Hans Journal of Food and Nutrition Science
Vol. 12  No. 02 ( 2023 ), Article ID: 64947 , 9 pages
10.12677/HJFNS.2023.122007

超声处理对膳食纤维的改性研究进展

林艳婷1,王宜坤2,华胜2,吴泽宇1,谢慧明1,张文成1*

1合肥工业大学食品与生物工程学院,农产品生物化工教育部工程研究中心,安徽 合肥

2安徽喜洋洋农业科技有限公司,安徽 合肥

收稿日期:2023年2月20日;录用日期:2023年4月27日;发布日期:2023年5月5日

摘要

膳食纤维被定义为人类的第七种营养素,对人体健康有许多益处,如改善肠道菌群、降低肥胖和心血管疾病的概率等。由于膳食纤维在食品中具有令人不适的口感,所以具有丰富膳食纤维的植物副产物通常被人们当作饲料或直接丢弃,因此对其进行改性,获得高产优质的膳食纤维是必要的。本文介绍了膳食纤维定义和功能,以及化学、生物和物理法改性膳食纤维,其中着重介绍了物理改性方法中的超声技术对膳食纤维的改性作用。

关键词

膳食纤维,改性,超声

Research Progress in the Modification of Dietary Fiber by Ultrasonic Treatment

Yanting Lin1, Yikun Wang2, Sheng Hua2, Zeyu Wu1, Huiming Xie1, Wencheng Zhang1*

1Engineering Research Center of Bio-Process from Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei Anhui

2Anhui Xiyangyang Agricultural Technology Co., Ltd., Hefei Anhui

Received: Feb. 20th, 2023; accepted: Apr. 27th, 2023; published: May 5th, 2023

ABSTRACT

Dietary fiber is defined as the seventh nutrient of human beings, which has many benefits for human health, such as improving intestinal flora, reducing the probability of obesity and cardiovascular disease. Due to the uncomfortable taste of dietary fiber in food, plant by-products with rich dietary fiber are usually used as feed or directly discarded. Therefore, it is necessary to modify them to obtain high yield and high quality dietary fiber. This paper introduces the definition and function of dietary fiber, and the modification of dietary fiber by chemical, biological and physical methods, with emphasis on the modification of dietary fiber by ultrasonic technology in physical modification methods.

Keywords:Dietary Fiber, Modified, Ultrasonic

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

随着生活水平的提高,人们对饮食要求越来越多样化、科学化。而许多生活疾病大都源于饮食不科学、不均衡引起的,如糖尿病、心脑血管疾病、肥胖、便秘等 [1] ,对人类健康造成不可逆后果。因此,调节机体功能、预防文明生活方式疾病的功能性食品越来越受到人们的关注。膳食纤维被营养学家定义为人类“第七大”营养素,具有改善肠道植物群、控制体重和心血管疾病发生率等诸多有益功能 [2] 。许多学者根据来源对膳食纤维进行分类,强调不同来源提取的膳食纤维的组成不同 [3] 。膳食纤维包括植物膳食纤维、合成膳食纤维、动物膳食纤维和微生物膳食纤维。目前对膳食纤维的研究主要集中在植物性膳食纤维,如大豆、米糠、玉米、麦麸、水果等来源的膳食纤维 [1] ,因此对植物膳食纤维进行改性以获得高产、高品质的膳食纤维一直是功能性食品加工领域的研究热点。

2. 膳食纤维的定义及分类

20世纪50年代,Hipsley [3] 首次提出术语“膳食纤维”。当时认为膳食纤维是指难以被人类酶消化的植物成分的总称。2009年,膳食纤维(Dietary Fiber, DF)被食品法典委员会定义为:具有10个及以上单体单元的碳水化合物聚合物,且不会被人体小肠中的内源性酶水解 [3] 。膳食纤维根据其水溶性可分为可溶性膳食纤维(Soluble Dietary Fiber, SDF)和不溶性膳食纤维(Insoluble Dietary Fiber, IDF)。SDF指的是不能被人体消化或吸收,但部分溶于水的纤维,如果胶、阿拉伯胶、瓜尔胶和葡聚糖,也包括一些生物多糖和合成多糖;IDF指的是不能被人体消化或吸收,且不溶于水的纤维,IDF包括细胞壁结构的一些成分,如纤维素、半纤维素和木质素 [1] 。

3. 膳食纤维的功能

膳食纤维在人体的调节中起着非常重要的作用。这种物质在人体肠道中明显分解,影响消化系统对水分的吸收,它可以增加肠胃内的食物量,增加饱腹感,促进减肥 [4] 。膳食纤维可以促进胃肠蠕动,缓解便秘 [5] ,吸收肠道中的有害物质,促进其清除 [6] [7] 。此外,膳食纤维可改善肠道菌群,为益生菌增殖提供能量和营养 [8] 。最近的研究表明,膳食纤维有助于降低餐后血糖、胰岛素和甘油三酯浓度 [9] [10] ,并能降低血液胆固醇水平 [11] [12] 。粪便胆汁酸浓度的降低与癌症风险的降低有关 [13] [14] [15] 。

