World Journal of Cancer Research
Vol. 09  No. 02 ( 2019 ), Article ID: 29491 , 8 pages
10.12677/WJCR.2019.92009

The Expression and Clinicopathologic Significance of Mir-22 in Gastric Cancer

Yi Tang1,2*, Yunyun Tang1,3*, Fang Liu1, Jian Su1,4, Hong Xia1, Xi Zeng1, Qi Su1#

1Cancer Research Institute, Center for Gastric Cancer Research of Hunan Province, Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, University of South China, Hengyang Hunan

2Department of Pathology, The Affiliated Xiangtan Hospital of University of South China, Xiangtan Hunan

3Department of Basic Medicine, Yongzhou Vocational Technical College, Yongzhou Hunan

4Department of Pathology, The Second Affiliated Hospital of University of South China, Hengyang Hunan

Received: Mar. 6th, 2019; accepted: Mar. 21st, 2019; published: Mar. 28th, 2019

ABSTRACT

Objective: To investigate the expression and clinicopathologic significance of miR-22 in human gastric cancer. Methods: Tissue microarray and in situ hybridization were used to detect the expression level of miR-22 in 89 gastric cancer tissues and 41 normal tissues. Results: In situ hybridization showed that the expression level of miR-22 in gastric cancer tissues was significantly down-regulated compared with normal gastric mucosa tissues (P < 0.01), and the expression level of miR-22 in gastric cancer tissues was positively correlated. In 89 cases of gastric cancer, the expression level of miR-22 was negatively correlated with clinical staging and lymph node metastasis (P < 0.01). Conclusion: The expression of miR-22 in gastric cancer was down-regulated and correlated with clinical staging and lymph node metastasis of gastric cancer.

Keywords:Mir-22, Tissue Microarray, In Situ Hybridization, Gastric Cancer, Clinicopathologic Significance

miR-22在胃癌中表达与临床病理意义

唐仪1,2*,唐云云1,3*,刘芳1,苏坚1,4,夏红1,曾希1,苏琦1#

1南华大学肿瘤研究所,湖南省肿瘤细胞与分子病理学重点实验室,湖南省胃癌研究中心,湖南 衡阳

2南华大学附属湘潭医院病理科,湖南 湘潭

3永州职业技术学院基础医学系,湖南 永州

4南华大学附属第二医院病理科,湖南 衡阳

收稿日期:2019年3月6日;录用日期:2019年3月21日;发布日期:2019年3月28日

摘 要

目的:探讨miR-22在人胃癌组织的表达及临床病理意义。方法:采用组织芯片与原位杂交技术检测89例胃癌组织及41例正常组织中miR-22的表达水平。结果:原位杂交结果显示,miR-22胃癌组织中的表达水平较正常胃粘膜组织明显下调(P < 0.01)。在89例胃癌组织中,miR-22的表达水平与患者的临床分期和淋巴结转移呈负相关(P < 0.01)。结论:miR-22在胃癌中表达下调,并与胃癌临床分期以及淋巴结转移相关。

关键词 :miR-22,组织芯片,原位杂交,胃癌,临床病理意义

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

胃癌是最常见的恶性肿瘤之一,据2018年全世界185个国家统计的最新报告,每年新发胃癌病例约100万与死亡78.3万,发生率与死亡率分别居于第五位与第三位 [1]。我国是胃癌高发地区,每年约新发67.9万和死亡49.8万,发生率与死亡率仅次于肺癌而位于第二。由于患者就诊时大多已发生侵袭转移,常规手术和化疗效果较差,从而5年生存率低 [2]。因此,研究胃癌侵袭转移机制,寻找靶点具有重要的意义。

近年来,microRNAs (miRNAs)在肿瘤中的作用引起人们高度关注。miRNAs是一类含量丰富且高度保守的非编码内源性18~24 nt的小RNA分子,通过转录靶向性3′未翻译区下游基因的mRNA抑制mRNA的表达在肿瘤的发生和发展中起着决定性的作用 [3] [4] [5]。本研究采用组织芯片与原位杂交技术检测miR-22在人胃癌组织的表达及其临床病理意义。

