Hans Journal of Nanotechnology
Vol. 13  No. 02 ( 2023 ), Article ID: 65341 , 8 pages
10.12677/NAT.2023.1328

一种新型水相人工光捕获体系的构筑

李梦行,邹雅欣,王佳丽,范晓艳,朱金丽,汤艳峰,孙广平*

南通大学化学化工学院,江苏 南通

收稿日期:2023年3月31日;录用日期:2023年5月5日;发布日期:2023年5月16日

摘要

本文设计合成了一种新型2-羟基苄基苯胺类衍生物(HPA)作为客体分子,通过与水溶性柱[5]芳烃(WP5)主客体作用,在水中形成超分子两亲体WP5ÉHPA,超分子两亲体进一步自组装形成WP5ÉHPA纳米粒子,并对染料分子磺基罗丹明101 (SR101)进行包载形成WP5ÉHPA-SR101纳米粒子。由于WP5ÉHPA的荧光发射区域与SR101的紫外吸收有效重叠,在包载SR101后,成功构筑了一种新型水相WP5ÉHPA-SR101人工光捕获体系。值得注意的是,WP5ÉHPA-SR101的能量转移效率为48.4%,天线效应为7.8,在水相人工光捕获系统中具有潜在的应用价值。

关键词

人工光捕获,主客体作用,超分子组装,能量转移,天线效应

The Fabrication of a Novel Aqueous Artificial Light-Harvesting System

Menghang Li, Yaxin Zou, Jiali Wang, Xiaoyan Fan, Jinli Zhu, Yanfeng Tang, Guangping Sun*

School of Chemistry and Chemical Engineering, Nantong University, Nantong Jiangsu

Received: Mar. 31st, 2023; accepted: May 5th, 2023; published: May 16th, 2023

ABSTRACT

A novel salicylideneaniline derivative (HPA) was initially synthesized as guest molecules. After host-guest interaction with water-soluble pillar [5] arene (WP5), the formed WP5ÉHPA supramolecular amphiphile further assembled into nanoparticles and sulforhodamine 101 (SR101) could be encapsulated to fabricate WP5ÉHPA-SR101 nanoparticles. Because the emission region of WP5ÉHPA covers well with the UV-Vis absorption of SR101, a significant artificial light-harvesting process could take place in WP5ÉHPA-SR101 nanoparticles, which perform the energy transfer efficiency of 48.4% and the antenna effect of 7.8, suggesting potential applications in aqueous artificial light-harvesting systems.

Keywords:Artificial Light-Harvesting, Host-Guest Interaction, Supramolecular Assembly, Energy Transfer, Antenna Effect

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

受自然界绿色植物对太阳能利用的启发,科研人员尝试构筑各种各样的人工光捕获系统来模拟自然界光捕获过程对光能进行捕获与利用,比如凝胶材料 ‎[1] 、聚合物 ‎[2] 、卟啉系统 ‎[3] 、金属有机框架材料 ‎[4] 等。然而,已报道的人工光捕获系统大多是通过共价键合成进行构筑,且大多在有机相中进行能量转移,这些都限制了人工光捕获在生命系统中的应用与发展 ‎[5] 。近年来,超分子组装策略不仅能够有效避免复杂的合成与纯化过程,还能在水相中进行组装与构建,在人工光捕获领域显示出巨大的应用潜力 ‎[6] 。2016年,刁国旺教授团队利用水溶性柱[5]芳烃(WP5)成功构筑了一个叶绿素–类胡萝卜素超分子结构,在水相中实现了太阳能的捕获与光催化应用 ‎[7] 。此外,2017年,刘育教授团队通过磺酸盐环糊精(SCD)和聚集诱导发光(AIE)衍生物也构筑了一个水相人工光捕获体系,并获得了超高的天线效应 ‎[8] 。同样是利用AIE衍生物,2020年,王乐勇教授团队基于WP5和四苯乙烯衍生物(TPEDA)也构筑了一个水相人工光捕获体系,并实现了光捕获能量的连续传递 ‎[9] 。因此,在水相中开发并构筑新型人工光捕获体系对太阳能的捕获和应用具有重要意义。