已证实膳食纤维可干扰血糖和脂质调节机制的几种主要途径:i) 抑制重要的脂肪酶和糖苷酶如胰脂肪酶、α-淀粉酶和α-糖苷酶的活性;ii) 吸附葡萄糖、胆盐和胆固醇以降低可利用的葡萄糖和脂质的浓度并促进它们的排泄;iii) 通过增加培养基的粘度来延迟葡萄糖和脂质的扩散;iv) 通过增加肠内发酵产生的短链脂肪酸来抑制胆固醇的形成 [16] 。因此,膳食纤维的降血糖和降血脂作用取决于其化学组成、结构和理化性质,尤其是水合性质(持水力、持油力、溶胀力)和吸附能力。加工改性可以使膳食纤维中大分子成分的连接键断裂成小分子组分,使致密的网状结构变得疏松多孔,从而获得良好的持水性、膨胀性、抗氧化性等功能特性 [17] 。

两种膳食纤维对人体健康具有不同的生理作用 [2] 。由于其不同的物理化学和功能特性,IDF会产生令人不适的口感,所以SDF会比IDF更适用于食品中。与IDF相比,SDF在某些方面具有更好的生理特性和生物活性,如发酵性能、抗氧化活性和凝胶形成能力更强 [18] ,对于降低血液中的胆固醇、甘油三酯和葡萄糖水平具有重要意义,同时也会影响食物的质地、胶凝、增稠和乳化特性 [19] 。SDF含量是衡量膳食纤维品质的重要指标 [20] ,而天然膳食纤维中大部分为IDF [21] ,因此需要通过改性处理来提升SDF的含量,进而提升天然膳食纤维的品质。通过改性加工能够将一部分不溶性成分转变成可溶性成分,改变IDF与SDF之间的比例,改善膳食纤维的持水力、持油力、溶胀力以及功能特性,提高膳食纤维的品质。

4. 膳食纤维的改性

在加工过程和日常消费中,会产生大量的副产品(如果皮、果渣、麸皮、豆渣和榨汁后的残渣),这些副产品中也含有丰富的膳食纤维。大部分直接倾倒或利用不足,造成了大量资源浪费甚至环境污染 [3] 。因此,寻找合适的改性方法来提高膳食纤维的得率和功能特性,提高植物及其副产物在功能食品工业中的利用率,以满足日益增长的膳食纤维需求是必要的。现有研究发现,适当的改性手段处理膳食纤维,可以改变聚合物的化学结构、形态、存在形式与含量等,有助于提高膳食纤维的功能 [22] 。改性可使膳食纤维中大分子成分的连接键断裂,转变成小分子组分;同时将部分不溶性成分转变成可溶性成分;使致密的空间网状转变为疏松的网状空间结构 [23] 。

目前膳食纤维的改性方法可以归纳为三种类型:物理法、化学法、生物法。

4.1. 化学法

化学法是利用化学反应改变膳食纤维的结构和功能性质,如碱性过氧化氢(AHP)处理、碱处理、酸处理、羧甲基化处理、羟丙基化处理等 [3] 。

AHP可以降解纤维素,从而改变膳食纤维的组成。在最佳条件下,AHP可以使豆渣SDF含量增加了601%,持水性和溶解性增加了26%,可溶性蛋白含量增加了609% [24] 。但是Meng等 [25] 指出,AHP处理的荞麦秸秆IDF的晶体结构被扰乱。同时,AHP改性荞麦秸秆IDF的羟基肉桂酸衍生物、羟基苯甲酸衍生物、黄酮类化合物的含量以及抗氧化能力均有所下降。

用于改性的碱一般为氢氧化钠,酸包括盐酸、柠檬酸、硫酸。有研究表明,氢氧化钠处理的IDF具有较高的热稳定性,而柠檬酸处理的IDF对水、油、胆汁酸、亚硝酸根离子和葡萄糖具有较强的吸附能力 [26] 。

羧甲基化和羟丙基化处理是需要许多步骤的非常复杂的处理过程。两种改性方法对麦麸膳食纤维的持水力、溶胀力、葡萄糖吸附力、总抗氧化能力、总还原能力、Fe2+螯合能力和DPPH自由基清除能力均有显著提高 [27] [28] 。虽然效果显著,但操作过程过于复杂繁琐。

