,而在外加500 kV/cm的电场时,需要的

(a) (b) (c)

Figure 2. Ferroelectric hysteresis loop analysis of Bi3.5Nd0.5Ti3O12 ferroelectric thin films. (a) Ferroelectric hysteresis loop of difficult electric field intensity; (b) Ferroelectric hysteresis loop of difficult electric field frequency; (c) Ferroelectric hysteresis loop of difficult polarization reverse

图2. Bi3.5Nd0.5Ti3O12铁电薄膜电滞回线分析。(a) 不同电场强度大小极化下的电滞回线;(b) 不同电场频率极化下测得的电滞回线;(c) 不同的极化翻转次数的电滞回线

Figure 3. The relationship between electric field frequency and normalized residual polarization of Bi3.5Nd0.5Ti3O12 Ferroelectric Thin Films

图3. Bi3.5Nd0.5Ti3O12铁电薄膜归一化极化强度与外加电场频率之间的关系

Figure 4. The relationship between N/f and normalization residual electric polarization of Bi3.5Nd0.5Ti3O12 ferroelectric thin films

图4. Bi3.5Nd0.5Ti3O12铁电薄膜N/f值与剩余极化值之间的关系

Figure 5. The relationship between electric field intensity and normalization residual electric polarization of Bi3.5Nd0.5Ti3O12 ferroelectric thin films

图5. Bi3.5Nd0.5Ti3O12铁电薄膜极化强度与驱动电场强度的关系

极化翻转次数仅仅为1.5 × 105。这个结果与Mihara等人 [14] 报道的实验结果以及Yang等人 [15] 关于钙钛矿结构的铁电薄膜的疲劳的理论分析结果是一致的。

4. 结论

采用溶胶-凝胶法在Pt(111)/Ti/SiO2/Si(100)基底上沉积了Bi3.5Nd0.5Ti3O12铁电薄膜,研究了BNT薄膜的铁电性能,极化疲劳特性。结果表明极化翻转次数越多,驱动电场的频率越低,驱动电场的幅度越大,BNT铁电薄膜的疲劳行为越显著。

基金项目

湖南省自然科学基金(2015JJ5033, 2016JJ5028)和深圳新则兴科技有限公司企业合作项目资助的课题。

文章引用

曾庆丰,王明福,成传品,邓永和. Bi3.5Nd0.5Ti3O12铁电薄膜的极化疲劳研究
Study of Polarization Fatigue Rates on Bi3.5Nd0.5Ti3O12 Ferroelectric Thin Films[J]. 材料科学, 2018, 08(04): 395-400. https://doi.org/10.12677/MS.2018.84044

参考文献

  1. 1. Hu, Z.S., Zhong, X.L., Wang, J.B., Liao, M., Zheng, X.J. and Zhou, Y.C. (2009) Comparison of Ferroelectric Properties of Cosubstituted Bismuth Titanate Films between Bi3.15Nd0.85Ti2.97Mg0.03O12 and Bi3.15Nd0.85Ti2.95Mn0.05O12. Surface Review Letters, 16, 153-158.
    https://doi.org/10.1142/S0218625X09012421

  2. 2. Hayashi, T., Iizawa, N., Togawa, D., et al. (2004) Preparation and Properties of V-Doped (Bi, Nd)4Ti3O12 Ferroelectric Thin Films by Chemical Solution Deposition Method. Integrated Ferroelectrics, 62, 233-241.
    https://doi.org/10.1080/10584580490458216

  3. 3. Ye, Z., Tang, M.H., Zhou, Y.C., Zheng, X.J., Cheng, C.P., Hu, Z.S. and Hu, H.P. (2007) Electrical Properties of V-Doped Bi3.15Nd0.85Ti3O12 Thin Films with Different Contents. Ap-plied Physics Letters, 90, 082905.
    https://doi.org/10.1063/1.2709895

