Advances in Clinical Medicine
Vol. 12  No. 08 ( 2022 ), Article ID: 54976 , 8 pages
10.12677/ACM.2022.1281112

应用影像学方法评估乳腺癌新辅助治疗疗效的研究进展

周雅静,陈丹,李建辉*

西安医学院,陕西 西安

收稿日期:2022年7月17日;录用日期:2022年8月12日;发布日期:2022年8月19日

摘要

乳腺癌患者行新辅助治疗不仅可以使更多手术方式的选择成为可能,而且有效的新辅助治疗后达到原发灶和腋窝淋巴结转移病灶pCR的患者可获得更好的长期生存。但是,经过新辅助治疗后仍有很大一部分的患者无法达到pCR。在精准化治疗时代,如何更好的评估乳腺癌新辅助治疗疗效,及时终止疗效欠佳为患者带来的危害是临床医师常常面对的难题。目前,影像学方法在评估治疗疗效方面凭借着各种优势引起越来越多的研究者关注。因此,笔者对应用影像学方法评估乳腺癌患者新辅助治疗疗效相关的临床研究进展进行综述,期待能为临床医师提供参考。

关键词

乳腺癌,新辅助治疗,疗效评估,影像学方法

Research Progress of Imaging in Evaluating the Efficacy of Neoadjuvant Therapy for Breast Cancer

Yajing Zhou, Dan Chen, Jianhui Li*

Xi’an Medical University, Xi’an Shaanxi

Received: Jul. 17th, 2022; accepted: Aug. 12th, 2022; published: Aug. 19th, 2022

ABSTRACT

Neoadjuvant therapy for breast cancer not only allows for more surgical options, but also provides better long-term survival for patients who achieve pCR of primary lesions and axillary lymph node metastases after effective neoadjuvant therapy. However, there are still a large proportion of patients who fail to achieve pCR after neoadjuvant therapy. In the era of precision therapy, how to better evaluate the efficacy of neoadjuvant therapy for breast cancer and timely terminate the harm caused by poor efficacy for patients is often faced by clinicians. At present, imaging methods have attracted more and more attention of researchers with various advantages in evaluating therapeutic efficacy. Therefore, this article reviews the clinical research progress related to the application of imaging methods to evaluate the efficacy of neoadjuvant therapy in breast cancer patients, hoping to provide reference for clinicians.

Keywords:Breast Cancer, Neoadjuvant Therapy, Therapeutic Effect Evaluation, Imaging Method

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

近年来,术前新辅助治疗作为乳腺癌全身综合治疗的重要组成部分,逐渐被广泛应用于临床。新辅助治疗(neoadjuvant therapy, NAT)最主要的优势在于:1) 乳腺癌患者接受新辅助治疗可缩小乳腺癌原发灶,对于局部晚期患者,新辅助治疗可使部分不可手术的患者获得手术机会;对于有保乳需求的患者,新辅助治疗后可利于保乳手术的实施;2) 临床医生可在患者行新辅助治疗过程中获得肿瘤对药物的敏感性信息,不仅可以及时终止对患者无效的药物治疗,而且可以为后续辅助治疗方案提供参考 [1];3) 乳腺癌患者进行新辅助治疗后获得病理完全缓解(Pathological complete response, pCR),提示可能获得较好的预后 [2] [3]。但是,仍有一定比例的乳腺癌患者通过新辅助治疗后无法达到pCR。目前,有多种方法可以用于评估乳腺癌患者新辅助治疗疗效,例如体格检查、影像学方法及第二次空芯针穿刺活检技术等,但仍没有一种公认的评估方法。影像学方法具有无创且准确性高等优势,近年来引起不少研究者的关注。因此,探索如何选择可以早期准确评估患者治疗疗效的影像学方法极为重要。笔者就影像学方法在评估乳腺癌新辅助治疗疗效中的相关临床研究进行总结,影像学方法包括乳腺超声、乳腺X线、磁共振、正电子发射型计算机断层显像四个方面。

