Journal of Organic Chemistry Research
Vol. 07  No. 03 ( 2019 ), Article ID: 31314 , 8 pages
10.12677/JOCR.2019.73013

Progress in Lewis Acid Catalyzed Aryl C-Glycosylation

Tian Lei1, Xiaodong Kang1, Hongpeng Li1, Lu Ran1, Huan Li2

1College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou Gansu

2School of Chemical Engineering and Technology, North University of China, Taiyuan Shanxi

Received: Jun. 27th, 2019; accepted: Jul. 11th, 2019; published: Jul. 18th, 2019

ABSTRACT

Aryl C-glycosides, as inhibitors of glycosyltransferases and glycosidases, act as regulators in a range of biological processes. The drugs based on the aryl C-glycosides for the therapy of various diseases have also been successfully developed. Due to its excellent biological and chemical properties, the synthesis of aryl C-glycosides in the past few decades has attracted the attention of many biologists and chemists and has become a rapidly growing research field. However, there are always some difficulties in the synthesis of aryl C-glycoside compounds. Based on the studies of aryl C-glycoside compounds by domestic and foreign scholars, this paper summarizes the research progress on the Lewis acid-catalyzed aryl C-glycosylation, and discusses the classification of synthetic methods. This review covers the literature from 1983 to 2017 and provides references and help for relevant researchers.

Keywords:Catalyst, Aryl C-Glycosylation, Lewis Acid

路易斯酸催化的芳基C-糖苷化研究进展

雷田1,康小东1,李鸿鹏1,冉露1,李欢2

1兰州交通大学化学与生物工程学院,甘肃 兰州

2中北大学化学工程与技术学院,山西 太原

收稿日期:2019年6月27日;录用日期:2019年7月11日;发布日期:2019年7月18日

摘 要

芳基C-糖苷类化合物作为糖基转移酶和糖苷酶的抑制剂,在一系列生物过程也作为调节剂,针对各种疾病,应用芳基C-糖苷类化合物所研发的药物也得到成功的开发,由于它优异的生物与化学性质,在过去几十年中合成芳基C-糖苷类化合物,已经引起了众多生物学家与化学家的关注,成为快速发展的领域。一直以来,芳基C-糖苷化合物都存在合成困难的问题,本文基于国内外学者对芳基C-糖苷类化合物的研究,总结了由路易斯酸催化的芳基C-糖苷化的研究进展,并且进行了类别讨论,涵盖了1983年至2017年的文献。希望本文可以为相关研究工作者提供参考与帮助。

关键词 :催化,芳基C-糖苷化,路易斯酸

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 介绍

糖苷是糖的半缩醛羟基与配基缩合,失去一份子水而形成的一类具有广泛生理活性的化合物,也是糖在自然界中存在的主要形式。糖类化合物具有多种生物学活性,在生命过程中发挥着极其重要的作用,其合成也越来越受到人们的重视。C-糖苷是一类具有碳水化合物单元的化合物,其通过C-C键与糖苷配基或另一碳水化合物单元连接。近年来,C-糖苷化已经被很好地开发以改善立体选择性,并已广泛用于化合物的合成 [1] [2] [3]。图1中列出了自1990年以来合成的代表性天然C-糖苷类化合物。它们包括aspalathin [4],葛根素 [5],芒果苷 [6],Chafuroside A [7],Ravidomycin [8]。与O-和N-糖苷化相比,C-糖苷化具有高产率和特定立体选择性的优势,但是多种C-糖苷类天然产物存在提取困难,来源少等问题,使得C-糖基化发展更加缓慢。糖基供体对于糖苷化反应的立体选择性还有产率都有着显著的影响,基于糖基供体对于C-糖苷化反应进行分类包括糖内酯,糖基卤化物,乙二醇,酰亚胺/磷酸酯和甲基糖苷,乙酸糖基酯,1,2-脱水糖,硒代糖苷/碲代糖苷,硫代糖苷/亚砜/砜 [9] [10]。传统的芳基C-糖基化反应通常涉及金属试剂(例如锡,锌,锂,铝和格氏试剂)与糖基供体的亲核反应。由于金属试剂的空气和水分敏感性,这些反应效率很高但不易处理。在过去的十年中,人们已经做出了很多努力来开发更温和、更有效和高度立体选择的方法。涉及的促进剂有路易斯酸,包括TMSOTf,BF3∙OEt2,SnCl4,HBF4和Sc(OTf)3等。这些反应对于C-糖苷类天然产物的合成具有指导意义。本文综述了过去四十年中由路易斯酸作为促进剂催化的芳基C-糖基化反应的研究进展。

