Bioprocess
Vol.07 No.02(2017), Article ID:20879,5 pages
10.12677/BP.2017.72002

Research Progress of ISG56/IFIT1 Family

Xiaoquan Li, Qian Tao, Yuxiao Li

College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning Guangxi

Received: May 15th, 2017; accepted: Jun. 1st, 2017; published: Jun. 7th, 2017

ABSTRACT

ISG56/IFIIT1 family are the members of IFN-stimulated genes. They are regulated by virus or IFN, and they perform a variety of biological functions in antiviral immunity and the regulation of interferon signaling pathway. In this paper, the recent progress of ISG56 family, including gene structure, protein characteristics, regulatory pathway, expression characteristics and biological functions was summarized.

Keywords:ISG56, IFN Regulatory Pathway, Antiviral Activity

ISG56/IFIT1家族研究进展

李晓泉,陶倩,李玉霄

广西大学动物科学技术学院,广西 南宁

收稿日期:2017年5月15日;录用日期:2017年6月1日;发布日期:2017年6月7日

摘 要

ISG56/IFIT1家族是干扰素刺激基因的成员,其被病毒或干扰素调控,在抗病毒免疫以及干扰素信号通路的调控中发挥了多种生物学功能。本文对ISG56家族基因结构、蛋白特点、调控通路、表达特点和生物学功能等最新研究进展进行总结和归纳。

关键词 :ISG56,干扰素调控通路,抗病毒活性

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

干扰素刺激基因56 (IFN-stimulated gene 56, ISG56)又称为IFIT1基因,除了干扰素(Interferon, IFN),多种病毒均可以上调ISG56家族基因的表达。ISG56家族有四个成员:ISG56/IFIT1、ISG54/IFIT2、ISG60/IFIT3、ISG58/IFIT5 [1] 。

2. ISG56家族的结构

2.1. ISG56家族蛋白的结构特点

ISG56家族蛋白包含多个TPR (tetratricopeptide repeat)结构域,该结构域由34个氨基酸组成,有两个反向平行的螺旋(螺旋A和螺旋B)和八个松散的保守残基(W4、L7、G8、Y11、A20、F24、A27和P32) [2] 。包含TPR结构的蛋白能够形成蛋白复合物,如分子伴侣复合物、分裂后期促进复合物和蛋白转运复合物等 [3] 。TPR结构域是ISG56家族蛋白和其它蛋白相互作用的基础。

2.2. ISG56家族基因组的结构特点

ISG56家族基因组都含有类似的结构。它们含有两个外显子,第一个外显子包含了5′-UTR和起始密码子,第二个外显子编码剩余的mRNA。除ISG58外,ISG56家族基因的启动子包含2个干扰素刺激应答元件(IFN-stimulated response elements, ISRE),它们位于TATA框上游200 bp的位置。ISRE在干扰素调节因子(IFN regulatory factors, IRFs)的作用下,激活mRNA的转录 [4] 。

3. ISG56家族的调控和对IFN-I信号通路的调节

3.1. 调控ISG56家族的信号通路

固有免疫是对抗病原微生物的第一道防线,细胞的模式识别受体(pattern recognition receptor, PRRs)在识别病原相关分子模式(pathogen-associated molecular patterns, PAMPs)后,通过上调IFN-I和ISGs对抗病原微生物的入侵 [5] [6] 。

缺乏外界刺激时,绝大多数细胞不表达ISG56,但多种刺激均可以诱导ISG56基因家族蛋白的表达。多种RNA或DNA病毒感染能上调ISG56的表达,如仙台病毒(Sendai virus)、呼吸道合胞体病毒(respiratory syncytial virus, RSV)、水泡性口膜炎病毒(Vesicular stomatitis virus, VSV)等 [1] 。

ISG56家族受到固有免疫多条通路的调控。Toll样受体(Toll-like receptors, TLRs)可以识别PAMP,激活接头分子TRIF和MyD88 [7] [8] ,类似地,RIG-I样受体(RIG-I like receptors, RLRs)信号通路可以通过RIG-I和MDA5对PAMP对进行识别,进而激活MAVS和MITA。这些通路均能激活IRF3、NF-κB和c-Jun等转录因子,转录IFN-I和ISG56家族基因mRNA [9] 。Imaizumi等证实在人星形细胞瘤中,TLR3信号通路诱导了ISG54和ISG56基因的表达,ISG54和ISG56的表达量与CXCL10的表达量有关 [10] ,他们还发现,TLR4通过MDA5和ISG56介导了CXCL10的表达 [11] 。