Figure 1. Aqueous artificial light-harvesting system

图1. 水相人工光捕获系统

为此,本文设计合成了一种新型2-羟基苄基苯胺类衍生物(HPA)作为客体分子,水溶性柱[5]芳烃(WP5)作为主体分子,通过主客体相互作用,HPA与WP5在水中络合形成WP5ÉHPA超分子两亲体,超分子两亲体进一步自组装形成WP5ÉHPA纳米粒子作为能量给体。由于WP5ÉHPA的荧光发射区域与染料分子磺基罗丹明101 (SR101)的紫外吸收有效重叠,在包载SR101 (能量受体)后,WP5ÉHPA的能量能够被显著转移至SR101,最终获得WP5ÉHPA-SR101水相人工光捕获体系(图1)。

2. 实验部分

2.1. 试剂与仪器

水杨醛(98%),磺基罗丹明101 (95%, SR101),三聚甲醛(98%),溴乙酸乙酯(98%),碳酸钾(99%),氢氧化钠(97%),三氟化硼/乙醚(98%),1,10-二溴癸烷(98%)和三溴化硼(99%)购自安耐吉化学;乙酸乙酯(AR),石油醚(AR),乙醇(AR)和甲醇(AR)购自泰坦试剂;核磁测试采用瑞士Bruker 400 MHz;扫描电镜(SEM)采用日本Hitachi SU8060;粒径测试(DLS)采用美国Brookhaven BI-9000AT;紫外测试采用日本UV-3600;荧光测试采用日本Hitachi F-7000。

2.2. 化合物合成

2.2.1. WP5合成

WP5根据我们之前报道的工作进行合成与表征 ‎[10] ‎[11] 。

2.2.2. HPA合成

Figure 2. The synthesis route of compound HPA

图2. 化合物HPA合成路线

Figure 3. 1H NMR of compound HPA

图3. 化合物HPA氢谱图

化合物1合成:化合物1根据我们之前报道工作进行合成与表征 ‎[12] 。

化合物HPA合成:如图2图3图4所示,将化合物1 (100 mg, 0.26 mmol)与水杨醛(38 mg, 0.31 mmol)加入25 mL乙醇中,室温搅拌过夜。最后将混合物离心,乙醇洗涤3次,固体产物真空干燥得目标产物HPA (126 mg, 0.26 mmol, 99%)。1HNMR (400 MHz, DMSO-d6) δ (ppm): 13.33 (s, 1 H), 8.95 (s, 1 H), 7.63 (dd, J = 7.6, 1.2 Hz, 1 H), 7.43~7.37 (m, 3 H), 7.02~6.94 (m, 4 H), 4.01 (t, J = 6.4 Hz, 2 H), 3.28~3.24 (m, 2 H), 3.03 (s, 9 H), 1.75~1.63 (m, 4 H), 1.44~1.39 (m, 2 H), 1.30~1.25 (m, 10 H)。13CNMR (100 MHz, DMSO-d6) δ (ppm): 161.6, 160.6, 158.4, 141.0, 133.3, 132.8, 123.1, 119.8, 119.6, 117.0, 115.6, 68.2, 65.7, 52.6, 52.6, 52.5, 29.4, 29.2, 29.1, 29.0, 26.2, 26.0, 22.5。

Figure 4. 13C NMR of compound HPA

图4. 化合物HPA碳谱图

3. 结果与讨论

3.1. 主客体相互作用

在合成WP5与HPA后,分别通过丁达尔效应和荧光实验对主客体之间相互作用进行研究分析。如图5所示,单独的HPA溶液没有丁达尔效应,且无明显的荧光发射,说明单独HPA在水中较难自组装形成纳米粒子。而当加入WP5后,WP5ÉHPA有明显的丁达尔效应,且能够发射出绿色荧光,说明在WP5的作用下,HPA能够有效自组装形成WP5ÉHPA纳米粒子。

Figure 5. Tyndall effect of (a) HPA; (b) WP5ÉHPA; and (c) WP5ÉHPA-SR101; Fluorescence photos of (d) HPA; (e) WP5ÉHPA; and (f) WP5ÉHPA-SR101