2. 路易斯酸催化的芳基C-糖苷化

2.1. 通过TMSOTf催化的芳基C-糖苷化

在很多年前就已经开发了包括O-糖基化和随后的原位O→C重排的弗里斯型糖基化。该方法应用于合成具有许多生物活性的芳基C-糖苷,如糖基类黄酮 [11],包括Chaufurosides A和B [12] 、Mangiferin [6] 、Aspalathin。通过TMSOTf催化的芳基C-糖苷化,产率有的只有12%,有的也可达到82%。Chaufurosides A和B的合成始于四-O-苄基-D-葡糖基亚氨酸酯1和苯乙酮衍生物2之间的糖基化。通过TMSOTf催化的Fries重排获得β-异头物形式的芳基C-糖苷3,产率为74% (图2)。

2.2. 通过BF3∙OEt2催化的芳基C-糖苷化

BF3∙OEt2催化的芳基C-糖苷化,糖基供体包括糖内酯、过氧苄基葡糖基α-氟化物、2,3,4,6-四-O-苄

Figure 1. Representative natural C-glycoside compounds

图1. 代表性天然C-糖苷类化合物

Figure 2. Aryl C-glycosylation catalyzed by TMSOTf

图2. TMSOTf催化的芳基C-糖苷化

基-α-D-吡喃葡萄糖、甲基葡糖苷、四-O-甲基吡喃葡萄糖等,产率达到60%至96%不等 [13] - [19]。Aspalathin是一种二氢查尔酮C-糖苷,具有抗氧化和抗突变作用。皂苷,即6-C和7-O-二-β-D-吡喃葡萄糖基-4',5,7-三羟基黄酮,具有抗氧化,降血糖和血液保护活性。佐藤小组报道了应用BF3∙OEt2促进的芳基C-糖基化,完成了皂苷和aspalathin的合成 [4] [20]。过氧苄基葡糖基α-氟化物4与2,4-O-二苄基氯苯乙酮5在二氯甲烷体系中通过BF3·OEt2催化得到所需β-葡萄糖苷6,产率96% (图3) [13]。

Figure 3. Aryl C-glycosylation catalyzed by BF3∙OEt2

图3. BF3∙OEt2催化的芳基C-糖苷化

该C-糖基化也通过在TMSOTf存在下用过-O-苯基葡糖基-α-三氯亚氨酸酯处理2,4-O-二苄基氯苯乙酮5来实现,产率略低,只有79%。

2.3. 通过Sc(OTf)3催化的芳基C-糖苷化

已报道,直接使用未受保护的糖乳醇与C-亲核试剂偶联代表了一种有吸引力的方法,可用于芳基C-糖苷化 [21] [22] [23] [24]。其他类型的未受保护的糖醇如2-乙酰氨基糖,庚糖,木糖和半乳糖与C-亲核试剂如1,3-二羰基化合物和1,3-恶嗪-2-硫酮,在碱(NaHCO3,Na2CO3,NaH或KOH)或路易斯酸(InCl3,CoCl2,Sc(OTf)3)存在下反应,得到相应的C-吡喃-或C-呋喃糖苷类,具有高β-立体选择性的良好收率 [25] [26] [27] [28] [29]。作为Sc(OTf)3促进未保护的糖内酯与芳基化合物的C-糖基化的实例,葡萄糖7与8的直接糖基化产生β-C-芳基糖苷9,产率65% (图4) [30] [31] [32] [33] [34]。