ISG56家族蛋白可以利用多种IRFs进行转录:ISGF3复合物由IRF9、Stat-1/2组成,该复合物被IFNα/β受体激活,随后转录ISG56家族基因;双链RNA (double-stranded RNA, dsRNA)通过TLR3或RIG-I/MDA5激活IRF3,脂多糖(Lipopolysaccharides, LPS)通过TLR4激活IRF3,被激活的IRF3转录ISG56家族基因mRNA [12] [13] ,ISG56的表达常作为IRF3转录活性的标志。

最新发现,调控染色质活性的蛋白参与ISG56家族基因调控。组蛋白3 (histone 3)异构体H3.3的表达是转录过程中染色质被激活的标志。实验发现,在IFN β刺激下,H3.3定位在ISG56基因2号外显子的部位,而不是它的启动子区域。如果敲除H3.3基因,IFN β诱导ISG56的过程无法进行 [14] 。

3.2. ISG56家族基因诱导表达的特点

ISG56基因家族蛋白在不同刺激以及不同细胞下所呈现的表达规律不同。Wacher等 [15] 利用LCMV或West Nile病毒分别感染小鼠,检测小鼠脑内ISG56/54/49的表达变化,发现这三个基因mRNA都在感染后6天上调。在神经元细胞内,这三个基因的上调需要病毒产生的IFN-I,该过程依赖Stat-1/2发挥作用。在非神经元细胞内,病毒能够直接诱导这些基因的表达。这三个基因在脑不同细胞内的规律亦不同,星形胶质细胞和海马细胞CA1/CA2椎体细胞主要表达ISG56,小颗粒细胞主要表达ISG49,而在嗅球中表达的ISG54水平最高。小鼠感染VSV后,Terenzi等 [16] 在各个组织和器官中检测ISG56家族蛋白的表达情况,结果表明,VSV诱导的ISG56表达主要在肝和肾,ISG54主要分布在肾,B细胞主要表达ISG54而不表达ISG56,CD4或者CD8 T细胞能表达两种蛋白。

3.3. ISG56对IFN-I信号通路的调节

ISG56家族蛋白参与IFN信号的调控。ISG54和ISG56均能正调控TLR3/IFN-β/STAT1信号通路 [17] 。RLR信号通路中,激活的RIG-I与MAVS形成的复合体招募下游STING、TBK1和IRF3等分子的激活。Sendai virus感染条件下,ISG56和ISG54能够与STING蛋白结合,进而抑制了下游IRF3和NF-κB等基因的激活,从而阻断了IFN-I的转录生成,该调节机制能避免细胞产生过量的抗病毒因子对细胞造成伤害。类似地,用siRNA抑制ISG56的表达可以减少VSV在细胞内的复制,该机制可能与抑制ISG56后IFN-I的表达上升有关 [18] 。

4. ISG56家族抗病毒功能

ISG56可以抑制多种病毒的转录和复制,其机制不尽相同。丙肝病毒是单股正链RNA病毒,它通过IRES依赖的核糖体招募机制进行翻译,该机制与细胞帽子依赖的翻译方式相似,均需要利用eIF3。eIF3是一个约800 kDa的大蛋白,由13个亚基组成。eIF3与核糖体60S/40S亚基的解离、eIF2/GTP/Met-tRNA复合物的生成等生物学过程息息相关 [19] 。ISG56和ISG54能够结合eIF3e,抑制转录起始复合物的生成,导致翻译信号终止 [20] 。HCV IRES介导的翻译比细胞内帽子依赖的翻译更依赖eIF3,ISG56更倾向于结合HCV gRNA和eIF3,抑制HCV的转录 [9] 。