2. 乳腺超声

2.1. 常规超声

乳腺超声检查无创、无辐射、可及性高,可在NAT治疗期间重复进行,因此乳腺超声是NAT疗效评价常用的影像学手段。Baumgartner A等 [4] 回顾性分析124名接受NAT的乳腺癌患者,患者均在治疗前、后行乳腺超声检查评价NAT疗效;该研究结果显示:乳腺超声检查评价患者NAT疗效,总体敏感性为60.8%,特异性为78.0%,乳腺超声定义的临床反应状态与患者治疗后较高的pCR率相关(P = 0.0026);其中在三阴型乳腺癌患者的评价中阴性预测值最高(75.0%),而假阴性率较低(37.5%),乳腺癌患者不同亚型对pCR的影响显著(P = 0.003);因此,从该研究结果得出乳腺超声检查可准确评价三阴型乳腺癌患者NAT疗效。除了肿瘤大小Ochi T等 [5] 纳入100名非Luminal型乳腺癌患者,在其NAT期间行超声检查测量肿瘤的回声原性,深度和宽度且在有代表性区域测量肿瘤回声,并计算与脂肪回声的比值;研究结果显示乳腺癌患者NAT后pCR与TNBC较高的NAT后肿瘤回声相关(P = 0.010),而HER-2阳性乳腺癌与此无关(P = 0.885);在TNBC中,pCR与NAT后肿瘤深度和宽度的变小显著相关(P = 0.001, 0.003),而在HER2阳性乳腺癌中则无变化趋势(P = 0.259, 0.435)。因此,不同分子亚型乳腺癌残留病变形态特征是不同的。

2.2. 自动乳腺全容积成像技术(Automated Breast Volume Scanning, ABVS)

自动乳腺全容积成像技术是新型三维超声成像技术,其客观性强,可重复性高且ABVS测量残余肿瘤长径的准确性高于常规超声,用于评价NAT疗效更佳(P < 0.05) [6]。但是ABVS在评价NAT疗效时无法检查淋巴结状态,而且目前缺乏多中心大规模的研究来探索ABVS在评价NAT疗效的准确性。

2.3. 乳腺超声造影检查

通过超声单独使用肿瘤大小来评估NAT疗效时,可能会高估或低估治疗反应,且肿瘤形态大小的变化可能滞后于肿瘤功能改变(如肿瘤新生血管形态或血液灌注) [7] [8]。在患者NAT期间乳腺超声造影检查不仅可评价肿瘤功能改变,而且评估肿瘤大小不受外周基质。Leng X等 [9] 纳入80例HER-2阳性和三阴性乳腺癌患者,对比患者在NAT期间疗效评价的准确性。该研究结果显示新辅助化疗之前,超声造影显示病灶体积及灌注缺损范围大于普通超声测量肿瘤大小,而化疗之后则小于普通超声(P < 0.05),且与病理大小无显著差异(P > 0.05)。

2.4. 横波弹性成像(Shear Wave Elastography, SWE)

除常规超声及超声造影检查之外,SWE是一种低成本成像技术,用于以非侵入性和定量方式测量组织硬度,无需超声探头加压,可重复性高 [10] [11] [12] [13] [14],其在乳腺癌患者NAT疗效评价方面的研究也越来越受关注。一项前瞻性研究纳入62例接受NAT治疗的乳腺癌患者,在NAT前及治疗期间测量的SWE参数;结果显示在NAT治疗有反应和无反应者之间发现了显著差异,AUC为0.75 (0.95% CI 0.62~0.88);一个新的SWE参数质量特征频率(fmass),fmass为按质量直径倒数加权的SWS;对于NAT有反应患者,fmass在治疗后明显升高(P < 0.001);对于ER阳性患者,进一步研究了SWE参数与Ki-67的组合,可提高反应预测的敏感性和特异性AUC为0.84 (0.95% CI 0.65~0.96) [15]。

Jiang M等 [16] 纳入592名局部晚期乳腺癌患者NAT前/后的超声组学特征及临床病理特征,构建深度学习放射学列线图(列线图内容包括PR、cN、治疗前和后影像学特征RS1和RS2)在术前评价患者NAT疗效;研究结果显示Luminal型、HER2阳性和三阴性亚组的疗效评价中的AUC分别为0.90、0.95和0.93。综上所述,超声检查方法较多,各具优势,互为补充其结合临床病理特征可提高评价NAT后患者pCR的准确性。