Figure 4. Aryl C-glycosylation catalyzed by Sc(OTf)3

图4. Sc(OTf)3催化的芳基C-糖苷化

2.4. 通过SnCl4催化的芳基C-糖苷化

形成C-糖苷键的一般方法基于在糖基供体的亲电子中心上添加亲核碳。最广泛使用的糖基供体分为四个主要组(良好的离去基团,糖内酯,甘氨酸和1,2个脱水糖)用作亲电子供体当与有机铜酸盐,有机锡,有机锌,氰化物,烯丙基格氏试剂,乙烯基甲硅烷基试剂和活性芳香族化合物等反应时以产生C-糖苷键 [35]。通过SnCl4催化的芳基C-糖苷化,糖基供体有乙酸糖基酯、1-O-甲基糖等,产率在60%至76%之间 [36] [37] [38] [39]。与O-糖基卤化物的C-糖基化相似,1-O-甲基糖类通过氧代羰基离子与C-亲核试剂进行有效的亲电子C-糖基化需要强烈的酸性条件 [35] [40] [41] [42] [43] [44],在SnCl4/AgOTf的存在下,甲基葡糖苷10与1,4-二甲氧基萘11的反应顺利进行,得到β-C-芳基-葡萄糖苷12,产率为76% (图5) [45] [46] [47] [48]。

Figure 5. Aryl C-glycosylation catalyzed by SnCl4

图5. SnCl4催化的芳基C-糖苷化

2.5. 通过HBF4催化的芳基C-糖苷化

在一些由路易斯酸催化的芳基C-糖苷化反应中,使用较强的路易斯酸并不能获得所需产物,但是用HBF4水溶液便可成功促进反应。例如从海洋链霉菌相关放线菌中分离的Marmycin A显示出各种生物活性,包括抗菌,抗肿瘤,酶抑制和细胞抑制作用 [49]。Marmycin具有独特的六环结构,其由连接糖对应物和芳族苯并[α]蒽醌的C-和N-糖苷键组成。将14连接到糖部分13上,并通过铜介导的乌尔曼胺化,得到化合物15,产率为81%。接下来尝试使用常用的强路易斯酸不能提供所需的产品,但HBF4水溶液成功地促进了C-糖基化,并且Marmycin A以13%的产率得到(图6) [50] [51]。

Figure 6. Aryl C-glycosylation catalyzed by HBF4

图6. HBF4催化的芳基C-糖苷化

3. 总结

作为全合成中广泛使用的方法,芳基C-糖苷化在过去几十年中已成为快速发展的领域,方法涉及糖基阳离子、阴离子、自由基物质和衍生自一系列糖前体的过渡金属络合物,重排和环化也为芳基C-糖苷化提供了替代途径。在芳基C-糖苷化的发展中,由路易斯酸(TMSOTf,BF3∙OEt2,SnCl4,HBF4和Sc(OTf)3)所催化的反应,更温和有效且具有高度立体选择性,使之具有重要意义。在大多数情况下,立体选择性是底物控制的,但是立体选择性芳基C-糖基化反应的确切机制和基本原理仍未完全了解。许多芳基C-糖基化反应中仍存在使用的条件苛刻和制备糖前体(例如1,2-脱水糖)困难等问题。在这个快速发展的领域中,尽管取得了相当大的进展,但是为了确定控制芳基C-糖基化的立体选择性的基本规则,仍需要不断努力,并且积极寻求高效控制天然产物合成的区域选择性和立体选择性芳基C-糖基化的一般方法,以合成各种结构复杂且具有生物学意义的芳基C-糖苷。

文章引用

雷田,康小东,李鸿鹏,冉露,李欢. 路易斯酸催化的芳基C-糖苷化研究进展
Progress in Lewis Acid Catalyzed Aryl C-Glycosylation[J]. 有机化学研究, 2019, 07(03): 95-102. https://doi.org/10.12677/JOCR.2019.73013

参考文献

  1. 1. Hanessian, S. (1983) Total Synthesis of Natural Products. The Organic Chemistry Series Vol. 3.