图5. 丁达尔效应:(a) HPA;(b) WP5ÉHPA和(c) WP5ÉHPA-SR101;荧光照片:(d) HPA;(e) WP5ÉHPA和(f) WP5ÉHPA-SR101

3.2. 最佳络合比与临界聚集浓度

在确认WP5与HPA能够有效发生主客体作用并自组装形成纳米子后,分别通过紫外光谱对主客体作用形成纳米粒子的最佳络合比与临界聚集浓度(CAC)进行测试分析 ‎[13] 。如图6所示,单独的HPA溶液(20:0)在550 nm处透射率约为97%,几乎没有纳米粒子产生,与丁达尔效应结果一致。但是随着WP5的增加,混合溶液透射率逐渐降低,当摩尔比为20:1时,透射率最低,说明此时产生纳米粒子最多。此后,随着WP5继续增加,混合溶液透射率并没有继续降低,反而增加,说明WP5与HPA主客体作用形成纳米粒子的最佳络合比为20:1。

Figure 6. (a) The transmittance of WP5 and HPA mixture; and (b) The transmittance of mixture at 550 nm

图6. (a) WP5与HPA混合溶液透射率;(b) 混合溶液在550 nm处透射率

在测得WP5与HPA的最佳络合比为20:1后,保持摩尔比不变,继续测试不同浓度的透射率变化(HPA浓度从0.01 mM到0.10 mM),并根据550 nm处透射率变化作图分析。如图7所示,在低浓度时,透射率变化不是很大,但是当浓度达到0.031 mM后,透射率会迅速下降,说明WP5与HPA的临界聚集浓度为0.031 mM。

Figure 7. (a) The transmittance of WP5 and HPA mixture ([HPA] = 0.01 mM~0.10 mM); and (b) The transmittance of mixture at 550 nm

图7. (a) WP5与HPA混合溶液透射率(HPA浓度:0.01 mM~0.10 mM);(b) 混合溶液在550 nm处透射率

3.3. 纳米粒子构筑

在得到WP5与HPA的最佳络合比和临界聚集浓度后,分别对其组装的纳米粒子进行粒径和形貌研究。如图8所示,WP5与HPA在水中自组装可以形成粒径为241 nm的圆形粒子。此外,SR101作为传统的疏水性染料,可以被包载于WP5ÉHPA的疏水层处,形成WP5ÉHPA-SR101纳米粒子 ‎[10] ‎[12] 。值得注意的是,在包载SR101后,WP5ÉHPA-SR101纳米粒子的粒径显著增大,但依然是圆形粒子。

Figure 8. DLS of (a) WP5ÉHPA and (b) WP5ÉHPA-SR101; SEM of (c) WP5ÉHPA and (d) WP5ÉHPA-SR101

图8. 粒径分布:(a) WP5ÉHPA和(b) WP5ÉHPA-SR101;扫描电镜:(c) WP5ÉHPA和(d) WP5ÉHPA-SR101

3.4. WP5ÉHPA-SR101人工光捕获系统

由于WP5ÉHPA的荧光发射区域与SR101的紫外吸收有效重叠(图9(a)),且在包载SR101后,供体(HPA)与受体(SR101)之间的距离被显著缩短,因此在WP5ÉHPA-SR101中可以发生高效的荧光共振能量转移过程,实现人工光捕获 ‎[14] 。如图9(b)所示,随着SR101的增加,HPA的荧光强度逐渐减弱,而SR101的荧光逐渐增强,说明供体的能量被显著转移到受体上,实现高效的人工光捕获。同时荧光颜色也相应的由绿色向红色进行转变,进一步证明发生了人工光捕获过程(图10)。

Figure 9. (a) Normalized absorption and emission spectra and (b) Fluorescence spectra