2. 材料和方法

2.1. 组织标本

从南华大学附属湘潭医院收集胃癌89例与正常胃黏膜组织41例标本,病理诊断结果经两名以上病理学专家确诊,制成芯片。男性48例,女性41例,年龄28~76岁,平均年龄56.7岁。按WHO病理组织学分类,高分化与中分化腺癌21例,低分化腺癌68例。所有研究参与者均获得书面知情同意,并经华南大学伦理委员会批准,收集和使用组织的程序符合赫尔辛基宣言中制定的道德标准。

2.2. 主要试剂

原位杂交试剂盒购自武汉博士德公司;miR-22 mimics (5’-UAAUACUGCCUGGUAAUGAUGA-3’)由美国Exiqon公司合成;miR-22原位杂交探针序列(5’-ACAGTTCTTCAACTGGCAGCTT-3’)由美国Exiqon公司合成。

2.3. 原位杂交实验

烤片、二甲苯脱蜡、无水乙醇脱二甲苯、梯度酒精复水各5 min,无酶水洗1 min × 1次。3%过氧化氢灭活内源性酶,室温5~10 min,无酶水洗1 min × 3次。3%胃蛋白酶37℃消化15 min,PBS液洗5 min × 3次,无酶水洗1 min × 1次。后固定:1%多聚甲醛/0.1 M PBS固定10 min,无酶水洗1 min × 3次。预杂交:滴加预杂交液20 ul于切片上,置湿盒中, 55 ℃ 预杂交2 h。杂交:将miRNA探针按说明稀释于灭菌无酶水中,滴加杂交液20 ul于切片上,恒温箱中 55 ℃ 杂交过夜。次日用2 × SSC缓冲液漂洗5 min × 2次,0.5 × SSC缓冲液,0.2 × SSC缓冲液各漂洗15 mim × 1次。封闭:滴加封闭液, 37 ℃ 30 min,甩去残余液体,免洗。标记:滴加生物素化鼠抗地高辛,室温孵育2 h,PBST液洗5 min × 4次。滴加SABC液,孵育30 min,PBST液洗5 min × 3次。DAB显色,苏木素复染,水洗,中性树胶封片保存。评分标准:根据染色强度和阳性细胞分布比例进行综合评定,染色强度分为0~4分,0~1分为阴性,1~2分为弱阳性,2~3分为中度阳性,3~4分为强阳性;选取样本中三个具有代表性的高倍视野,进行分析细胞的分布比例。表达得分 = 强度 × 阳性细胞的比例,最大值为4,最小值为0。由两名病理学专家以双盲的方式进行评定,得分 > 或 = 2为高表达,<2为低表达。

2.4. 统计学处理

采用SPSS 16.0软件进行统计学分析。两组间比较用t检验,多组间比较用单因素方差分析,当P < 0.05时,为差异有统计学意义。

3. 结果

3.1. 原位杂交检测miR-22在胃癌的表达

采用组织芯片与原位杂交实验检测miR-22在89例胃癌和41例正常胃粘膜中的表达。图1显示,miR-22在胃癌中的表达较正常胃粘膜组织明显下调(P < 0.01)。根据染色评分标准,miR-22在正常组织36.59%低表达,63.41%高表达,而89例胃癌组织中有61.80%低表达,38.20%高表达(表1)。

Figure 1. The expression of miR-22 in gastric cancer detected by in situ hybridization

图1. 原位杂交检测miR-22在胃癌与正常组织的表达(×10)

Table 1. miR-22 is downregulated in gastric cancer

表1. miR-22在胃癌中低表达

3.2. miR-22在胃癌的表达与临床病理特征的关系

结果分析显示,miR-22在胃癌组织中的表达与患者年龄、性别、分化程度、肿瘤大小无统计学意义 (P > 0.05)。然而,miR-22的表达随着胃癌的临床分期增高而下调(P < 0.05),在有淋巴结转移的胃癌组织中miR-22的表达显著低于无淋巴结转移组(P < 0.01) (表2)。结果提示miR-22在胃癌的发生发展中发挥重要作用。

Table 2. The correlation between expression of miR -22 in gastric cancer and clinicopathological feature