  2. 2. Hollingsworth, R.I. and Wang, G. (2000) Toward a Carbohydrate-Based Chemistry: Progress in the Development of General-Purpose Chiral Synthons from Carbohydrates. Chemical Reviews, 100, 4267-4282. https://doi.org/10.1021/cr990374e

  3. 3. Nicolaou, K.C. and Mitchell, H.J. (2001) Adventures in Carbohydrate Chemistry: New Synthetic Technologies, Chemical Synthesis, Molecular Design, and Chemical Biology. Angewandte Chemie International Edition, 40, 1576-1624. https://doi.org/10.1002/1521-3773(20010504)40:9<1576::AID-ANIE15760>3.0.CO;2-G

  4. 4. Han, Z., Achilonu, M.C., Kendrekar, P.S., Joubert, E., Ferreira, D., Bonnet, S.L. and van der Westhuizen, J.H. (2013) Concise and Scalable Synthesis of Aspalathin, a Powerful Plasma Sugar-Lowering Natural Product. Journal of Natural Products, 77, 583-588. https://doi.org/10.1021/np4008443

  5. 5. Lee, D.Y., Zhang, W.Y. and Karnati, V.V.R. (2003) Total Synthesis of Puerarin, an Isoflavone C-Glycoside. Tetrahe-dron Letters, 44, 6857-6859. https://doi.org/10.1016/S0040-4039(03)01715-5

  6. 6. Wu, Z., Wei, G., Lian, G. and Yu, B. (2010) Synthesis of Mangiferin, Isomangiferin, and Homomangiferin. The Journal of Organic Chemistry, 75, 5725-5728. https://doi.org/10.1021/jo100776q

  7. 7. Furuta, T., Nakayama, M., Suzuki, H., Tajimi, H., Inai, M., Nukaya, H. and Kan, T. (2009) Concise Synthesis of Chafurosides A and B. Organic Letters, 11, 2233-2236. https://doi.org/10.1021/ol900689m

  8. 8. Futagami, S., Ohashi, Y., Imura, K., Hosoya, T., Ohmori, K., Matsumoto, T. and Suzuki, K. (2000) Total Synthesis of Ravidomycin: Revision of Absolute and Relative Stereochemistry. Tetrahedron Letters, 41, 1063-1067. https://doi.org/10.1016/S0040-4039(99)02235-2

  9. 9. Compain, P. and Martin, O.R. (2007) Iminosugars: From Synthesis to Therapeutic Applications. John Wiley & Sons, Hoboken. https://doi.org/10.1002/9780470517437

  10. 10. Compain, P., Chagnault, V. and Martin, O.R. (2009) Tactics and Strategies for the Synthesis of Iminosugar C-Glycosides: A Review. Tetrahedron: Asymmetry, 20, 672-711. https://doi.org/10.1016/j.tetasy.2009.03.031

  11. 11. dos Santos, R.G., et al. (2011) Fries-Type Reactions for the C-Glycosylation of Phenols. Current Organic Chemistry, 15, 128-148. https://doi.org/10.2174/138527211793797855

  12. 12. Ishida, H., Wakimoto, T., Kitao, Y., Tanaka, S., Miyase, T. and Nukaya, H. (2009) Quantitation of Chafurosides A and B in Tea Leaves and Isolation of Prechafurosides A and B from Oolong Tea Leaves. Journal of Agricultural and Food Chemistry, 57, 6779-6786. https://doi.org/10.1021/jf900032z

  13. 13. Misawa, K., Takahashi, Y. and Sato, S. (2013) First Synthesis of Saponarin, 6-C-and 7-O-Di-β-D-Glucosylapigenin. Chemical and Pharmaceutical Bulletin, 61, 776-780. https://doi.org/10.1248/cpb.c13-00264

  14. 14. Guo, C., Hu, M., DeOrazio, R.J., Usyatinsky, A., Fitzpatrick, K., Zhang, Z. and Khmelnitsky, Y. (2014) The Design and Synthesis of Novel SGLT2 Inhibitors: C-Glycosides with Benzyltriazolopyridinone and Phenylhydantoin as the Aglycone Moieties. Bioorganic & Medicinal Chemistry, 22, 3414-3422. https://doi.org/10.1016/j.bmc.2014.04.036