图9. (a) 归一化紫外吸收与荧光发射图和(b) 能量转移荧光光谱

Figure 10. Fluorescence photos of energy transfer

图10. 能量转移荧光照片

3.5. WP5ÉHPA-SR101人工光捕获性能

为了进一步探究WP5ÉHPA-SR101纳米粒子的人工光捕获性能,通过荧光光谱分别对其能量转移效率与天线效应进行测试分析 ‎[15] ‎[16] ‎[17] 。如图11所示,根据WP5ÉHPA在包载SR101后的荧光淬灭变化,可以得到WP5ÉHPA-SR101的能量转移效率为48.4%;同时根据WP5ÉHPA在525 nm处的归一化计算以及WP5ÉHPA-SR101纳米粒子在365 nm和550 nm激发下的荧光光谱,测得WP5ÉHPA-SR101的天线效应为7.8,说明WP5ÉHPA-SR101具有较好的人工光捕获能力,为水相人工光捕获系统的开发提供了一定的借鉴与参考。

Figure 11. (a) Energy transfer and (b) Antenna effect of WP5ÉHPA-SR101

图11. (a) 能量转移和(b) 天线效应

4. 结论

通过主客体作用,WP5与HPA首先在水中络合形成WP5ÉHPA超分子两亲体,超分子两亲体进一步自组装形成纳米粒子并对SR101进行包载,成功开发了一种新型WP5ÉHPA-SR101水相人工光捕获体系。实验结果表明,在WP5ÉHPA-SR101中,HPA (供体)能量能够被显著转移到SR101 (受体),实现水相人工光捕获过程,能量转移效率与天线效应分别为48.4%和7.8,为水相人工光捕获系统的开发提供了参考与借鉴。

基金项目

江苏省自然科学基金青年项目(No. BK20220601),江苏省高等学校基础科学(自然科学)研究面上项目(No. 22KJB150032),江苏省大学生创新创业训练计划项目(No. 202210304100Y)。

文章引用

李梦行,邹雅欣,王佳丽,范晓艳,朱金丽,汤艳峰,孙广平. 一种新型水相人工光捕获体系的构筑
The Fabrication of a Novel Aqueous Artificial LightHarvesting System[J]. 纳米技术, 2023, 13(02): 51-58. https://doi.org/10.12677/NAT.2023.1328

参考文献

  1. 1. Ji, L., Sang, Y., Ouyang G., Yang, D., Duan, P., Jiang, Y. and Liu, M. (2019) Cooperative Chirality and Sequential En-ergy Transfer in a Supramolecular Light-Harvesting Nanotube. Angewandte Chemie International Edition, 58, 844-848. https://doi.org/10.1002/anie.201812642

  2. 2. Xu, L., Wang, Z., Wang, R., Wang, L., He, X., Jiang, H., Tang, H., Cao, D. and Tang, B. (2020) A Conjugated Polymeric Supramolecular Network with Aggregation-Induced Emission Enhancement: an Efficient Light-Harvesting System with an Ultrahigh Antenna Effect. Angewandte Chemie International Edition, 59, 9908-9913. https://doi.org/10.1002/anie.201907678

  3. 3. Wang, R., Chen, S., Chen, Q., Guo, H. and Yang, F. (2021) Porphy-rin with Circularly Polarized Luminescence in Aggregated States. Dyes and Pigments, 190, 109332-109339. https://doi.org/10.1016/j.dyepig.2021.109332

  4. 4. Zhang, Z., Zhao, Z., Hou, Y., Wang, H., Li, X., He, G. and Zhang, M. (2019) Aqueous Platinum(II)-Cage-Based Light-Harvesting System for Photocatalytic Cross-Coupling Hy-drogen Evolution Reaction. Angewandte Chemie International Edition, 58, 8862-8866. https://doi.org/10.1002/anie.201904407

  5. 5. Sun, G., Li, M., Cai, L., Wang, D., Cui, Y., Hu, Y., Sun, T., Zhu, J. and Tang, Y. (2023) Water-Soluble Phosphate-Pillararene (WPP5)-Based Artificial Light-Harvesting System for Photocatalytic Cross-Coupling Dehydrogenation. Journal of Colloid and Interface Science, 641, 803-811. https://doi.org/10.1016/j.jcis.2023.03.109

  6. 6. Sun, G., Wang, Z., Hu, Y., Sun, T. and Tang, Y. (2022) An-thryl-Cinnamonitrile-Based Supramolecular Artificial Light- Harvesting Systems with High Efficiency Fabricated in Aqueous Solution. Dyes and Pigments, 197, 109913-109920. https://doi.org/10.1016/j.dyepig.2021.109913