表2. miR-22在胃癌中表达与临床病理学特征的关系

4. 讨论

研究表明,检测miRNA的方法包括实时RT-PCR、northern blot、微阵列杂交、克隆和测序以及原位杂交(In Situ Hybridization, ISH)等分子生物学方法,目前,ISH已被广泛应用于福尔马林固定石蜡包埋的肿瘤组织标本中miRNA的检测 [3] [4] [5] [6] [7]。ISH对三阴乳腺癌的分析显示,miR-150水平在淋巴结转移患者中显著降低,提示miR-150可能负性调控TNBC细胞转移 [3]。ISH检测miR-21在壶腹腺癌、壶腹发育不良病灶和正常十二指肠粘膜样本中的表达显示,所有正常的样本呈阴性或微弱miR-21表达,而80.8%的壶腹腺癌显示miR-21高表达 [8]。ISH检测显示,结直肠癌癌细胞和基质的成纤维细胞miR 221和miR 222水平升高,表明miR 221和miR 222在肿瘤间质中高表达与CRC患者的转移和恶性潜能有关 [9]。ISH分析表明,miR-4317在NSCLC组织中表达下调,尤其是在淋巴结转移和晚期临床分期组织中。并且,miR-4317高表达的NSCLC患者总体生存更好 [10]。采用ISH检测miR-182-5p在肝癌组织中的表达表明,miR-182-5p在肝癌高表达与肝癌术后预后不良及早期复发有关,结果RT-PCR检测相同 [11]。原位杂交显示,与正常细胞和组织相比,乳腺癌组织和细胞中miR-223表达明显降低,而STIM1表达明显升高,miR-223与STIM1表达呈负相关。MiR-223通过负性调控STIM1的表达,抑制乳腺癌细胞的增殖和侵袭,miR-223/STIM1轴可能是治疗乳腺癌患者的潜在治疗靶点 [12]。ISH显示miR-143在细胞质表达,主要在良性组织的腔细胞中表达,而miR-145表达在细胞核,在肌上皮细胞中有很强的染色。这两种miRNA都存在于乳腺癌上皮细胞和间质纤维母细胞中,表明miR-143和-145具有肿瘤抑制典型的功能特性和表达模式 [13]。ISH分析显示,胃肠的神经内分泌瘤(GI-NENs)的肝转移瘤中miR-96表达明显高于原发性NENs,与qRT-PCR检测结果一致,表明ISH分析可有助于评估GI-NENs患者 [14]。原位杂交显示,miR-21与MALAT1在原发性甲状腺髓样癌MTCs中表达增强。Real-time PCR检测原发性MTCs中miR-21和MALAT1的表达明显高于正常甲状腺,与ISH的结果一致,提示miR-21和MALAT1高表达可能调节MTCs进展 [15]。原位杂交显示,与非癌组织相比,胶质瘤癌组织的miRNA-375和CTGF表达有显著差异。miRNA-375高表达通过CTGF-EGFR通路抑制胶质瘤癌细胞的发生 [16]。原位杂交证实82例胰腺癌中miR-92b-3p表达水平明显低于非癌性胰腺组织。miR-92b-3p表达水平的降低与肿瘤大小、较高的淋巴结转移、晚期TNM分期和生存率降低密切相关。表明miR-92b-3p表达降低可能在PC的发生发展中发挥重要作用 [17]。原位杂交显示,在淋巴结阴性的侵袭性乳腺癌中,与良性乳腺组织相比,miRNA-494水平降低,并预示着乳腺癌死亡风险。因此,miRNA-494的检测可帮助淋巴结阴性乳腺癌患者识别侵袭性乳腺癌的亚群,miRNA-494可作为乳腺癌的预后判断标志,ISH方法可应用于常规病理诊断 [18]。miR-301a属于癌基因,ISH检测miR-301a在380例乳腺癌组织中的表达,发现141例miR-301a高表达,miR-301a的高表达与OS的降低有关,因此,在乳腺组织活检标本中检测miR-301a的表达,可能成为早期诊断的重要标志。并且,miR-301a可能作为乳腺癌患者的潜在治疗靶点 [19]。

原位杂交显示,miR-21在44%的胃癌组织与51%的肿瘤间质中高表达,肿瘤细胞的miR-21与临床病理因素无关,而间质miR-21与肿瘤分期、大小、淋巴结转移等因素有关,间质miR-21表达在肿瘤进展过程中逐渐升高,并且,在结缔组织增生性反应的浸润性区域表现出较强的间质阳性。qRT-PCR结果表明,肿瘤间质也比肿瘤和非肿瘤组织显示出更高的miR-21表达,提示间质miR-21表达与胃癌的进展密切相关,可能是胃癌治疗的靶点 [20]。本研究采用组织芯片与原位杂交检测表明,miR-22在胃癌组织中表达下调明显低于在正常组织,并且,miR-22低表达与临床分期和淋巴结转移密切相关。