在人乳头瘤状病毒中(HPV)中,ISG56可以与病毒E1蛋白结合。一方面,被ISG56结合的E1蛋白解旋酶活性显著降低,另一方面,大量被ISG56结合的E1蛋白停留在了细胞质,无法与病毒基因组结合 [21] 。ISG56还能识别病毒的2`-O methylation和 5`-ppp ssRNA,ISG54能结合某些细胞内的RNA修饰如富含AU的RNA [2] ,激活固有免疫反应。Stawowczyk等 [22] 发现IFN-I上调的ISG54具有诱导凋亡的功能。过量表达ISG54、ISG56和ISG49的小鼠感染Sindbis病毒,小鼠的成活率从25%提升到了40%,证实ISG56能抑制Sindbis病毒,但其机理仍不明确 [23] 。

5. 结论与展望

ISG56作为众多ISGs的一员,在IFN-I信号的调控和抗病毒等过程发挥了重要的生物学功能。目前虽已证实ISG56可针对多种病原微生物发挥作用,但很多详细的机理仍需要研究。深入了解ISG56抗病毒的机理以及在IFN-I信号通路中发挥的作用,能使我们更好的了解动物机体发挥抗病毒免疫以及免疫调控的机制,为更有效地防控动物疫病提供理论依据。

文章引用

李晓泉,陶倩,李玉霄. ISG56/IFIT1家族研究进展
Research Progress of ISG56/IFIT1 Family[J]. 生物过程, 2017, 07(02): 9-13. http://dx.doi.org/10.12677/BP.2017.72002

参考文献 (References)

  1. 1. Fensterl, V. and Sen, G.C. (2011) The ISG56/IFIT1 Gene Family. Journal of Interferon & Cytokine Research, 31, 71- 78. https://doi.org/10.1089/jir.2010.0101

  2. 2. Yang, Z., Liang, H., Zhou, Q., et al. (2012) Crystal Structure of ISG54 Reveals a Novel RNA Binding Structure and Potential Functional Mechanisms. Cell Research, 22, 1328-1338. https://doi.org/10.1038/cr.2012.111

  3. 3. Cortajarena, A.L. and Regan, L. (2006) Ligand Binding by TPR Domains. Protein Science, 15, 1193-1198. https://doi.org/10.1110/ps.062092506

  4. 4. Savitsky, D., Tamura, T., Yanai, H., et al. (2010) Regulation of Immunity and Oncogenesis by the IRF Transcription Factor Family. Cancer Immunology, Immunotherapy, 59, 489-510. https://doi.org/10.1007/s00262-009-0804-6

  5. 5. Leifer, C.A. and Medvedev, A.E. (2016) Molecular Mechanisms of Regulation of Toll-Like Receptor Signaling. Journal of Leukocyte Biology, 100, 927-941. https://doi.org/10.1189/jlb.2MR0316-117RR

  6. 6. Kawasaki, T. and Kawai, T. (2014) Toll-Like Receptor Signaling Pathways. Frontiers in Immunology, 5, 461. https://doi.org/10.3389/fimmu.2014.00461

  7. 7. Sarkar, S.N., Peters, K.L., Elco, C.P., et al. (2004) Novel Roles of TLR3 Tyrosine Phosphorylation and PI3 Kinase in Double-Stranded RNA Signaling. Nature Structural & Molecular Biology, 11, 1060-1067. https://doi.org/10.1038/nsmb847

  8. 8. Ogawa, S., Lozach, J., Benner, C., et al. (2005) Molecular Determinants of Crosstalk between Nuclear Receptors and Toll-Like Receptors. Cell, 122, 707-721.

  9. 9. Wang, C., Pflugheber, J., Sumpter, R.J., et al. (2003) Alpha Interferon Induces Distinct Translational Control Programs to Suppress Hepatitis C Virus RNA Replication. Journal of Virology, 77, 3898-3912. https://doi.org/10.1128/JVI.77.7.3898-3912.2003

  10. 10. Imaizumi, T., Numata, A., Yano, C., et al. (2014) ISG54 and ISG56 Are Induced by TLR3 Signaling in U373MG Human Astrocytoma Cells: Possible Involvement in CXCL10 Expression. Neuroscience Research, 84, 34-42.

