Hans Journal of Biomedicine
Vol.05 No.02(2015), Article ID:15327,5 pages
10.12677/HJBM.2015.52003

A Clinical Study of Hearing Concurrent Genetic Screening in High-Risk Newborns

Zhang Zhang1, Yiheng Dai1, Zhenan Li2, Fengci Yu2, Ying Liu2

1Department of Newborn Medicine, Foshan Maternity and Child Health Care Hospital affiliated to Southern Medical University, Foshan Guangdong

2Department of Otolaryngology Head and Neck Surgery, Foshan Maternity and Child Health Care Hospital affiliated to Southern Medical University, Foshan Guangdong

Email: fsyy022@126.com

Received: May 4th, 2015; accepted: May 22nd, 2015; published: May 28th, 2015

Copyright © 2015 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

Objective: To investigate the mutation frequency and types of deafness susceptibility genes (GJB2, 12SrNA, SLC26A4) among high-risk neonates and to discuss the clinic signification of combining the original hearing screening with deafness susceptibility genes screening. Methods: 920 newborns with risk factors of hearing loss in the neonatology ward were chosen to collect films of heel blood for the study. Eight mutations of three genes (GJB2 35delG, 176-191del16, 235delC, 299-300delAT; SLC26A4 IVS7-2A > G, 2168 > G; MT 12SrRNA 1494C > T, 1555A > G) were detected by matrix assister laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Meanwhile, all these newborns received hearing screening. Auto-auditory brainstem response (AABR) was used for the first step screening and otoacoustic emission (OAE) combined with AABR was used for the second step screening. Audiology diagnosis would be applied for those who failed to pass the hearing screening when they were 3 months old. 938 healthy newborns in maternity ward as control group received same screening. Results: 35 infants with risk factors were deafness predisposing gene carriers. The overall carrier frequency of three genes was 3.8%, 34 were diagnosed as hearing loss (3.7%) and 15 were diagnosed as severe hearing loss (1.63%). 30 (85.7%) carriers of deafness predisposing gene passed the hearing screening. 21 infants were deafness predisposing gene carriers in control group. The overall carrier frequency of three genes was 2.23%, 4 were diagnosed as hearing loss (0.43%) and 1 was diagnosed as severe hearing loss (0.11%). 17 (68%) carriers of deafness predisposing gene passed the hearing screening. Overall carrier frequency of three genes and detection rate of hearing loss or severe hearing loss were significant between the two groups. Conclusion: There were significant differences in carrier frequency of deafness predisposing gene and detection rate of hearing loss or severe hearing loss between the two groups. To combine newborns hearing screening with deafness susceptibility genes screening is able to find the newborns who will pass the regular hearing screening but with high deafness risks and late-onset deafness susceptibility genes. As a result, it is of guiding significance to early intervention, regular follow-up and deafness preventing.

Keywords:Deafness, Gene Mutation, High Risk, Newborn

高危新生儿听力和聋病易感基因 联合筛查临床研究

张章1,戴怡蘅1,李振安2,余凤慈2,刘莹2

1南方医科大学附属佛山妇幼保健院新生儿科,广东 佛山

2南方医科大学附属佛山妇幼保健院耳鼻咽喉科,广东 佛山

Email: fsyy022@126.com

收稿日期:2015年5月4日;录用日期:2015年5月22日;发布日期:2015年5月28日

摘 要

目的:探讨在高危新生儿听力筛查基础上,联合聋病易感基因筛查的临床意义。方法:随机选择920例新生儿科住院具有听力损失高危因素的新生儿,于生后3~5天采集微量足跟血进行基因GJB2、SLC26A4及线粒体12SrRNA的聚合酶链扩增反应,通过基质辅助激光解吸附/电离飞行时间质谱方法检测GJB2基因35delG、176-191del16、235delC、299-300delAT;SLC26A4基因IVS7-2A > G、2168A > G;线粒体12SrRNA基因1494C > T、1555A > G等3个基因8个突变位点;听力筛查初筛采用自动判别听性脑干电位(auto-auditory brainstem response AABR),复筛采用诊断型耳声反射(otoacoustic emission OAE) + AABR,仍不通过者于3月龄行听力学诊断;选取同期产后区938例健康新生儿为对照组。结果:高危新生儿组检出35例聋病基因携带,3个基因突变的总体携带率3.80%;检出听力障碍34例(3.70%)、其中重度以上听力障碍15例(1.63%);30例(85.7%)聋病基因携带者通过了听力筛查。对照组检出21例聋病基因携带,3个基因突变的总体携带率2.23%;检出听力障碍4例(0.43%)、重度以上听力障碍1例(0.11%);17例(68.0%)聋病基因携带者通过了听力筛查。两组聋病基因突变的总携带率、听力障碍及重度以上听力障碍检出率以及携带聋病基因者听力筛查通过率之间差异有统计学意义。结论:高危新生儿听力障碍的发生率和聋病基因突变携带率均高于正常新生儿应重点关注;采用听力和聋病易感基因联合筛查能及时发现常规通过听力筛查但具有耳聋高危因素和迟发性聋病遗传因素的新生儿,对早期干预、定期随访、减少聋病发生具有指导意义。