大量研究证明,miR-22不仅在生物学上影响衰老的进程、能源供应、血管生成、EMT、增殖、迁移、侵袭、转移和细胞凋亡,而且,从遗传学或表观遗传学通过CNAs (拷贝数的改变)、SNPs (单核苷酸多态性)、甲基化、乙酰化与羟甲基化在不同的肿瘤中发挥抑制或促进肿瘤双重的效果。miR-22可能在某些肿瘤中成为一种有前途的、互补的甚至独立的肿瘤生物标志物,并对早期诊断、治疗、监督疗效和预后产生重要的作用 [21]。ATP citrate lyase (ACLY)是一种开始重新合成脂类的关键酶,在肿瘤细胞中表达上调,而miR-22在骨肉瘤、前列腺癌、子宫颈癌与肺癌中表达下调,ACLY与miR-22在肿瘤中表达呈负相关,miR-22通过靶向ACLY抑制肿瘤生存与转移,结果提示miR-22可转录后调控ACLY具有治疗骨肉瘤、前列腺癌、子宫颈癌与肺癌的作用 [22]。miR-22通过下调ACLY的表达抑制乳腺癌MCF-7细胞的生长和转移 [23]。miR-22在宫颈癌组织和细胞相对非肿瘤组织和正常人类宫颈癌HCK1T细胞表达下调。而组蛋白去乙酰化酶6 (HDAC6)在宫颈癌组织和癌细胞系中与miR-22呈负相关MiR-22通过抑制增殖和迁移,靶向HDAC6诱导宫颈癌细胞凋亡,发挥抑癌作用。这一新发现的E6/p53/miR-22/HDAC6调控网络可能是子宫颈癌的候选治疗靶点 [24]。miR-22在口腔鳞状细胞癌(OSCC)组织中的表达明显低于邻近非癌组织。miR-22高表达可显著降低OSCC细胞活力、迁移和侵袭。在OSCC组织和细胞中,miR-22表达与NLRP3表达呈负相关。miR-22可能通过靶向NLRP3在OSCC中发挥抑制作用 [25]。miR-22在膀胱癌组织中下调,miR-22高表达可体内外显著抑制膀胱癌细胞增殖、迁移和侵袭。并且,miR-22通过直接靶向MAPK1抑制细胞增殖/凋亡和通过抑制Snail和MAPK1/Slug/vimentin反馈环,在体外和体内抑制膀胱癌细胞EMT [26]。

目前,miR-22在胃癌中的准确表达、功能和机制尚不清楚 [27]。Jafarzadeh-Samani等显示,胃癌组织中miR-22的表达率较正常组织显著降低,表明miR-22可能是早期检测胃癌的良好诊断生物标志物 [28]。miR-22在胃贲门腺癌(GCA)组织较正常组织明显高表达,并且GCA患者血清miR-22水平明显较正常人增高,提示miR-22可能是胃癌诊断的生物标记 [29]。有人证明,胃癌患者血清中miR-22的水平较健康对照组显著降低,相反,miR-21的水平明显高于对照组。生物信息学分析显示,Sp1是miR-21靶点,而PTEN是miR-22的靶点,提示其是胃癌潜在的生物标志物 [30]。Zuo等发现,胃癌组织中miR-22的表达显著降低与患者整体生存率较差相关。miR-22作为抑癌基因,其高表达通过靶向MMP14和Snail明显抑制胃癌细胞的生长、迁移侵袭和EMT以及体内肿瘤生长、腹膜扩散和肺转移 [27]。幽门螺杆菌感染是慢性炎症导致胃癌发生的主要原因,而NLRP3在炎症发生过程中起着至关重要的作用。幽门螺杆菌感染可抑制miR-22的表达,促进NLRP3的表达,从而引发了上皮细胞失控的增殖和胃癌发生。然而,MiR-22可直接靶向NLRP3,在体内外降低其致癌作用。因此,miR-22抑制NLRP3并维持胃微环境稳态的机制,可作为胃癌干预的潜在靶点 [31]。