  11. 11. Imaizumi, T., Murakami, K., Ohta, K., et al. (2013) MDA5 and ISG56 Mediate CXCL10 Expression Induced by Toll-Like Receptor 4 Activation in U373MG Human Astrocytoma Cells. Neuroscience Research, 76, 195-206. https://doi.org/10.1016/j.neures.2013.05.002

  12. 12. Han, Y.W., Choi, J.Y., Uyangaa, E., et al. (2014) Distinct Dictation of Japanese Encephalitis Virus-Induced Neuroinflammation and Lethality via Triggering TLR3 and TLR4 Signal Pathways. PLoS Pathogens, 10, e1004319. https://doi.org/10.1371/journal.ppat.1004319

  13. 13. Sheikh, F., Dickensheets, H., Gamero, A.M., et al. (2014) An Essential Role for IFN-Beta in the Induction of IFN- Stimulated Gene Expression by LPS in Macrophages. Journal of Leukocyte Biology, 96, 591-600. https://doi.org/10.1189/jlb.2A0414-191R

  14. 14. Tamura, T., Smith, M., Kanno, T., et al. (2009) Inducible Deposition of the Histone Variant H3.3 in Interferon-Stimu- lated Genes. Journal of Biological Chemistry, 284, 12217-12225. https://doi.org/10.1074/jbc.M805651200

  15. 15. Wacher, C., Muller, M., Hofer, M.J., et al. (2007) Coordinated Regulation and Widespread Cellular Expression of Interferon-Stimulated Genes (ISG) ISG-49, ISG-54, and ISG-56 in the Central Nervous System after Infection with Distinct Viruses. Journal of Virology, 81, 860-871. https://doi.org/10.1128/JVI.01167-06

  16. 16. Terenzi, F., Hui, D.J., Merrick, W.C. and Sen, G.C. (2006) Distinct Induction Patterns and Functions of Two Closely Related Interferon-Inducible Human Genes, ISG54 and ISG56. Journal of Biological Chemistry, 281, 34064-34071. https://doi.org/10.1074/jbc.M605771200

  17. 17. Imaizumi, T., Yoshida, H., Hayakari, R., et al. (2016) Interferon-Stimulated Gene (ISG) 60, as Well as ISG56 and ISG54, Positively Regulates TLR3/IFN-beta/STAT1 Axis in U373MG Human Astrocytoma Cells. Neuroscience Research, 105, 35-41. https://doi.org/10.1016/j.neures.2015.09.002

  18. 18. Li, Y., Li, C., Xue, P., et al. (2009) ISG56 Is a Negative-Feedback Regulator of Virus-Triggered Signaling and Cellular Antiviral Response. Proceedings of the National Academy of Sciences of the United States of America, 106, 7945- 7950. https://doi.org/10.1073/pnas.0900818106

  19. 19. Hinnebusch, A.G. (2006) eIF3: A Versatile Scaffold for Translation Initiation Complexes. Trends in Biochemical Sciences, 31, 553-562. https://doi.org/10.1016/j.tibs.2006.08.005

  20. 20. Hui, D.J., Terenzi, F., Merrick, W.C. and Sen, G.C. (2005) Mouse p56 Blocks a Distinct Function of Eukaryotic Initiation Factor 3 in Translation Initiation. Journal of Biological Chemistry, 280, 3433-3440. https://doi.org/10.1074/jbc.M406700200

  21. 21. Terenzi, F., Saikia, P. and Sen, G.C. (2008) Interferon-Inducible Protein, P56, Inhibits HPV DNA Replication by Binding to the Viral Protein E1. The EMBO Journal, 27, 3311-3321. https://doi.org/10.1038/emboj.2008.241

  22. 22. Stawowczyk, M., Van Scoy, S., Kumar, K.P. and Reich, N.C. (2011) The Interferon Stimulated Gene 54 Promotes Apoptosis. Journal of Biological Chemistry, 286, 7257-7266. https://doi.org/10.1074/jbc.M110.207068

  23. 23. Zhang, Y., Burke, C.W., Ryman, K.D. and Klimstra, W.B. (2007) Identification and Characterization of Interferon-Induced Proteins That Inhibit Alphavirus Replication. Journal of Virology, 81, 11246-11255. https://doi.org/10.1128/JVI.01282-07

期刊菜单