3. 对比增强乳腺X线摄影技术(Contrast Enhanced Spectral Mammography, CESM)

乳腺X线检查虽然对微钙化灶的灵敏度较高,但是通过钙化评估NAT疗效的准确性有待进一步探讨 [17];且其对致密型乳腺的病灶显影较差;乳腺X线检查角度有限,且无法评估腋窝淋巴结状态;与超声相比存在放射性损伤,不适宜每个周期密切随访。目前,在乳腺X线检查基础上使用造影剂进行的对比增强乳腺X线摄影技术,静脉注射造影剂后获得高、低能量减影图像,可清晰显示高血流灌注的区域,提高了评估NAT疗效的准确性。Xing D等 [18] 纳入111例乳腺癌患者于NAT前及治疗两周期后行CESM检查评估治疗疗效;该研究结果表明,乳腺颅尾位视图(AUC = 0.776)和内外斜位视图(AUC = 0.733)的ΔCGV (灰度值降低百分比)具有显着的诊断价值(P < 0.001)。CC和MLO视图ΔCGV的AUCs的比较表明,差异没有统计学意义(Delong test, P = 0.460)。相关研究结果表明在诊断乳腺癌时CESM和乳房MRI成像具有相似的敏感性和特异性,其特异性优于MRI [19] [20]。CESM比乳房MRI更便宜,可及性更高,检查时间更短。目前,在行CESM评价乳腺癌新辅助治疗疗效方面的研究较少,将来需更大规模的研究评估CESM的应用价值,其可能成为有MRI的禁忌症患者合适的替代检查技术。

4. 磁共振成像(Magnetic Resonance Imaging, MRI)

4.1. DCE-MRI和DWI成像技术

DCE-MRI和DWI成像技术已逐渐应用于新辅助化疗疗效的评估中。既往多项研究表明DCE-MRI是评估和预测对NAC的治疗反应的最敏感方法 [21] [22] [23] [24] [25]。一项meta分析结果显示DCE-MRI在评估乳腺癌患者NAT后疗效时敏感性和特异性分别为84% (95% CI: 78%~88%)和83% (95% CI: 79%~86%)。SROC下的面积为0.899 (95% CI: 0.867~0.943) [26]。DWI的影像学功能直接反映了基于病变中水分子扩散变化的患者病变 [27]。研究表明,肿瘤中病理细胞的密度越高,对内部水分子扩散的限制程度就越高。通过DWI检测获得的ADC值可以准确量化组织内水分子的扩散值,从而有效地揭示患者肿瘤病变的程度 [28]。Zhang J等 [29] 纳入64例接受NAT的乳腺癌患者,在治疗前后通过行DCE-MRI与DWI成像方法评价治疗疗效;研究结果表明在患者行NAT治疗后有反应组的Kep,Ktrans值有显著降低(P < 0.01),且NAT后有反应组与无反应组的Kep,Ktrans值有显著差异(P < 0.01);同样在行DWI成像方法评价患者NAT疗效时治疗后有反应组ADCmin,ADCmean值有显著升高(P < 0.01),NAT后有反应组与无反应组的ADCmin,ADCmean值有显著差异(P < 0.01)。Tahmassebi A等 [30] 通过一项前瞻性研究纳入38例乳腺癌患者在NAT治疗前后提取23中MRI成像特征应用8中机器学习方法,探索评估NAT疗效最佳方案;研究结果表明极限梯度提升算法(eXtreme Gradient Boosting XGBoost)预测组织病理学残余癌负荷类别AUC为0.86;与其他分类算法相比,XGBoost算法准确率更胜一筹。研究结果显示与预测病理学残余癌负荷类别最相关的MRI成像特征包括:DCE-MRI成像中病灶大小的改变、完整的退缩模式和平均渡越时间;DWI成像中最小ADC值;T2加权像显示瘤周水肿。同样一项回顾性研究结果表明在基于T2WI,DWI和DCE-MRI的放射组学特征以及这三者的组合中,组合特征对于预测患者对NAT的敏感性和评价治疗后达到pCR的可能性表现最佳(AUC > 0.90)。与传统的DCE MRI相比,Fast DCE MRI提供了更高的对比度增强曲线采样率,可能更准确地表征肿瘤灌注动力学,从而测量肿瘤功能体积(functional tumor volume FTV),FTV被认为代表活肿瘤细胞的区域,研究表明有助于预测治疗反应 [31] [32]。Musall BC等 [33] 报道在三阴性乳腺癌患者NAT第四周期后,行Fast DCE MRI检查在造影剂注射后1分钟的FTV在评价pCR和非pCR之间提供了最佳的鉴别,AUC = 0.85 (95% CI: 0.74~0.95)。I-SPY 2研究旨在通过MRI上FTV结合DWI测量的表观扩散系数的变化来评估局部浸润性乳腺癌患者接受NAT后的pCR率;研究结果表明FTV预测因子都可以预测pCR,AUC范围为0.63至0.70。FTV联合ADC评估患者NAT后pCR,预测模型的准确度得到提高,AUC值最高可达0.81 [34]。综上所述,以上研究结果表明评估乳腺癌患者NAT疗效时使用DCE-MRI同时联合使用DWI成像可提高疗效评价的准确性。