4.2. 生物法

生物法是利用特定的酶或微生物对原料进行酶解或发酵的方法。

常用的酶有纤维素酶和木聚糖酶。Wang等 [29] 利用纤维素酶对姜渣IDF进行改性,发现改性姜渣IDF的持水力、溶胀力、持油力均有显著提高。此外,改性姜渣IDF具有较高的阳离子交换能力、胆固醇吸附力、胆酸钠结合力和亚硝酸钠结合力。同时,改性姜渣IDF暴露出更多的亲水基团和比表面积,从而显著降低总胆固醇、甘油三酯和动脉粥样硬化指数,升高高密度脂蛋白胆固醇。Zhu等 [30] 对木聚糖酶的水解条件进行了优化。作者证明在最佳条件下,木聚糖酶改性后的小米麸皮膳食纤维的CBC值提高了2.23倍。

常用的微生物是绿色木霉、哈茨木霉、纳豆芽孢杆菌和红曲霉 [3] ,它们都能产生水解膳食纤维的酶。研究发现,不同微生物发酵后,改性材料的SDF分子量均有增加 [31] 。

4.3. 物理法

物理法是利用高温、高压、瞬间减压、爆炸、高速冲击、剪切等手段,使膳食纤维的糖苷键熔融或断裂 [3] ,从而达到改性的目的,包括高压均质、动态微射流、超微粉碎、静态超高压、挤压、微波、和超声波技术等 [46] 。

高压均质提高了紫心马铃薯膳食纤维的SDF含量、总酚含量、α-葡萄糖苷酶抑制作用和抗氧化活性 [32] ;提高了金针菇IDF的保水性、稳定性、乳化性能和界面性能 [33] ;还提高了柑橘膳食纤维的热稳定性 [34] 。

Wang等 [35] 使用动态微射流处理米糠中的IDF。处理后,IDF对胆酸钠、胆固醇和Pb2+的吸附能力增强,SDF含量、持水量、持油量和总负电荷也显著增加。然而,动态微射流需要比其他物理方法更复杂的清洁过程,并且孔隙容易被膳食纤维堵塞。

Yu等 [36] 发现,超微粉碎显著提高了胡萝卜IDF的总抗氧化能力、DPPH自由基清除能力和亚油酸系统的抗氧化能力,但降低了其保水性和保油性。与其他物理方法相比,超微粉碎能够使物料具有最小的粒度。这可能是其表现出较差保水性、保油性的原因。

静态超高压已广泛用于肉类、蔬菜、水果、海鲜等膳食纤维的加工 [37] 。研究发现,随着静水压力和温度的增加,豆渣的SDF:IDF、体外消化理化性质和化学性质均有所提高 [38] 。

挤出工艺种类繁多,如挤压膨化改性竹笋膳食纤维具有较好的保水性、可溶性、葡萄糖吸附量、胆固醇吸附量、亚硝酸根离子吸附能力 [39] 。爆破挤压处理的豆渣SDF可显著降低甘油三酯、总胆固醇和低密度脂蛋白胆固醇的浓度,同时升高高密度脂蛋白胆固醇的浓度和SDF含量 [40] 。双螺杆挤压工艺可以降低橘皮膳食纤维的持油力 [41] ,并增强大蒜皮膳食纤维的铅结合能力 [42] 。

微波是一种新兴的改性方法,在优化条件下,其提高了葡萄柚皮SDF的胆固醇吸附量、葡萄糖吸附量和SDF含量 [43] 、脱脂米糠膳食纤维的葡萄糖透析延迟指数 [44] 和豆渣膳食纤维的热稳定性 [45] 。

5. 超声改性膳食纤维

由于生物法需要温和的环境,酶纯化和菌种选育成本高 [2] ;化学法处理过程中可能会发生副反应或造成环境污染,并且化学基团的引入会给食品的食用带来一定风险 [17] ;因此相较而言,物理法由于成本低、耗时短、操作简单、不产生有毒废弃物而被广泛应用于膳食纤维的改性。但是在多种物理改性方法中,一些物理方法是高风险工作,需要巨大的操作空间。如挤压、超微粉碎等,在对材料进行改性时,挤压产生的高温高压蒸汽容易对操作者造成烫伤,超微粉碎产生的细小粉尘容易吸入肺部造成肺部感染 [3] 。

超声波具有安全、高效、耗时段、对环境污染小等优点,超声技术是由分子在传播介质中的振荡运动所产生的声波组成的 [47] ,它是以0.02~100兆赫频率振动的机械波 [48] 。小于100千赫的超声波通常应用于食品加工中,功率强度从1到1000瓦/平方厘米 [49] 。传播介质中的气芯体积通过稀疏波和压缩波增加,形成一个空腔,空腔周期性振荡并逐渐增大,直至动态高速过程解体。气泡在振荡和破裂过程中的能量转移,产生搅动、瞬时高压和高温、激波、剪切力、微射流、声流和自由基 [50] ,从而引起物料发生物理、化学或生物活性改变。超声产生的空穴效应、机械效应、热效应等可减小膳食纤维粒径、增加表面积,从而提高溶解度及抗氧化性能 [51] 。超声波可以破坏多糖的化学键,使植物细胞壁空化。破裂和空泡化会影响碳水化合物聚合物的形态和结构,使组织疏松,改变表面亲水性,从而使其生物活性成分更好地溶出 [3] 。