关键词 :聋病,基因突变,高危,新生儿

1. 引言

新生儿中不同类型和程度的听力损失发生率为1‰~3‰,而高危新生儿听力障碍的发生率为2%~4%,甚至有报道高达5% [1] ,远高于正常新生儿。既往对听力损失高危因素已有普遍认识,但对导致高危新生儿迟发型听力损失的遗传性因素研究报导甚少,本研究采用听力和聋病易感基因联合筛查,了解高危新生儿聋病易感基因突变类型、携带频率,探讨听力联合筛查的临床意义。

2. 资料与方法

2.1. 一般资料

随机选择2012年5月~2014年2月在佛山市妇幼保健院新生儿重症监护室住院的920例新生儿为研究对象,孕周32~40周+3,体重1130~3840克,男511例(1022耳),女409例(818耳),男女比例1.25:1。纳入标准:符合《新生儿听力筛查技术规范》[2] 定义听力损失高危因素≥1条:NICU住院超过5天,合并新生儿窒息、早产儿呼吸窘迫综合征、高胆红素血症达到换血要求、机械通气超过48小时、出生体重低于1500克、巨细胞病毒、风疹病毒、疱疹病毒、梅毒或毒浆体原虫(弓形体)病等引起的宫内感染。选取同期产后区938例健康新生儿为对照组,孕周37~41周+4,体重2480~4150克,男497例(994耳),女441例(882耳),男女比例1.12:1,除外听力损失高危因素。

2.2. 方法

本研究获得医院医学伦理委员会批准,所有新生儿筛查前,家长被详细告知听力和聋病基因筛查相关知识,理解同意后签署知情同意书。

2.2.1. 听力筛查及诊断

新生儿生后3~5天听力初筛,采用自动判别听性脑干电位,不通过者于生后42天采用耳声发射+自动听性脑干电位复筛,仍不通过者于3月龄行听力学诊断。

2.2.2. 听力损失诊断及评估标准

根据世界卫生组织WHO (1997)标准[3] ,以0.5、l、2、4 kHz气导平均阈值对听力损失进行分级,以ABR波V反应阈作为高频听力损失的参考指标,轻度为31~50 dBnHL;中度为51~70 dBnHL;重度为7l~90 dBnHL;极重度为 ≥ 91 dBnHL。

2.2.3. 聋病易感基因筛查

两组新生儿均进行GJB2基因35delG、176-191del16、235delC、299-300delAT;SLC26A4基因IVS7-2A > G、2168A > G、线粒体12S rRNA基因1494C > T、1555A > G等3个基因8个突变位点筛查:采集生后3 d内新生儿足跟血约150 μl作为提取基因组DNA血样,通过PCR扩增,碱式磷酸酶处理扩增产物,基质辅助激光解吸附/电离飞行时间质谱技术(MALDI-TOP MS)进行质谱检测,SpectroREAD软件对测序结果比对分析,确定耳聋基因检测位点的基因型。

2.2.4. 统计学方法

采用SPSS13.0统计学软件进行数据分析,计数资料以频数及率进行描述,组间比较采用fisher确切概率法和x2检验,以P < 0.05为差异有统计学意义。

3. 结果

3.1. 听力筛查

高危组初筛133例(14.40%)未通过,复筛46例(5.0%)未通过;对照组初筛45例(4.79%)未通过,复筛11例(1.17%)未通过,进一步做听力学诊断,各类听力损失的检出率高危组与对照组比较差异有统计学意义(P < 0.001)。见表1

Table 1. Materials of hearing screening

表1. 听力筛查资料(例,%)

P < 0.001.

3.2. 聋病基因筛查

两组均进行GJB2基因35delG、176-191del16、235delC、299-300delAT;SLC26A4基因IVS7-2A > G、2168A > G;线粒体12S rRNA基因1494C > T、1555A > G等3个基因8个突变位点筛查,发现3个基因的6个突变位点变异携带,高危组3个基因总体携带率3.80%,对照组2.23%,高危组3个聋病易感基因致病突变的携带率与对照组比较差异有统计学意义(P < 0.05)。见表2

3.3. 听力和聋病易感基因联合筛查

高危组与对照组比较,聋病易感基因筛查未通过而听力筛查通过差异有统计学意义(P=0.038);两种筛查均不通过两组比较差异无统计学意义(P = 0.101)。见表3