4.2. 弥散张量成像(Diffusion Tensor Image, DTI)

弥散张量成像是一项有待发展的功能性磁共振成像技术,通过计算组织内水分子自由扩散特征参数值,反映其扩散能力,继而能较准确地显示组织内部微观结构的表现。近年来DTI的应用较广泛,Furman-Haran E等 [35] 研究对比评估乳腺癌患者NAT疗效时DCE与DTI技术的准确性;其研究结果显示:在 NAT前后,肿瘤组织直径和体积的变化上DTI和DCE评估显著相关Pearson相关系数(r = 0.82, P = 1.2 × 10−5);DTI评估体积变化与病理M & P分级显著相关,Spearman系数等级相关性(0.68, P = 0.001);通过DTI评估NAT前后体积变化区分有反应者和无反应者时,AUC为(0.83 ± 0.10);使用最高扩散系数和平均扩散率 的变化表现评估NAT疗效时AUC分别为(0.84 ± 0.11)和(0.83 ± 0.11)。因此,DTI通过患者治疗前后肿瘤大小和扩散张量参数的变化,来评估治疗疗效时其准确性与 DCE 相当,并且评估残留肿瘤大小与病理学高度一致。

Hussain L等 [36] 纳入387例NAT后达到pCR的乳腺癌患者,通过机器学习算法探索能够准确评估pCR率的因素,该研究主要纳入的内容有乳腺癌的不同分子亚型,治疗前,治疗前期及治疗中期行MRI检查获得的肿瘤及肿瘤周围影像学特征;研究显示使用分子亚型进行pCR预测的AUC为0.82;在治疗前,治疗前期及治疗中期行MRI检查获得的肿瘤及肿瘤周围影像学特征预测pCR的AUC分别为0.88,0.72和0.78;当分子亚型结合治疗前,治疗前期MRI检查获得的肿瘤及肿瘤周围影像学特征预测pCR的AUC分别为0.98;在进行评估疗效时使用机器学习方法RUS Boosted Tree机器学习方法性能最佳。综上所述,MRI检查参数联合分析可准确且全面的评估患者NAT疗效,结合机器学习方法有可能避免不必要的有创评估方法。

5. 正电子发射型计算机断层显像(Positron Emission Computed Tomography, PET)