在食品加工行业中,超声波被认为是一种高效、绿色的技术。近年来,超声波越来越多地与其他技术结合用于食品行业 [52] 。据报道,高强度超声可以破坏豆渣纤维的晶体结构,并提高其持水、持油和溶胀能力 [53] 。张雪绒等 [54] 用超声波处理香菇柄膳食纤维,不仅有利于可溶性总糖的溶出,也有效改善了分子结构,使细胞结构变得疏松,增加了亲水基团外露,进而其结合水力、DPPH清除率与羟自由基清除率均显著提高。有学者 [3] 发现超声波处理可以破坏大蒜秸秆IDF的微观结构,增加亲水基团,形成蜂窝状网络结构,使大蒜秸秆IDF具有更好的功能和理化性质。类似的,Hassan等 [55] 也对奇亚籽IDF进行了改性,观察了超声处理对奇亚籽膳食纤维功能和理化特性的影响。在最优条件下,超声处理的IDF表现出比未处理的IDF更好的功能和物理化学特性,如持水力、持油力、葡萄糖吸附能力。张艳等 [51] 运用超声波对新鲜、干制、冷冻等3种方竹笋膳食纤维进行改性处理,证明超声波的空穴效应、机械效应、热效应等可促使分子裂解,暴露分子内部更多基团,减小颗粒粒径,增加表面积,提高溶解度,显著提高了方竹笋膳食纤维的理化性质和抗氧化活性。此外,由于超声波的空化能力,超声波处理还可以提高脱脂米糠膳食纤维的葡萄糖吸附能力和SDF含量 [44] ,以及藜籽膳食纤维的持水力、持油力 [56] 。

此外,许多学者还将超声辅以其他改性手段来更好地提升膳食纤维的品质或是将超声与其他改性手段进行比较。吴俊男等 [57] 以小麦麸皮为材料,研究了超声波与酶法结合改性对膳食纤维的特性影响,结果表明改性后膳食纤维的木糖含量显著增加,且有较强的热稳定性和抗氧化功能特性。He等 [58] 从玫瑰果渣中提取的不溶性膳食纤维通过酶水解(EH)和超声辅助酶水解(UEH)方法进行了改性,并对其理化,功能和微观结构特性进行了研究。结果表明,EH处理的可溶性膳食纤维产量和葡萄糖吸附能力均比UEH更好,这有助于更好的持油力,膨胀力,阳离子交换和胆固醇吸附能力。Zhang等采用超声波辅助碱提取法从木瓜皮中提取SDF,结果表明SDF具有较高的热稳定性、保水性和持油性 [59] 。有研究表明,可以从亚麻籽胶中提取SDF,并比较了三种提取方法:酶法、超声酶法和碱法。超声波–酶法提取的SDF含量最高 [60] 。与热处理、酶处理和化学处理相比,超声波处理更容易实施并且具有更高的提取效率。它能在一定程度上提高膳食纤维的持水、持油、溶胀和流变性能 [61] 。不仅如此,Wei等人 [62] 研究了高温、高压、超声三种处理对小米麸皮中可溶性膳食纤维理化性质和结构的影响。经超声处理的纤维的理化性质得到了最显着的改善,在持水性、膨胀性、持油性、结合脂肪的能力和阳离子交换能力上都表现出最显著的提高。

6. 结论与展望

超声改性是通过绿色环保的手段改变膳食纤维的微观结构及加工功能特性,有研究结果证实其在一定程度上发挥重要作用,这也为膳食纤维的综合利用带来有益方法,使这些农产品加工的副产品产生增值的效果,同时对于环保也有积极意义。膳食纤维改性的最终目的是将改性产品应用于功能性食品工业,以提高植物及其副产品的经济价值和利用率,满足日益增长的膳食纤维需求。

目前,对于膳食纤维的改性还没有标准;改性膳食纤维的工业化生产仍处于发展阶段。未来的研究需要改进策略,以生产更适合人体的膳食纤维,并确定适当的膳食纤维摄入量指南。既往对膳食纤维改性的研究都是从提取开始,然后是改性,损失很大。如果能在提取前进行修改,这些损失可能会显著减少。膳食纤维可以改善人类健康,但需要更多的临床研究来确定其益处和适当的剂量。

基金项目

安徽省重点研究与开发计划项目(202104f06020039)、佛山市科技创新专项资金(2015IT100015)、合肥工业大学智能制造技术研究院科技成果培育项目(IMIPY2021002, IMIPY2022015)。

文章引用

林艳婷,王宜坤,华 胜,吴泽宇,谢慧明,张文成. 超声处理对膳食纤维的改性研究进展
Research Progress in the Modification of Dietary Fiber by Ultrasonic Treatment[J]. 食品与营养科学, 2023, 12(02): 49-57. https://doi.org/10.12677/HJFNS.2023.122007