  15. 15. Deshpande, P.P., Ellsworth, B.A., Buono, F.G., Pullockaran, A., Singh, J., Kissick, T.P. and Mueller, R.H. (2007) Re-markable β-1-C-arylglucosides: Stereoselective Reduction of Acetyl-Protected Methyl 1-C-aryl-glucosides without Acetoxy-Group Participation. The Journal of Organic Chemistry, 72, 9746-9749. https://doi.org/10.1021/jo071051i

  16. 16. MacDougall, J.M., Zhang, X.D., Polgar, W.E., Khroyan, T.V., Toll, L. and Cashman, J.R. (2005) Synthesis and in Vitro Biological Evaluation of a Carbon Glycoside Analogue of Morphine-6-Glucuronide. Bioorganic & Medicinal Chemistry Letters, 15, 1583-1586. https://doi.org/10.1016/j.bmcl.2005.01.072

  17. 17. Kanai, A., Kamino, T., Kuramochi, K. and Kobayashi, S. (2003) Synthetic Studies Directed toward the Assembly of the C-Glycoside Fragment of the Telomerase Inhibitor D8646-2-6. Organic Letters, 5, 2837-2839. https://doi.org/10.1021/ol034873k

  18. 18. Chen, Z.H., Wang, R.W. and Qing, F.L. (2012) Synthesis and Biological Evaluation of SGLT2 Inhibitors: Gem-Difluoromethylenated Dapagliflozin Analogs. Tetrahedron Letters, 53, 2171-2176. https://doi.org/10.1016/j.tetlet.2012.02.062

  19. 19. Shirakawa, S. and Kobayashi, S. (2007) Surfactant-Type Brønsted Acid Catalyzed Dehydrative Nucleophilic Substitu-tions of Alcohols in Water. Organic Letters, 9, 311-314. https://doi.org/10.1021/ol062813j

  20. 20. Misawa, K., Gunji, Y. and Sato, S. (2013) Concise Synthesis of Flavocommelin, 7-O-Methylapigenin 6-C-4’-O-bis-β-d-glucoside, a Component of the Blue Supramolecular Pigment from Commelina communis. Carbohydrate Research, 374, 8-13. https://doi.org/10.1016/j.carres.2013.03.016

  21. 21. Rodrigues, F., Canac, Y. and Lubineau, A. (2000) A Convenient, One-Step, Synthesis of β-C-glycosidic Ketones in Aqueous Media. Chemical Communications, 20, 2049-2050. https://doi.org/10.1039/b006642g

  22. 22. Hanessian, S. and Lou, B. (2000) Stereocontrolledglycosyl Transfer Reactions with Unprotected Glycosyl Donors. Chemical Reviews, 100, 4443-4464. https://doi.org/10.1021/cr9903454

  23. 23. Toshima, K. (2006) Novel Glycosyl-ation Methods and Their Application to Natural Products Synthesis. Carbohydrate Research, 341, 1282-1297. https://doi.org/10.1016/j.carres.2006.03.012

  24. 24. Cavezza, A., Boulle, C., Guéguiniat, A., Pichaud, P., Trouille, S., Ricard, L. and Dalko-Csiba, M. (2009) Synthesis of Pro-XylaneTM: A New Biologically Active C-Glycoside in Aqueous Media. Bioorganic & Medicinal Chemistry Letters, 19, 845-849. https://doi.org/10.1016/j.bmcl.2008.12.037

  25. 25. Bragnier, N. and Scherrmann, M.C. (2005) One-Step Synthesis of β-C-glycosidic Ketones in Aqueous Media: The Case of 2-Acetamido Sugars. Synthesis, 2005, 814-818. https://doi.org/10.1055/s-2005-861816

  26. 26. Graziani, A., Amer, H., Zamyatina, A., Hofinger, A. and Kosma, P. (2005) Synthesis of C-Glycosides Related to Glycero-β-D-Manno-Heptoses. Tetrahedron: Asymmetry, 16, 167-175. https://doi.org/10.1016/j.tetasy.2004.11.065