细胞代谢异常是肿瘤发生的标志 [37],18FDG PET/CT检查通过监测肿瘤细胞摄取外源性葡萄糖,从而监测肿瘤细胞早期代谢变化,利用18FDG PET/CT检查评估乳腺癌患者NAT疗效可以提供早期肿瘤反应的相关指标 [38] [39] [40]。Li P等 [41] 纳入100例接受NAT的乳腺癌患者,在患者治疗前行18FDG PET/CT检查并提取2210个PET/CT放射学特征,通过机器学习方法中多元随机森林进行进一步分析,评估患者治疗后疗效;该研究结果表明PET/CT放射学疗效评估模型在训练集上的评估准确度为0.857 (AUC = 0.844),在验证集上的评估准确度为0.767 (AUC = 0.722);当考虑年龄时,训练集上的评估准确度增加到0.857 (AUC = 0.958),验证集的准确度增加到0.8 (AUC = 0.73);研究结果表示以上两者都优于临床预测模型,且放射学特征、受体表达和肿瘤T分期之间有密切联系。一项meta分析对比使用乳腺PET/CT和MRI在评估患者NAT疗效时的敏感度和特异特;研究结果表明PET/CT评估治疗疗效的敏感度和特异度均优于传统的CE-MRI成像,敏感度为0.88 (95% CI: 0.71, 0.95) vs 0.74 (95% CI: 0.60, 0.85),P = 0.018);特异度为0.94 (95% CI: 0.78, 0.98) vs 0.83 (95% CI: 0.81, 0.87), P = 0.015) [42]。Sasada S等 [43] 探讨基于18FDG PET/CT和肿瘤浸润淋巴细胞(TIL)评分评估乳腺癌NAT疗效;研究结果表明PET-TIL评分组的低和高组的pCR率分别为20.0%和44.2% (P < 0.001)。因此,应用PET评估患者NAT疗效时结合临床特征及病理特征可提高评估准确性,结合机器学习建立评估模型可进一步增加疗效评估准确性,但其价格昂贵,不适用于每个治疗周期进行评估,最佳评估时期需进一步研究来确定。

6. 结语

综上所述,为患者选择合适的影像学方法进行NAT疗效评估至关重要。传统的影像学方法主要是通过评估新辅助治疗前后肿瘤大小的变化,来评价治疗疗效。近年来随着影像学技术的不断发展,目前通过影像学评估治疗疗效可从肿瘤功能、代谢及血供等多方面的变化全面评估,并且结合机器学习方法进行分析建模,极大程度提高了影像学评估治疗疗效的准确性。以期为接受新辅助治疗的乳腺癌患者提供更加精准的影像学方法评估治疗疗效,及时终止无效治疗方案,使患者更大程度上获益。

文章引用

周雅静,陈 丹,李建辉. 应用影像学方法评估乳腺癌新辅助治疗疗效的研究进展
Research Progress of Imaging in Evaluating the Efficacy of Neoadjuvant Therapy for Breast Cancer[J]. 临床医学进展, 2022, 12(08): 7709-7716. https://doi.org/10.12677/ACM.2022.1281112

参考文献

  1. 1. Hamy, A.S., Belin, L., Bonsang-Kitzis, H., et al. (2016) Pathological Complete Response and Prognosis after Neoadju-vant Chemotherapy for HER2-Positive Breast Cancers before and after Trastuzumab Era: Results from a Real-Life Co-hort. British Journal of Cancer, 114, 44-52. https://doi.org/10.1038/bjc.2015.426

  2. 2. Kuerer, H.M., Newman, L.A., Smith, T.L., et al. (1999) Clinical Course of Breast Cancer Patients with Complete Pathologic Primary Tumor and Axillary Lymph Node Response to Doxorubicin-Based Neoadjuvant Chemotherapy. Journal of Clinical Oncology, 17, 460. https://doi.org/10.1200/JCO.1999.17.2.460

  3. 3. von Minckwitz, G., Untch, M., Blohmer, J.U., et al. (2012) Definition and Impact of Pathologic Complete Response on Prognosis after Neoadjuvant Chemotherapy in Various In-trinsic Breast Cancer Subtypes. Journal of Clinical Oncology, 30, 1796-1804. https://doi.org/10.1200/JCO.2011.38.8595

  4. 4. Baumgartner, A., Tausch, C., Hosch, S., et al. (2018) Ultra-sound-Based Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. Breast, 39, 19-23. https://doi.org/10.1016/j.breast.2018.02.028

  5. 5. Ochi, T., Tsunoda, H., Matsuda, N., et al. (2021) Accura-cy of Morphologic Change Measurements by Ultrasound in Predicting Pathological Response to Neoadjuvant Chemo-therapy in Triple-Negative and HER2-Positive Breast Cancer. Breast Cancer, 28, 838-847. https://doi.org/10.1007/s12282-021-01220-5