参考文献

  1. 1. Yang, Y., Ma, S., Wang, X., et al. (2017) Modification and Application of Dietary Fiber in Foods. Journal of Chemistry, 2017, Article ID: 9340427. https://doi.org/10.1155/2017/9340427

  2. 2. Huang, L., Ding, X., Zhao, Y., et al. (2018) Modification of Insoluble Dietary Fiber from Garlic Straw with Ultrasonic Treatment. Journal of Food Processing and Preservation, 42, e13399. https://doi.org/10.1111/jfpp.13399

  3. 3. Gan, J., Xie, L., Peng, G., et al. (2021) System-atic Review on Modification Methods of Dietary Fiber. Food Hydrocolloids, 119, Article ID: 106872. https://doi.org/10.1016/j.foodhyd.2021.106872

  4. 4. Akhlaghi, M. (2022) The Role of Dietary Fibers in Regulating Appetite, an Overview of Mechanisms and Weight Consequences. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2022.2130160

  5. 5. Gill, S.K., Rossi, M., Bajka, B., et al. (2021) Dietary Fibre in Gastrointestinal Health and Disease. Nature Reviews Gastroenterology & Hepatology, 18, 101-116. https://doi.org/10.1038/s41575-020-00375-4

  6. 6. Peregonchaya, O.V., Sokolova, S.A. and Derkanosova, N.M. (2020) Features of Sorption Interactions of Plant Dietary Fiber with Heavy Metal Cations According to Absorption IR Spectroscopy. IOP Conference Series: Earth and Environmental Science, 422, Article ID: 012077. https://doi.org/10.1088/1755-1315/422/1/012077

  7. 7. Zhu, W., Yang, J., Hu, D., et al. (2021) Removing Pb2+ with a Pectin-Rich Fiber from Sisal Waste. Food & Function, 12, 2418-2427. https://doi.org/10.1039/D0FO02829K

  8. 8. Jha, R., Fouhse, J.M., Tiwari, U.P., et al. (2019) Dietary Fiber and In-testinal Health of Monogastric Animals. Frontiers in Veterinary Science, 6, 48. https://doi.org/10.3389/fvets.2019.00048

  9. 9. Wang, K., Wang, Y., Chen, S., et al. (2022) Insoluble and Soluble Dietary Fibers from Kiwifruit (Actinidia deliciosa) Modify Gut Microbiota to Alleviate High-Fat Diet and Streptozoto-cin-Induced Type 2 Diabetes in Rats. Nutrients, 14, 3369. https://doi.org/10.3390/nu14163369

  10. 10. Liu, J., Hua, J., Chen, S., et al. (2022) The Potential Mechanisms of Bergamot-Derived Dietary Fiber Alleviating High-Fat Diet-Induced Hyperlipidemia and Obesity in Rats. Food & Function, 13, 8228-8242. https://doi.org/10.1039/D2FO00747A

  11. 11. Tang, C., Yang, J., Zhang, F., et al. (2022) Insight into the Physico-chemical, Structural, and in Vitro Hypoglycemic Properties of Bamboo Shoot Dietary Fibre: Comparison of Physical Modification Methods. International Journal of Food Science & Technology, 57, 4998-5010. https://doi.org/10.1111/ijfs.15784

  12. 12. Villanueva-Suárez, M.J., Pérez-Cózar, M.L., Mateos-Aparicio, I., et al. (2016) Potential Fat-Lowering and Prebiotic Effects of Enzymatically Treated Okara in High-Cholesterol-Fed Wistar Rats. International Journal of Food Sciences and Nutrition, 67, 828-833. https://doi.org/10.1080/09637486.2016.1200016

  13. 13. Barber, T.M., Kabisch, S., Pfeiffer, A.F.H., et al. (2020) The Health Benefits of Dietary Fibre. Nutrients, 12, 3209. https://doi.org/10.3390/nu12103209

  14. 14. Tian, M., Li, D., Ma, C., et al. (2021) Barley Leaf Insoluble Dietary Fiber Alleviated Dextran Sulfate Sodium-Induced Mice Colitis by Modulating Gut Microbiota. Nutrients, 13, 846. https://doi.org/10.3390/nu13030846

  15. 15. Sakakida, T., Ishikawa, T., Doi, T., et al. (2022) Water‐Soluble Dietary Fiber Alleviates Cancer-Induced Muscle Wasting through Changes in Gut Microenvironment in Mice. Cancer Science, 113, 1789. https://doi.org/10.1111/cas.15306

  16. 16. Zheng, Y., Wang, X., Tian, H., et al. (2021) Effect of Four Modification Methods on Adsorption Capacities and in Vitro Hypoglycemic Properties of Millet Bran Dietary Fibre. Food Research International, 147, Article ID: 110565. https://doi.org/10.1016/j.foodres.2021.110565