近年来,驱使miR-22高表达或研发上调miR-22的天然植物有效成分已成为治疗肿瘤新策略。miR-22在肾细胞癌中下调与肿瘤分期和淋巴结转移有关。实施miR-22高表达可抑制肾细胞癌细胞增殖、迁移侵袭与移植瘤生长和诱导凋亡。并且,miR-22高表达通过直接靶向SIRT1活化p53及其下游靶点p21与PUMA,裂解凋亡标志物CASP3与PARP和抑制EMT,表明miR-22高表达具有治疗肾细胞癌的新的潜在的作用 [32]。研究表明,miR-22在肿瘤发生发展中可调控抑制肿瘤干细胞CSC表型与功能。姜黄、大豆异黄酮、茶多酚、白藜芦醇、维生素D等天然植物有效因子通过靶向CSC相关基因上调miR-22抑制肿瘤增殖、迁移、侵袭与转移 [33]。黄酮类化合物白杨黄素chrysin具有抑制胃癌细胞增殖的作用,白杨黄素可改变miRNAs的表达,上调miR-22,可能是其作用的分子机制 [34]。进一步研究显示,用纳米包裹的chrysin与单体的chrysin相比,miR-22增加更为显著,表明纳米包裹的chrysin在抑制人胃细胞生长作用比单体的chrysin更有效 [35]。二烯丙基二硫(diallyl disulfide, DADS)是大蒜中烯丙基硫化物的一种脂溶性的有效成分,对多种肿瘤均有明显的抑制作用 [36]。我们发现,DADS可上调miR-22通过Wnt-1通路明显抑制胃癌细胞增殖与迁移侵袭 [37]。然而,DADS上调miR-22抑制胃癌细胞增殖与迁移侵袭的详细分子机制尚待深入研究。

基金项目

国家自然科学基金(81374013,31100935)。

文章引用

唐 仪,唐云云,刘 芳,苏 坚,夏 红,曾 希,苏 琦. miR-22在胃癌中表达与临床病理意义
The Expression and Clinicopathologic Significance of Mir-22 in Gastric Cancer[J]. 世界肿瘤研究, 2019, 09(02): 61-68. https://doi.org/10.12677/WJCR.2019.92009

参考文献

  1. 1. Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
    https://doi.org/10.3322/caac.21492

  2. 2. Chen, W., Zheng, R., Baade, P.D., et al. (2016) Cancer Statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66, 115-132.
    https://doi.org/10.3322/caac.21338

  3. 3. Tang, W., Xu, P., Wang, H., et al. (2018) MicroRNA-150 Suppresses Triple-Negative Breast Cancer Metastasis through Targeting HMGA2. OncoTargets and Therapy, 11, 2319-2332.

  4. 4. Urbanek, M.O., Nawrocka, A.U. and Krzyzosiak, W.J. (2015) Small RNA Detection by in Situ Hybridization Methods. International Journal of Molecular Sciences, 16, 13259-13286.
    https://doi.org/10.3390/ijms160613259

  5. 5. Gualeni, A.V., Volpi, C.C., Carbone, A., et al. (2015) A Novel Semi-Automated in Situ Hybridisation Protocol for Microrna Detection in Paraffin Embedded Tissue Sections. Journal of Clinical Pathology, 68, 661-664.
    https://doi.org/10.1136/jclinpath-2015-203005

  6. 6. Cassidy, A. and Jones, J. (2014) Developments in in Situ Hybridisation. Methods, 70, 39-45.
    https://doi.org/10.1016/j.ymeth.2014.04.006

  7. 7. Warford, A. (2016) In Situ Hybridisation: Technologies and Their Application to Understanding Disease. Progress in Histochemistry and Cytochemistry, 50, 37-48.
    https://doi.org/10.1016/j.proghi.2015.12.001

  8. 8. Saraggi, D., Galuppini, F., Fanelli, G.N., et al. (2018) MiR-21 Up-Regulation in Ampullary Adenocarcinoma and Its Pre-Invasive Lesions. Pathology—Research and Practice, 214, 835-839.
    https://doi.org/10.1016/j.prp.2018.04.018

  9. 9. Iida, M., Hazama, S., Tsunedomi, R., et al. (2018) Overexpression of miR-221 and miR-222 in the Cancer Stroma Is Associated with Malignant Potential in Colorectal Cancer. Oncology Reports, 40, 1621-1631.
    https://doi.org/10.3892/or.2018.6575