  6. 6. D’Angelo, A., Rinaldi, P., Belli, P., et al. (2019) Usefulness of Automated Breast Volume Scanner (ABVS) for Monitoring Tumor Response to Neoadjuvant Treatment in Breast Cancer Patients: Preliminary Results. European Review for Medical and Pharmacological Sciences, 23, 225-231. https://doi.org/10.26355/eurrev_201901_16768

  7. 7. Um, E., Kang, J.W., Lee, S., et al. (2018) Comparing Accu-racy of Mammography and Magnetic Resonance Imaging for Residual Calcified Lesions in Breast Cancer Patients Un-dergoing Neoadjuvant Systemic Therapy. Clinical Breast Cancer, 18, e1087-e1091. https://doi.org/10.1016/j.clbc.2018.03.011

  8. 8. de Bazelaire, C., Calmon, R., Chapellier, M., Pluvinage, A., Frija, J. and de Kerviler, E. (2010) Imagerie TDM et IRM de l’angiogenèse tumorale [CT and MRI Imaging in Tumoral Angio-genesis]. Bulletin du Cancer, 97, 79-90. https://doi.org/10.1684/bdc.2010.0961

  9. 9. Leng, X., Huang, G., Zhang, L., Ding, J. and Ma, F. (2020) Changes in Tumor Stem Cell Markers and Epithelial- Mesenchymal Transition Markers in Nonluminal Breast Cancer after Neo-adjuvant Chemotherapy and Their Correlation with Contrast-Enhanced Ultrasound. BioMed Research International, 2020, Article ID: 3869538. https://doi.org/10.1155/2020/3869538

  10. 10. Chang, J.M., Moon, W.K., Cho, N., et al. (2011) Clinical Application of Shear Wave Elastography (SWE) in the Diagnosis of Benign and Malignant Breast Diseases. Breast Cancer Research and Treatment, 129, 89-97. https://doi.org/10.1007/s10549-011-1627-7

  11. 11. Bai, M., Du, L., Gu, J., Li, F. and Jia, X. (2012) Virtual Touch Tissue Quantification Using Acoustic Radiation Force Impulse Technology: Initial Clinical Experience with Solid Breast Masses. Journal of Ultrasound in Medicine, 31, 289-294. https://doi.org/10.7863/jum.2012.31.2.289

  12. 12. Denis, M., Bayat, M., Mehrmohammadi, M., et al. (2015) Update on Breast Cancer Detection Using Comb-Push Ultrasound Shear Elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62, 1644-1650. https://doi.org/10.1109/TUFFC.2015.007043

  13. 13. Evans, A., Whelehan, P., Thomson, K., et al. (2010) Quantita-tive Shear Wave Ultrasound Elastography: Initial Experience in Solid Breast Masses. Breast Cancer Research, 12, Arti-cle No. R104. https://doi.org/10.1186/bcr2787

  14. 14. Golatta, M., Schweitzer-Martin, M., Harcos, A., et al. (2014) Evaluation of Virtual Touch Tissue Imaging Quantification, a New Shear Wave Velocity Imaging Method, for Breast Le-sion Assessment by Ultrasound. BioMed Research International, 2014, Article ID: 960262. https://doi.org/10.1155/2014/960262

  15. 15. Gu, J., Polley, E.C., Denis, M., et al. (2021) Early Assessment of Shear Wave Elastography Parameters Foresees the Response to Neoadjuvant Chemotherapy in Patients with Invasive Breast Cancer. Breast Cancer Research, 23, Article No. 52. https://doi.org/10.1186/s13058-021-01429-4

  16. 16. Jiang, M., Li, C.L., Luo, X.M., et al. (2021) Ultrasound-Based Deep Learning Radiomics in the Assessment of Pathological Com-plete Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer. European Journal of Cancer, 147, 95-105. https://doi.org/10.1016/j.ejca.2021.01.028

  17. 17. Mazari, F.A.K., Sharma, N., Dodwell, D. and Horgan, K. (2018) Human Epidermal Growth Factor 2-Positive Breast Cancer with Mammographic Microcalcification: Relationship to Pathologic Complete Response after Neoadjuvant Chemotherapy. Radiology, 288, 366-374. https://doi.org/10.1148/radiol.2018170960