  17. 17. Gouseti, O., Lovegrove, A., Kosik, O., et al. (2019) Exploring the Role of Cereal Dietary Fiber in Digestion. Journal of Agricultural and Food Chemistry, 67, 8419-8424. https://doi.org/10.1021/acs.jafc.9b01847

  18. 18. Chen, C., Zeng, Y., Xu, J., et al. (2016) Therapeutic Effects of Solu-ble Dietary Fiber Consumption on Type 2 Diabetes Mellitus. Experimental and Therapeutic Medicine, 12, 1232-1242. https://doi.org/10.3892/etm.2016.3377

  19. 19. Du, X., Wang, L., Huang, X., et al. (2021) Effects of Different Extrac-tion Methods on Structure and Properties of Soluble Dietary Fiber from Defatted Coconut Flour. LWT, 143, Article ID: 111031. https://doi.org/10.1016/j.lwt.2021.111031

  20. 20. Cassidy, Y.M., McSorley, E.M. and Allsopp, P.J. (2018) Effect of Soluble Dietary Fibre on Postprandial Blood Glucose Response and Its Potential as a Functional Food Ingredient. Jour-nal of Functional Foods, 46, 423-439. https://doi.org/10.1016/j.jff.2018.05.019

  21. 21. 牛希, 史乾坤, 赵城彬. 超声改性对燕麦膳食纤维理化性质及结构的影响[J]. 食品科学, 2020, 41(23): 130-136.

  22. 22. 胡筱, 潘浪, 朱平平, 等. 超声波改性对葵花粕膳食纤维性质与结构的影响[J]. 中国食品学报, 2019, 19(11): 88-99.

  23. 23. 张宏邦, 罗洁, 易翠平, 等. 稻米膳食纤维的提取, 改性及应用研究进展[J]. 中国粮油学报, 2019, 34(6): 141-146.

  24. 24. Yoshida, B.Y. and Prudencio, S.H. (2020) Al-kaline Hydrogen Peroxide Improves Physical, Chemical, and Techno- Functional Properties of Okara. Food Chemistry, 323, Article ID: 126776. https://doi.org/10.1016/j.foodchem.2020.126776

  25. 25. Meng, X., Liu, F., Xiao, Y., et al. (2019) Alterations in Physicochemical and Functional Properties of Buckwheat Straw Insoluble Dietary Fiber by Alkaline Hydrogen Peroxide Treatment. Food Chemistry: X, 3, Article ID: 100029. https://doi.org/10.1016/j.fochx.2019.100029

  26. 26. Wang, K., Li, M., Wang, Y., et al. (2021) Effects of Extraction Methods on the Structural Characteristics and Functional Properties of Dietary Fiber Extracted from Kiwifruit (Actinidia deliciosa). Food Hydrocolloids, 110, Article ID: 106162. https://doi.org/10.1016/j.foodhyd.2020.106162

  27. 27. Zhang, M.Y., Liao, A.M., Thakur, K., et al. (2019) Modifica-tion of Wheat Bran Insoluble Dietary Fiber with Carboxymethylation, Complex Enzymatic Hydrolysis and Ultrafine Comminution. Food Chemistry, 297, Article ID: 124983. https://doi.org/10.1016/j.foodchem.2019.124983

  28. 28. Park, K.H., Lee, K.Y. and Lee, H.G. (2013) Chemical Com-position and Physicochemical Properties of Barley Dietary Fiber by Chemical Modification. International Journal of Bi-ological Macromolecules, 60, 360-365. https://doi.org/10.1016/j.ijbiomac.2013.06.024

  29. 29. Wang, C., Song, R., Wei, S., et al. (2020) Modification of In-soluble Dietary Fiber from Ginger Residue through Enzymatic Treatments to Improve Its Bioactive Properties. LWT, 125, Article ID: 109220. https://doi.org/10.1016/j.lwt.2020.109220

  30. 30. Zhu, Y., He, C., Fan, H., et al. (2019) Modification of Foxtail Mil-let (Setaria italica) Bran Dietary Fiber by Xylanase-Catalyzed Hydrolysis Improves Its Cholesterol-Binding Capacity. LWT, 101, 463-468. https://doi.org/10.1016/j.lwt.2018.11.052

  31. 31. Jia, M., Chen, J., Liu, X., et al. (2019) Structural Characteristics and Functional Properties of Soluble Dietary Fiber from Defatted Rice Bran Obtained through Trichoderma viride Fermenta-tion. Food Hydrocolloids, 94, 468-474. https://doi.org/10.1016/j.foodhyd.2019.03.047

  32. 32. Xie, F., Li, M., Lan, X., et al. (2017) Modification of Dietary Fibers from Purple-Fleshed Potatoes (Heimeiren) with High Hydrostatic Pressure and High Pressure Homogenization Processing: A Comparative Study. Innovative Food Science & Emerging Technologies, 42, 157-164. https://doi.org/10.1016/j.ifset.2017.05.012