  27. 27. Pałasz, A., Kalinowska-Tłuścik, J. and Jabłoński, M. (2013) Application of 2, 4, 6-trioxo-pyrimidin-5-ylidene Alditols in the Synthesis of Pyrano [2, 3-d] Pyrimidines Containing a Sugar Moiety by Hetero-Diels-Alder Reactions and by Conjugate Michael Addition-Cyclizations. Tetrahedron, 69, 8216-8227. https://doi.org/10.1016/j.tet.2013.07.032

  28. 28. Riemann, I., Fessner, W.D., Papadopoulos, M.A. and Knorst, M. (2002) C-Glycosides by Aqueous Condensation of β-Dicarbonyl Compounds with Unprotected Sugars. Australian Journal of Chemistry, 55, 147-154. https://doi.org/10.1071/CH02012

  29. 29. Sato, S., Nojiri, T. and Onodera, J.I. (2005) Studies on the Synthesis of Safflomin-A, a Yellow Pigment in Safflower Petals: Oxidation of 3-C-β-d-Glucopyranosyl-5-Methylphloroacetophenone. Carbohydrate Research, 340, 389-393. https://doi.org/10.1016/j.carres.2004.12.019

  30. 30. Hamagami, H., Kumazoe, M., Yamaguchi, Y., Fuse, S., Tachi-bana, H. and Tanaka, H. (2016) 6-Azido-6-deoxy-l-idose as a Hetero-Bifunctional Spacer for the Synthesis of Az-ido-Containing Chemical Probes. Chemistry: A European Journal, 22, 12884-12890. https://doi.org/10.1002/chem.201602044

  31. 31. Rawat, P., Kumar, M., Rahuja, N., Srivastava, D.S.L., Srivastava, A.K. and Maurya, R. (2011) Synthesis and Antihy-perglycemic Activity of Phenolic C-Glycosides. Bioorganic & Medicinal Chemistry Letters, 21, 228-233. https://doi.org/10.1016/j.bmcl.2010.11.031

  32. 32. Sato, S., Akiya, T., Suzuki, T. and Onodera, J.I. (2004) Envi-ronmentally Friendly C-Glycosylation of Phloroacetophenone with Unprotected D-Glucose Using Scandium (III) Tri-fluoromethanesulfonate in Aqueous Media: Key Compounds for the Syntheses of Mono- and Di-C-Glucosylflavonoids. Carbohydrate Research, 339, 2611-2614. https://doi.org/10.1016/j.carres.2004.07.023

  33. 33. Collet, S.C., Rémi, J.F., Cariou, C., Laı̈b, S., Guingant, A.Y., Vu, N.Q. and Dujardin, G. (2004) A Hetero Diels-Alder Approach to the Synthesis of the First Angucyclinone and Angucycline 5-Aza-Analogues. Tetrahedron Letters, 45, 4911-4915. https://doi.org/10.1016/j.tetlet.2004.04.123

  34. 34. Du, Y., Linhardt, R.J. and Vlahov, I.R. (1998) Recent Advances in Stereoselective C-Glycoside Synthesis. Tetrahedron, 54, 9913-9959. https://doi.org/10.1016/S0040-4020(98)00405-0

  35. 35. Lin, L., He, X.P., Xu, Q., Chen, G.R. and Xie, J. (2008) Synthesis of β-C-Glycopyranosyl-1, 4-Naphthoquinone Deriv-atives and Their Cytotoxic Activity. Carbohydrate Research, 343, 773-779. https://doi.org/10.1016/j.carres.2007.12.017

  36. 36. He, L., Zhang, Z.Y., Tanoh, M., Chen, G.R., Praly, J.P., Chry-sina, E.D. and Oikonomakos, N.G. (2007) In the Search of Glycogen Phosphorylase Inhibitors: Synthesis of C-D-Glycopyranosylbenzo (Hydro) Quinones-Inhibition of and Binding to Glycogen Phosphorylase in the Crystal. European Journal of Organic Chemistry, 2007, 596-606. https://doi.org/10.1002/ejoc.200600548

  37. 37. Gervay, J. and McReynolds, K.D. (1999) Utilization of ELISA Technology to Measure Biological Activities of Carbohydrates Relevant in Disease States. Current Medicinal Chemistry, 6, 129-154.