  18. 18. Xing, D., Mao, N., Dong, J., Ma, H., Chen, Q. and Lyu, Y. (2021) Quantitative Analysis of Contrast Enhanced Spectral Mammography Grey Value for Early Prediction of Pathological Response of Breast Cancer to Neoadjuvant Chemotherapy. Scientific Reports, Article No. 5892. https://doi.org/10.1038/s41598-021-85353-9

  19. 19. Li, L., Roth, R., Germaine, P., et al. (2017) Contrast-Enhanced Spectral Mammography (CESM) versus Breast Magnetic Resonance Imaging (MRI): A Retrospective Comparison in 66 Breast Lesions. Diagnostic and Interventional Imaging, 98, 113-123. https://doi.org/10.1016/j.diii.2016.08.013

  20. 20. Lewin, J. (2018) Comparison of Contrast-Enhanced Mammography and Contrast-Enhanced Breast MR Imaging. Magnetic Resonance Imaging Clinics of North America, 26, 259-263. https://doi.org/10.1016/j.mric.2017.12.005

  21. 21. Abramson, R.G., Li, X., Hoyt, T.L., et al. (2013) Early Assess-ment of Breast Cancer Response to Neoadjuvant Chemotherapy by Semi-Quantitative Analysis of High-Temporal Reso-lution DCE-MRI: Preliminary Results. Magnetic Resonance Imaging, 31, 1457-1464. https://doi.org/10.1016/j.mri.2013.07.002

  22. 22. Arlinghaus, L.R., Li, X., Levy, M., et al. (2010) Current and Future Trends in Magnetic Resonance Imaging Assessments of the Response of Breast Tumors to Neoadjuvant Chemotherapy. Journal of Oncology, 2010, Article ID: 919620. https://doi.org/10.1155/2010/919620

  23. 23. Li, X., Abramson, R.G., Arlinghaus, L.R., et al. (2015) Multiparametric Magnetic Resonance Imaging for Predicting Pathological Response after the First Cycle of Neoadjuvant Chemotherapy in Breast Cancer. Investigative Radiology, 50, 195-204. https://doi.org/10.1097/RLI.0000000000000100

  24. 24. Wu, L.A., Chang, R.F., Huang, C.S., et al. (2015) Evaluation of the Treatment Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer Using Combined Magnetic Resonance Vascular Maps and Apparent Diffusion Coeffi-cient. Journal of Magnetic Resonance Imaging, 42, 1407-1420. https://doi.org/10.1002/jmri.24915

  25. 25. Minarikova, L., Bogner, W., Pinker, K., et al. (2017) Investigating the Prediction Value of Multiparametric Magnetic Resonance Im-aging at 3T in Response to Neoadjuvant Chemotherapy in Breast Cancer. European Radiology, 27, 1901-1911. https://doi.org/10.1007/s00330-016-4565-2

  26. 26. Wei, J., Wang, C., Xie, X. and Jiang, D. (2019) Meta-Analysis of Quantitative Dynamic Contrast-Enhanced MRI for the Assessment of Neoadjuvant Chemotherapy in Breast Cancer. The American Surgeon, 85, 645-653. https://doi.org/10.1177/000313481908500630

  27. 27. Chandramohan, A., Siddiqi, U.M., Mittal, R., et al. (2020) Diffusion Weighted Imaging Improves Diagnostic Ability of MRI for Determining Complete Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. European Journal of Radiology Open, 7, Article ID: 100223. https://doi.org/10.1016/j.ejro.2020.100223

  28. 28. Shangguan, A.J., Sun, C., Wang, B., et al. (2019) DWI and DCE-MRI Approaches for Differentiating Reversibly Electroporated Penumbra from Irreversibly Electroporated Ablation Zones in a Rabbit Liver Model. American Journal of Cancer Research, 9, 1982-1994.