  7. 7. Sun, Y., Guo, F., Zuo, T., Hua, J. and Diao, G. (2016) Stimu-lus-Responsive Light-Harvesting Complexes Based on the Pillararene-Induced Co-Assembly of β-Carotene and Chloro-phyll. Nature Communications, 7, 12042-12054. https://doi.org/10.1038/ncomms12042

  8. 8. Li, J.-J., Chen, Y., Yu, J., Cheng, N. and Liu, Y. (2017) A Supramo-lecular Artificial Light-Harvesting System with an Ultrahigh Antenna Effect. Advanced Materials, 29, 1701905-1701909. https://doi.org/10.1002/adma.201701905

  9. 9. Hao, M., Sun, G.P., Zuo, M.Z., Xu, Z.Q., Chen, Y., Hu, X.-Y. and Wang, L.Y. (2020) A Supramolecular Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Photochemical Catalysis. Angewandte Chemie International Edition, 59, 10095-10100. https://doi.org/10.1002/anie.201912654

  10. 10. Sun, G.P., Cai, L.J., Cui, H.H., Hu, Y.Q., Wang, J., Wang, M.M., Zhu, J.L., Sun, T.M. and Tang, Y.F. (2022) Naphthalenyl-Phenylacrylonitrile-Based Supramolecular Aqueous Artificial Light-Harvesting System for Photochemical Catalysis. Dyes and Pigments, 201, 110257-110265. https://doi.org/10.1016/j.dyepig.2022.110257

  11. 11. Sun, G., Qian, W., Jiao, J., Han, T., Shi, Y., Hu, X.-Y. and Wang, L. (2020) A Highly Efficient Artificial Light- Harvesting System with Two-Step Sequential Energy Transfer Based on Supramolecular Self-Assembly. Journal of Materials Chemistry A, 8, 9590-9596. https://doi.org/10.1039/D0TA03169K

  12. 12. Sun, G., Cai, L., Zhang, Y., Hu, Y., Zhu, J., Sun, T. and Tang, Y. (2022) Salicylideneaniline-Based Aqueous Supramolecular Artificial Light-Harvesting Platforms with Biocompatibility. Dyes and Pigments, 205, 110577-110584. https://doi.org/10.1016/j.dyepig.2022.110577

  13. 13. Jiao, J., Sun, G., Zhang, J., Lin, C., Jiang, J. and Wang, L. (2021) The Preparation of a Water-Soluble Phospholate-Based Macrocycle for Constructing Artificial Light-Harvesting Systems. Chemistry—A European Journal, 27, 16601-16605. https://doi.org/10.1002/chem.202102758

  14. 14. Wang, Y., Han, N., Li, X.-L., Wang, R.-Z. and Xing, L.-B. (2022) Novel Strategy of Constructing Artificial Light- Harvesting System with Two-Step Sequential Energy Transfer for Efficient Photocatalysis in Water. ACS Applied Materials & In-terfaces, 14, 45734-45741. https://doi.org/10.1021/acsami.2c14168

  15. 15. Wang, K., Velmurugan, K., Li, B. and Hu, X.-Y. (2021) Artificial Light-Harvesting Systems Based on Macrocycle-Assisted Supramolecular Assembly in Aqueous Media. Chemical Communications, 57, 13641-13654. https://doi.org/10.1039/D1CC06011B

  16. 16. Xiao, T., Bao, C., Zhang, L., Diao, K., Ren, D., Wei, C., et al. (2022) An Artificial Light-Harvesting System Based on the ESIPT-AIE-FRET Triple Fluorescence Mechanism. Journal of Ma-terials Chemistry A, 10, 8528-8534. https://doi.org/10.1039/D2TA00277A

  17. 17. Xiao, T., Wu, H., Sun, G., Diao, K., Wei, X., Li, Z.-Y., Sun, X.-Q. and Wang, L. (2020) An Efficient Artificial Light-Harvesting System with Tunable Emission in Water Constructed from a H-Bonded AIE Supramolecular Polymer and Nile Red. Chemical Communications, 56, 12021-12024. https://doi.org/10.1039/D0CC05077F

  18. NOTES

    *通讯作者。

期刊菜单