  10. 10. He, X., Chen, S.Y., Yang, Z., et al. (2018) miR-4317 Suppresses Non-Small Cell Lung Cancer (NSCLC) by Targeting Fibroblast Growth Factor 9 (FGF9) and Cyclin D2 (CCND2). Journal of Experimental & Clinical Cancer Research, 37, 230.
    https://doi.org/10.1186/s13046-018-0882-4

  11. 11. Cao, M.Q., You, A.B., Zhu, X.D., et al. (2018) miR-182-5p Promotes Hepatocellular Carcinoma Progression by Repressing FOXO3a. Journal of Hematology & Oncology, 11, 12.
    https://doi.org/10.1186/s13045-018-0555-y

  12. 12. Yang, Y., Jiang, Z., Ma, N., et al. (2018) MicroRNA-223 Targeting STIM1 Inhibits the Biological Behavior of Breast Cancer. Cellular Physiology and Biochemistry, 45, 856-866.
    https://doi.org/10.1159/000487180

  13. 13. Johannessen, C., Moi, L., Kiselev, Y., et al. (2017) Expression and Function of the miR-143/145 Cluster in Vitro and in Vivo in Human Breast Cancer. PLoS ONE, 12, e0186658.

  14. 14. Mandal, R., Hardin, H., Baus, R., et al. (2017) Analysis of miR-96 and miR-133a Expression in Gastrointestinal Neuroendocrine Neoplasms. Endocrine Pathology, 28, 345-350.
    https://doi.org/10.1007/s12022-017-9504-5

  15. 15. Chu, Y.H., Hardin, H., Schneider, D.F., et al. (2017) MicroRNA-21 and Long Non-Coding RNA MALAT1 Are Overexpressed Markers in Medullary Thyroid Carcinoma. Experimental and Molecular Pathology, 103, 229-236.

  16. 16. Zhang, L.X., Jin, W., Zheng, J., et al. (2018) MicroRNA-375 Regulates Proliferation and Apoptosis of Glioma Cancer Cells by Inhibiting CTGF-EGFR Signaling Pathway. Bratislavske Lekarske Listy, 119, 17-21.

  17. 17. Long, M., Zhan, M., Xu, S., et al. (2017) miR-92b-3p Acts as a Tumor Suppressor by Targeting Gabra3 in Pancreatic Cancer. Molecular Cancer, 16, 167.
    https://doi.org/10.1186/s12943-017-0723-7

  18. 18. Gurvits, N., Autere, T.A., Repo, H., et al. (2018) Proliferation-Associated miRNAs-494, -205, -21 and -126 Detected by in Situ Hybridization: Expression and Prognostic Potential in Breast Carcinoma Patients. Journal of Cancer Research and Clinical Oncology, 144, 657-666.
    https://doi.org/10.1007/s00432-018-2586-8

  19. 19. Zheng, J.Z., Huang, Y.N., Yao, L., et al. (2018) Elevated miR-301a Expression Indicates a Poor Prognosis for Breast Cancer Patients. Scientific Reports, 8, 2225.
    https://doi.org/10.1038/s41598-018-20680-y

  20. 20. Uozaki, H., Morita, S., Kumagai, A., et al. (2014) Stromal miR-21 Is More Important than miR-21 of Tumour Cells for the Progression of Gastric Cancer. Histopathology, 65, 775-783.
    https://doi.org/10.1111/his.12491

  21. 21. Wang, J., Li, Y., Ding, M., et al. (2017) Molecular Mechanisms and Clinical Applications of miR-22 in Regulating Malignant Progression in Human Cancer (Review). International Journal of Oncology, 50, 345-355.
    https://doi.org/10.3892/ijo.2016.3811

  22. 22. Xin, M., Qiao, Z., Li, J., et al. (2016) miR-22 Inhibits Tumor Growth and Metastasis by Targeting ATP Citrate Lyase: Evidence in Osteosarcoma, Prostate Cancer, Cervical Cancer and Lung Cancer. Oncotarget, 7, 44252-44265.
    https://doi.org/10.18632/oncotarget.10020

  23. 23. Liu, H., Huang, X. and Ye, T. (2018) MiR-22 Down-Regulates the Pro-to-Oncogene ATP Citrate Lyase to Inhibit the Growth and Metastasis of Breast Cancer. American Journal of Translational Research, 10, 659-669.