  4. 4. Liang, C.S., Wu, J.M. and Chang, M.C. (2002) Ferroelectric BaP-bO3/PbZr0.53Ti0.47/BaPbO3 Heterostructures. Applied Physics Letters, 81, 3624-3626.
    https://doi.org/10.1063/1.1520332

  5. 5. Sun, H., Zhu, J., Fang, H. and Chen, X.B. (2006) Large Remnant Polari-zation and Excellent Fatigue Property of Vanadium-Doped SrBi4Ti4O15 Thin Films. Journal of Applied Physics, 100, 074102.
    https://doi.org/10.1063/1.2355537

  6. 6. Sim, C.H., Zhou, Z.H., Gao, X.S., Soon, H.P. and Wang, J. (2008) Ferroelectric and Fatigue Behavior of Bilayered Thin Films. Journal of Applied Physics, 103, 034102.
    https://doi.org/10.1063/1.2838333

  7. 7. Arias, I., Serebrinsky, S. and Ortiz, M. (2006) A Phenomenological Co-hesive Model of Ferroelectric Fatigue. Acta Materilia, 54, 975-984.
    https://doi.org/10.1016/j.actamat.2005.10.035

  8. 8. Lee, J.K., Yi, J.Y. and Hong, K.S. (2004) Physical Mechanism for Orientation Dependence of Ferroelectric Fatigue in Pb(Zn1/3Nb2/3)O3-5%PbTiO3 Crystals. Journal of Applied Physics, 96, 7471.
    https://doi.org/10.1063/1.1812815

  9. 9. Stolichnov, I., Tagantsev, A., Setter, N., Cross, J.S. and Tsukada, M. (1999) Top-Interface-Controlled Switching and Fatigue Endurance of (Pb,La)(Zr,Ti)O3 Ferroelectric Capacitors. Applied Physics Letters, 74, 3552-3554.
    https://doi.org/10.1063/1.124158

  10. 10. Chon, U., Jang, H.M., Kim, M.G. and Chang, C.H. (2002) Large Perov-skites with Giant Spontaneous for Nonvolatile Memories. Physical Review Letters, 89, 087601.
    https://doi.org/10.1103/PhysRevLett.89.087601

  11. 11. Wong, C.K. and Shin, F.G. (2005) A Possible Mechanism of Anomalous Shift and Asymmetric Hysteresis Behavior of Ferroelectric Thin Films. Applied Physics Letters, 86, 042901.
    https://doi.org/10.1063/1.1853520

  12. 12. Grossmann, M., Bolten, D., Lohse, O., Boettger, U., Waser, R. and Tiedke, S. (2000) Reversible and Irreversible Processes in Donor-Doped Pb(Zr,Ti)O3. Applied Physics Letters, 77, 3830.
    https://doi.org/10.1063/1.1331353

  13. 13. Tagantsev, K., Stolichnov, I., Colla, E.L. and Setter, N. (2001) Polarization Fatigue in Ferroelectric Films: Basic Experimental Findings, Phenomenological Scenarios, and Microscopic Features. Journal of Applied Physics, 90, 1387.
    https://doi.org/10.1063/1.1381542

  14. 14. Mihara, T., Wantanabe, H. and Paz de Araujo, C. (1994) Polarization Fa-tigue Characteristics of Sol-Gel Ferroelectric Pb(Zr0.4Ti0.6)O3 Thin-Film Capacitors. Japanese Journal of Applied Physics, 133, 3996-4000.
    https://doi.org/10.1143/JJAP.33.3996

  15. 15. Yang, F., Tang, M.H., Zhou, Y.C., Liu, F., Ma, Y., Zheng, X.J., Tang, J.X., Xu, H.Y., Zhao, W.F. and Sun, Z.H. (2008) Fatigue Mechanism of the Ferroelectric Perovskite Thin Films. Applied Physics Letters, 92, 1400.
    https://doi.org/10.1063/1.2835459

  16. NOTES

    *通讯作者。

期刊菜单