4. 讨论

随着围产急救医学诊疗技术的快速发展,合并各类听力障碍高危因素的危重新生儿经过救治多能存活出院;在对这部分儿童出生时明显增高的听力损失检出率已引起广泛关注基础上,逐渐发现在常规的听力筛查模式存在不足和缺陷,即并不是所有的听力损失均会在出生后立即表现,并被及时筛查出来;出生时听力正常的药物性聋病基因携带者和迟发型聋患者可以“通过”目前常规开展的听力筛查,这些因素进一步增加了耳聋的发病率[4] 。迟发型听力减退患儿的发现率逐渐攀升现象使最初 “听力筛查通过”的结论及常规检测方法受到质疑[5] ,聋病易感基因的发现及检测使迟发性及遗传性听力障碍的病因诊断成为可能。从遗传学的角度能够解释50%以上的重度先天性聋[6] ,如果对所有新生儿进行迟发性听力损失相关易感基因进行检测,再加上对巨细胞病毒感染的检查,则具有迟发性听力损失的高危儿中,60%可在新生儿期做到症状前诊断[7] 。

流行病学的结果显示了线粒体12SrRNA、GJB2和SLC26A4基因为我国最常见的引起耳聋的突变基因,即易感基因[8] ,本研究结果显示高危新生儿聋病基因携带状况应引起重视。

(1) 聋病易感基因筛查对高危儿先天性聋病的遗传学病因探索意义重大

GJB2基因是导致遗传性非综合征耳聋最常见的基因,其主要突变235delC在我国常见的耳聋致病性突变中有报道达78.79% [9] ,本研究中高危组235delC突变27例占总检出携带聋病易感基因病例的77.14% (27/35),居3个基因携带发生首位,与国内报道相同;发现235del C杂合突变的携带率2.1%与国内报道相近[4] ;235del C与299-300delAT双重杂合突变时亦导致耳聋发生[10] ,本组发现1例应引起关注。

线粒体12SrRNA基因(A1555G与C1494T位点)突变导致的耳聋主要与氨基糖甙类药物所致的药物中毒性聋有关,这些突变可能导致非综合征型耳聋或线粒体相关的突发性耳聋[11] ,几乎携带此突变的个体在应用不同剂量的氨基糖甙类抗生素后均可发生严重或较严重的听力损失[12] 。本研究发现高危组A 1555 G致病突变的携带率共0.43% (4/920),明显高于对照组0.21% (2/938)的携带率,后者与国内有研究发现正常新生儿A 1555G致病突变携带率0.23%的报导近似[4] ,非常值得注意的是高危组中2例为1555A > G均质突变,与另2例非均质突变携带者均通过了听力筛查,如接触该类药物将产生不可逆的耳聋。提示通

Table 2. Situation of deafness susceptibility genes carriers between high risk group and control group

表2. 高危组和对照组聋病易感基因携带情况(例,%)

*1例299-300delAT与235delC双重杂合突变。

Table 3. Results of hearing screening and deafness susceptibility genes screening

表3. 听力和聋病易感基因联合筛查结果(例,%)

过筛查及时发现药物性耳聋易感基因,做好预防氨基糖甙类药物中毒性耳聋的重要性。

SLC26A4基因突变与大前庭水管综合征有关。凡是引起颅内压变化的因素如轻度的头部碰撞、重度感冒等均能引起大前庭水管综合征患儿的听力下降。及时发现病因,提醒加强日常防护对避免或延缓患儿听力损失甚为重要。本研究高危组SLC26A4基因两个位点致病突变的携带率共0.43%,与沈阳张东红研究0.46%的携带率近似[8] 。

高危组3个聋病易感基因总突变携带率3.8%,与对照组比较差异有统计学意义,显示高危新生儿聋病易感基因携带状况亟待引起重视,能否说明高危新生儿聋病易感基因携带高于正常新生儿有待大样本检测进一步证实。高危组未检出35delG、2168A > G及1494C > T三个常见位点突变,尚不能说明该三个基因位点不存在突变,亦有待扩大样本量进一步研究。

(2) 听力和聋病易感基因联合筛查是听力筛查的基本策略

聋病易感基因筛查必须联合听力筛查同时进行,这种联合筛查模式有助于听力障碍的早期诊断和干预[13] 。本研究发现高危组基因筛查通过而听力筛查未通过41例,占听力复筛总体不通过的89.13% (41/46),如仅靠聋病基因筛查诊断,势必遗漏出生时已存在的其他因素导致的先天性听力损失;并且仅有基因检测的结果是不能给新生儿家长以准确的信息说明新生儿的听力状况和预后[14] ,必须结合听力筛查的结果,这就是听力和聋病易感基因联合筛查的重要意义所在。