  24. 24. Wongjampa, W., Ekalaksananan, T., Chopjitt, P., et al. (2018) Suppression of miR-22, a Tumor Suppressor in Cervical Cancer, by Human Papillomavirus 16 E6 via a p53/miR-22/HDAC6 Pathway. PLoS ONE, 13, e0206644.

  25. 25. Feng, X., Luo, Q., Wang, H., et al. (2018) MicroRNA-22 Suppresses Cell Proliferation, Migration and Invasion in Oral Squamous Cell Carcinoma by Targeting NLRP3. Journal of Cellular Physiology, 233, 6705-6713.
    https://doi.org/10.1002/jcp.26331

  26. 26. Xu, M., Li, J., Wang, X., et al. (2018) MiR-22 Suppresses Epithelial-Mesenchymal Transition in Bladder Cancer by Inhibiting Snail and MAPK1/Slug/Vimentin Feedback Loop. Cell Death & Disease, 9, 209.
    https://doi.org/10.1038/s41419-017-0206-1

  27. 27. Zuo, Q.F., Cao, L.Y., Yu, T., et al. (2015) MicroRNA-22 Inhibits Tumor Growth and Metastasis in Gastric Cancer by Directly Targeting MMP14 and Snail. Cell Death & Disease, 6, e2000.

  28. 28. Jafarzadeh-Samani, Z., Sohrabi, S., Shirmohammadi, K., et al. (2017) Evaluation of miR-22 and miR-20a as Diagnostic Biomarkers for Gastric Cancer. Chinese Clinical Oncology, 6, 16.
    https://doi.org/10.21037/cco.2017.03.01

  29. 29. Wang, J., Zhang, H., Zhou, X., et al. (2018) Five Serum-Based miRNAs Were Identified as Potential Diagnostic Biomarkers in Gastric Cardia Adenocarcinoma. Cancer Biomark, 23, 193-203.
    https://doi.org/10.3233/CBM-181258

  30. 30. Huang, Y., Zhu, J., Li, W., et al. (2018) Serum microRNA Panel Excavated by Machine Learning as a Potential Biomarker for the Detection of Gastric Cancer. Oncology Reports, 39, 1338-1346.

  31. 31. Li, S., Liang, X., Ma, L., et al. (2018) MiR-22 Sustains NLRP3 Expression and Attenuates H. Pylori-Induced Gastric Carcinogenesis. Oncogene, 37, 884-896.
    https://doi.org/10.1038/onc.2017.381

  32. 32. Zhang, S., Zhang, D., Yi, C., et al. (2016) MicroRNA-22 Functions as a Tumor Suppressor by Targeting SIRT1 in Renal Cell Carcinoma. Oncology Reports, 35, 559-567.
    https://doi.org/10.3892/or.2015.4333

  33. 33. Bao, B., Li, Y., Ahmad, A., et al. (2012) Targeting CSC-Related miRNAs for Cancer Therapy by Natural Agents. Current Drug Targets, 13, 1858-1868.
    https://doi.org/10.2174/138945012804545515

  34. 34. Mohammadian, F., Pilehvar-Soltanahmadi, Y., Alipour, S., et al. (2017) Chrysin Alters microRNAs Expression Levels in Gastric Cancer Cells: Possible Molecular Mechanism. Drug Research, 67, 509-514.
    https://doi.org/10.1055/s-0042-119647

  35. 35. Mohammadian, F., Abhari, A., Dariushnejad, H., et al. (2016) Effects of Chrysin-PLGA-PEG Nanoparticles on Proliferation and Gene Expression of miRNAs in Gastric Cancer Cell Line. Iranian Journal of Cancer Prevention, 9, e4190.

  36. 36. Yi, L. and Su, Q. (2013) Molecular Mechanisms for the Anti-Cancer Effects of Diallyl Disulfide. Food and Chemical Toxicology, 57, 362-370.

  37. 37. 唐云云, 唐仪, 刘芳, 等. 二烯丙基二硫上调miR-22通过Wnt-1通路抑制人胃癌细胞增殖与迁移侵袭[J]. 中国药理学通报, 2017, 33(8): 1141-1146.

期刊菜单