  33. 33. He, K., Zhang, X., Li, Y., et al. (2020) Water-Insoluble Die-tary-Fibers from Flammulina velutiper Used as Edible Stabilizers for Oil-in-Water Pickering Emulsions. Food Hydro-colloids, 101, Article ID: 105519. https://doi.org/10.1016/j.foodhyd.2019.105519

  34. 34. Zhang, Y., Qi, J., Zeng, W., et al. (2020) Properties of Dietary Fiber from Citrus Obtained through Alkaline Hydrogen Peroxide Treatment and Homogenization Treatment. Food Chemistry, 311, Article ID: 125873. https://doi.org/10.1016/j.foodchem.2019.125873

  35. 35. Wang, L., Wu, J., Luo, X., et al. (2018) Dynamic High-Pressure Microfluidization Treatment of Rice Bran: Effect on Pb(II) Ions Adsorption in Vitro. Journal of Food Science, 83, 1980-1989. https://doi.org/10.1111/1750-3841.14201

  36. 36. Yu, G., Bei, J., Zhao, J., et al. (2018) Modification of Carrot (Daucus carota Linn. var. Sativa Hoffm.) Pomace Insoluble Dietary Fiber with Complex Enzyme Method, Ultrafine Comminution, and High Hydrostatic Pressure. Food Chemistry, 257, 333-340. https://doi.org/10.1016/j.foodchem.2018.03.037

  37. 37. Bermúdez-Aguirre, D. and Barbosa-Cánovas, G.V. (2011) An Update on High Hydrostatic Pressure, from the Laboratory to Industrial Applications. Food Engineering Reviews, 3, 44-61. https://doi.org/10.1007/s12393-010-9030-4

  38. 38. Mateos-Aparicio, I., Mateos-Peinado, C. and Rupérez, P. (2010) High Hydrostatic Pressure Improves the Functionality of Dietary Fibre in Okara By-Product from Soybean. In-novative Food Science & Emerging Technologies, 11, 445-450. https://doi.org/10.1016/j.ifset.2010.02.003

  39. 39. Song, Y., Su, W. and Mu, Y.C. (2018) Modification of Bamboo Shoot Dietary Fiber by Extrusion-Cellulase Technology and Its Properties. International Journal of Food Properties, 21, 1219-1232. https://doi.org/10.1080/10942912.2018.1479715

  40. 40. Chen, Y., Ye, R., Yin, L., et al. (2014) Novel Blasting Ex-trusion Processing Improved the Physicochemical Properties of Soluble Dietary Fiber from Soybean Residue and in Vivo Evaluation. Journal of Food Engineering, 120, 1-8. https://doi.org/10.1016/j.jfoodeng.2013.07.011

  41. 41. Garcia-Amezquita, L.E., Tejada-Ortigoza, V., Pérez-Carrillo, E., et al. (2019) Functional and Compositional Changes of Orange Peel Fiber Thermally-Treated in a Twin Extruder. LWT, 111, 673-681. https://doi.org/10.1016/j.lwt.2019.05.082

  42. 42. Guo, Y., Liu, W., Wu, B., et al. (2018) Modification of Garlic Skin Dietary Fiber with Twin-Screw Extrusion Process and in Vivo Evaluation of Pb Binding. Food Chemistry, 268, 550-557. https://doi.org/10.1016/j.foodchem.2018.06.047

  43. 43. Gan, J., Huang, Z., Yu, Q., et al. (2020) Microwave Assisted Extraction with Three Modifications on Structural and Functional Properties of Soluble Dietary Fibers from Grapefruit Peel. Food Hydrocolloids, 101, Article ID: 105549. https://doi.org/10.1016/j.foodhyd.2019.105549

  44. 44. Daou, C. and Zhang, H. (2012) Study on Functional Proper-ties of Physically Modified Dietary Fibres Derived from Defatted Rice Bran. Journal of Agricultural Science, 4, 85. https://doi.org/10.5539/jas.v4n9p85

  45. 45. Lin, D., Long, X., Huang, Y., et al. (2020) Effects of Microbial Fermen-tation and Microwave Treatment on the Composition, Structural Characteristics, and Functional Properties of Modified Okara Dietary Fiber. LWT, 123, Article ID: 109059. https://doi.org/10.1016/j.lwt.2020.109059

  46. 46. 周璇, 谢卫红, 孙哲浩, 李巧玲. 物理改性对膳食纤维结构及功能特性的影响[J]. 食品工业, 2022, 43(11): 201-204.