值得关注的是,高危组3个聋病易感基因总体突变携带率3.8%,是听力筛查出重度以上听力损失检出率1.63%的2.4倍,85.71% (30/35)聋病基因致病突变携带者“通过”了听力筛查,与对照组比较差异有统计学意义;如不经过基因筛查,这些具有潜在致聋因素的高危儿童绝大部分通过了听力筛查将不会得到关注。早期发现听力损失及致聋高危因素、早期干预、定期随访,可避免潜在的致聋危险威胁儿童的听力健康。

综上所述,高危新生儿听力损失和聋病易感基因携带率均显著高于健康新生儿,如果仅进行新生儿听力筛查将使聋病基因致病突变携带者中的绝大多数“通过”听力筛查而面临迟发性或药物性听力损害而未能引起重视,本研究结果显示对高危新生儿除重视听力筛查的落实与随访,在筛查过程中融入聋病易感基因筛查具有必要性和紧迫性,对全面开展听力和聋病基因联合筛查,提高高危儿先天性听力损失检出率、完善防聋治聋策略具有指导意义。

文章引用

张 章,戴怡蘅,李振安,余凤慈,刘 莹, (2015) 高危新生儿听力和聋病易感基因联合筛查临床研究
A Clinical Study of Hearing Concurrent Genetic Screening in High-Risk Newborns. 生物医学,02,17-22. doi: 10.12677/HJBM.2015.52003

参考文献 (References)

  1. 1. Vohr, B.R., Widen, J.E., Cone-Wesson, B., et al. (2000) Identification of neonatal hearing impairment: Characteristics of infants in the neonatal intensive care unit and well-baby nursery. Ear & Hearing, 21, 373-375.

  2. 2. 新生儿听力规范/《新生儿疾病筛查技术规范(2010版)》. 中华人民共和国卫生和计划生育委员会.2010.12. 中华人民共和国卫生和计划生育委员会官网, 政策法规, 部门规章.

  3. 3. WHO (1997) Report of the first informal consultation on future program developments for the prevention of deafness and hearing impairment. World Health Organization, Geneva, 23-24 January, WHO/PHD/97.3.

  4. 4. 王秋菊, 赵亚立, 兰兰, 等 (2007) 新生儿聋病基因筛查的实施方案与策略研究. 中华耳鼻咽喉头颈外科杂志, 11, 809-813.

  5. 5. Norris, V.W., Arnos, K.S., Hanks, W.D., et al. (2006) Does universal newborn hearing screening identify all children with GJB2 (Connexin 26) deafness? Penetrance of GJB2 deafness. Ear & Hearing, 27, 732-741.

  6. 6. Lu, Y., Dai, D., Chen, Z., et al. (2011) Molecular screening of patients with nonsyndromic hearing loss from Nanjing city of China. Journal of Biomedical Research, 25, 309-318.

  7. 7. 王秋菊 (2008) 新生儿聋病基因筛查——悄然的革命. 听力学及言语疾病杂志, 2, 83-88.

  8. 8. 张东红, 邱海涛, 马秀岚, 等 (2010) 新生儿聋病基因GJB2、SLC26A4、线粒体12S rRNA的分子流行病学研究. 中国医科大学学报, 8, 649-651.

  9. 9. 王秋菊 (2007) 新生儿聋病易感基因筛查的意义与策略. 中国医学文摘耳鼻咽喉科学, 1, 21-22.

  10. 10. Hismi, B.O., Yilmaz, S.T., Incesulu, A., et al. (2006) Effects of GJB2 genotypes on the Audiological phe-notype variability is present for all genotypes. International Journal of Pediatric Otorhinolaryngology, 70, 1687-1694.

  11. 11. Mezghani, N., Mnif, M., Mkaouar-Rebai, E., et al. (2013) A maternally inherited diabetes and deafness patient with the 12S rRNA m.1555A>G and the ND1 m.3308T>C mutations associated with multiple mitochondrial deletions. Biochemical and Biophysical Research Communications, 431, 670-674.

  12. 12. 戴朴, 袁慧军, 曹菊阳, 等 (2004) 线粒体基因A1555G突变检测试剂盒在药物性耳聋分子诊断中的应用. 中国听力语言康复科学杂志, 7, 21-23.

  13. 13. Zhang, J., Wang, P., Han, B., et al. (2013) Newborn hearing concurrent genetic screening for hearing impairment clinical practice in 58,397 neonates in Tianjin, China. International Journal of Pediatric Otorhinolaryngology, 12, 1929- 1935.

  14. 14. Burton, S.K., Withrow, K., Arnos, K.S., et al. (2006) A focus group study of consumer attitudes toward genetic testing and newborn screening for deafness. Genetics in Medicine, 8, 779-783.

期刊菜单