  38. 38. Liu, Z., Byun, H.S. and Bittman, R. (2010) Synthesis of Immunostimulatory α-C-Galactosylceramide Glycolipids via Sonogashira Coupling, Asymmetric Epoxidation, and Trichloroacetimidate-Mediated Epoxide Opening. Organic Letters, 12, 2974-2977. https://doi.org/10.1021/ol1009976

  39. 39. Levy, D.E. and Tang, C. (1995) The Chemistry of C-Glycosides. Pergamon Press, Oxford.

  40. 40. Postema, M.H.D. (1995) C-Glycoside Synthesis. CRC Press, Boca Raton.

  41. 41. Postema, M.H. (1992) Recent Developments in the Syn-thesis of C-Glycosides. Tetrahedron, 48, 8545-8599. https://doi.org/10.1016/S0040-4020(01)89435-7

  42. 42. Nicotra, F. (1997) Synthesis of C-Glycosides of Biological Interest. In: Driguez, H. and Thiem, J., Eds., Glycoscience Synthesis of Substrate Analogs and Mimetics, Springer, Berlin, Heidelberg, 55-83. https://doi.org/10.1007/BFb0119253

  43. 43. Hosomi, A., Sakata, Y. and Sakurai, H. (1984) Highly Stereoselective C-Allylation of Glycopyranosides with Allylsilanes Catalyzed by Silyltriflate or Iodosilane. Tetrahedron Letters, 25, 2383-2386. https://doi.org/10.1016/S0040-4039(01)80261-6

  44. 44. Brimble, M.A., Davey, R.M. and McLeod, M.D. (2002) Synthesis of Azido Analogues of Medermycin. Synlett, 2002, 1318-1322. https://doi.org/10.1055/s-2002-32955

  45. 45. Brimble, M.A., Davey, R.M., McLeod, M.D. and Murphy, M. (2003) Synthesis of 3-Azido-2,3,6-trideoxy-β-D-arabino Hexopyranosyl Pyranonaphthoquinone Analogues of Medermycin. Organic & Biomolecular Chemistry, 1, 1690-1700. https://doi.org/10.1039/B301449P

  46. 46. Hainke, S., Arndt, S. and Seitz, O. (2005) Concise Synthesis of Aryl-C-Nucleosides by Friedel-Crafts Alkylation. Or-ganic & Biomolecular Chemistry, 3, 4233-4238. https://doi.org/10.1039/b509846g

  47. 47. Wu, K., Wang, M., Yao, Q. and Zhang, A. (2013) Synthesis Study toward Mayamycin. Chinese Journal of Chemistry, 31, 93-99. https://doi.org/10.1002/cjoc.201201084

  48. 48. Martin, G.D., Tan, L.T., Jensen, P.R., Dimayuga, R.E., Fairchild, C.R., Raventos-Suarez, C. and Fenical, W. (2007) Marmycins A and B, Cytotoxic Pentacyclic C-Glycosides from a Marine Sediment-Derived Actinomycete Related to the Genus Streptomyces. Journal of Natural Products, 70, 1406-1409. https://doi.org/10.1021/np060621r

  49. 49. Cañeque, T., Gomes, F., Mai, T.T., Blanchard, F., Retailleau, P., Gallard, J.F. and Rodriguez, R. (2017) A Synthetic Study towards the Marmycins and Analogues. Synthesis, 49, 587-592. https://doi.org/10.1055/s-0035-1562627

  50. 50. Cañeque, T., Gomes, F., Mai, T.T., Maestri, G., Malacria, M. and Rodriguez, R. (2015) Synthesis of Marmycin A and Investigation into Its Cellular Activity. Nature Chemistry, 7, 744. https://doi.org/10.1038/nchem.2302

期刊菜单