  47. 47. Wiktor, A., Landfeld, A., Matys, A., et al. (2021) Selected Quality Parameters of Air-Dried Apples Pretreated by High Pressure, Ultrasounds and Pulsed Electric Field—A Comparison Study. Foods, 10, 1943. https://doi.org/10.3390/foods10081943

  48. 48. Silva, M., Kadam, M.R., Munasinghe, D., et al. (2022) Encapsulation of Nutraceuticals in Yoghurt and Beverage Products Using the Ultrasound and High-Pressure Processing Technologies. Foods, 11, 2999. https://doi.org/10.3390/foods11192999

  49. 49. Fu, X., Belwal, T., Cravotto, G., et al. (2020) Sono-Physical and Sono-Chemical Effects of Ultrasound: Primary Applications in Extraction and Freezing Operations and Influence on Food Components. Ultrasonics Sonochemistry, 60, Article ID: 104726. https://doi.org/10.1016/j.ultsonch.2019.104726

  50. 50. Chen, J., Mu, T., Zhang, M., et al. (2019) Effect of High Hy-drostatic Pressure on the Structure, Physicochemical and Functional Properties of Protein Isolates from Cumin (Cuminum cyminum) Seeds. International Journal of Food Science & Technology, 54, 752-761. https://doi.org/10.1111/ijfs.13990

  51. 51. 张艳, 何翠, 刘玉凌, 等. 超声波改性对方竹笋膳食纤维性能和结构的影响[J]. 食品与发酵工业, 2017, 43(1): 150.

  52. 52. Singla, M. and Sit, N. (2021) Application of Ultrasound in Combi-nation with Other Technologies in Food Processing: A Review. Ultrasonics Sonochemistry, 73, Article ID: 105506. https://doi.org/10.1016/j.ultsonch.2021.105506

  53. 53. Fan, X., Chang, H., Lin, Y., et al. (2020) Effects of Ultra-sound-Assisted Enzyme Hydrolysis on the Microstructure and Physicochemical Properties of Okara Fibers. Ultrasonics Sonochemistry, 69, Article ID: 105247. https://doi.org/10.1016/j.ultsonch.2020.105247

  54. 54. 张雪绒, 宗丽菁, 姚晓瞳, 等. 香菇柄膳食纤维的超声改性及其抗氧化性[J]. 海南师范大学学报: 自然科学版, 2018, 31(2): 151-157.

  55. 55. Hassan, Z., Imran, M., Ahmad, M.H., et al. (2021) Ultrasound-Assisted Modification of Insoluble Dietary Fiber from Chia (Salvia hispanica L.) Seeds. Journal of Food Quality, 2021, Article ID: 5035299. https://doi.org/10.1155/2021/5035299

  56. 56. Kurek, M.A., Karp, S., Wyrwisz, J., et al. (2018) Physicochemical Properties of Dietary Fibers Extracted from Gluten-Free Sources: Quinoa (Chenopodium quinoa), Amaranth (Amaran-thus caudatus) and Millet (Panicum miliaceum). Food Hydrocolloids, 85, 321-330. https://doi.org/10.1016/j.foodhyd.2018.07.021

  57. 57. 吴俊男, 马森, 王晓曦, 等. 小麦麸皮膳食纤维的超声波-酶法改性研究[J]. 粮食与油脂, 2017(6): 22-26.

  58. 58. He, Y., Li, W., Zhang, X., et al. (2020) Physicochemical, Func-tional, and Microstructural Properties of Modified Insoluble Dietary Fiber Extracted from Rose Pomace. Journal of Food Science and Technology, 57, 1421-1429. https://doi.org/10.1007/s13197-019-04177-8

  59. 59. Zhang, W., Zeng, G., Pan, Y., et al. (2017) Properties of Soluble Dietary Fiber-Polysaccharide from Papaya Peel Obtained through Alkaline or Ultrasound-Assisted Alkaline Extraction. Carbohydrate Polymers, 172, 102-112. https://doi.org/10.1016/j.carbpol.2017.05.030

  60. 60. Moczkowska, M., Karp, S., Niu, Y., et al. (2019) Enzymatic, Enzymatic-Ultrasonic and Alkaline Extraction of Soluble Dietary Fibre from Flaxseed—A Physicochemical Approach. Food Hydrocolloids, 90, 105-112. https://doi.org/10.1016/j.foodhyd.2018.12.018

  61. 61. Martinez-Solano, K.C., Garcia-Carrera, N.A., Tejada-Ortigoza, V., et al. (2021) Ultrasound Application for the Extraction and Modification of Fiber-Rich By-Products. Food Engineer-ing Reviews, 13, 524-543. https://doi.org/10.1007/s12393-020-09269-2

  62. 62. Wei, C., Ge, Y., Liu, D., et al. (2022) Effects of High-Temperature, High-Pressure, and Ultrasonic Treatment on the Physicochemical Properties and Structure of Soluble Dietary Fibers of Millet Bran. Frontiers in Nutrition, 8, Article No. 1172. https://doi.org/10.3389/fnut.2021.820715

  63. NOTES

    *通讯作者。

期刊菜单