  29. 29. Zhang, J., Huang, Y., Chen, J., Wang, X. and Ma, H. (2021) Potential of Combination of DCE-MRI and DWI with Serum CA125 and CA199 in Evaluating Effectiveness of Neoadjuvant Chemotherapy in Breast Cancer. World Journal of Surgical Oncology, 19, Arti-cle No. 284. https://doi.org/10.1186/s12957-021-02398-w

  30. 30. Tahmassebi, A., Wengert, G.J., Helbich, T.H., et al. (2019) Impact of Machine Learning with Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients. Investigative Radiology, 54, 110-117. https://doi.org/10.1097/RLI.0000000000000518

  31. 31. Jafri, N.F., Newitt, D.C., Kornak, J., Esserman, L.J., Joe, B.N. and Hylton, N.M. (2014) Optimized Breast MRI Functional Tumor Volume as a Biomarker of Recurrence-Free Survival Following Neoadjuvant Chemotherapy. Journal of Magnetic Resonance Imaging, 40, 476-482. https://doi.org/10.1002/jmri.24351

  32. 32. Hylton, N.M., Gatsonis, C.A., Rosen, M.A., et al. (2016) Neoadjuvant Chemotherapy for Breast Cancer: Functional Tumor Volume by MR Imaging Predicts Recurrence-Free Survival-Results from the ACRIN 6657/CALGB 150007 I-SPY 1 TRIAL. Radiology, 279, 44-55. https://doi.org/10.1148/radiol.2015150013

  33. 33. Musall, B.C., Abdelhafez, A.H., Adrada, B.E., et al. (2021) Func-tional Tumor Volume by Fast Dynamic Contrast-Enhanced MRI for Predicting Neoadjuvant Systemic Therapy Response in Triple-Negative Breast Cancer. Journal of Magnetic Resonance Imaging, 54, 251-260. https://doi.org/10.1002/jmri.27557

  34. 34. Li, W., Newitt, D.C., Wilmes, L.J., et al. (2019) Additive Value of Diffu-sion-Weighted MRI in the I-SPY 2 TRIAL. Journal of Magnetic Resonance Imaging, 50, 1742-1753. https://doi.org/10.1002/jmri.26770

  35. 35. Furman-Haran, E., Nissan, N., Ricart-Selma, V., Martinez-Rubio, C., De-gani, H. and Camps-Herrero, J. (2018) Quantitative Evaluation of Breast Cancer Response to Neoadjuvant Chemotherapy by Diffusion Tensor Imaging: Initial Results. Journal of Magnetic Resonance Imaging g, 47, 1080-1090. https://doi.org/10.1002/jmri.25855

  36. 36. Hussain, L., Huang, P., Nguyen, T., et al. (2021) Machine Learning Clas-sification of Texture Features of MRI Breast Tumor and Peri-Tumor of Combined Pre- and Early Treatment Predicts Pathologic Complete Response. BioMedical Engineering OnLine, 20, Article No. 63. https://doi.org/10.1186/s12938-021-00899-z

  37. 37. Hanahan, D. (2022) Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12, 31-46. https://doi.org/10.1158/2159-8290.CD-21-1059

  38. 38. Groheux, D., Biard, L., Giacchetti, S., et al. (2016) 18F-FDG PET/CT for the Early Evaluation of Response to Neoadjuvant Treatment in Triple-Negative Breast Cancer: Influence of the Chemotherapy Regimen. Journal of Nuclear Medicine, 57, 536-543. https://doi.org/10.2967/jnumed.115.163907

  39. 39. Groheux, D., Sanna, A., Majdoub, M., et al. (2015) Baseline Tumor 18F-FDG Uptake and Modifications after 2 Cycles of Neoadjuvant Chemotherapy Are Prognostic of Outcome in ER+/HER2- Breast Cancer. Journal of Nuclear Medicine June, 56, 824-831. https://doi.org/10.2967/jnumed.115.154138

  40. 40. Groheux, D., Mankoff, D., Espié, M. and Hindié, E. (2016) 18F-FDG PET/CT in the Early Prediction of Pathological Response in Aggressive Subtypes of Breast Cancer: Review of the Literature and Recommendations for Use in Clinical Trials. European Journal of Nuclear Medicine and Molecular Imaging, 43, 983-993. https://doi.org/10.1007/s00259-015-3295-z

  41. 41. Li, P., Wang, X., Xu, C., et al. (2020) 18F-FDG PET/CT Radio-mic Predictors of Pathologic Complete Response (pCR) to Neoadjuvant Chemotherapy in Breast Cancer Patients. Euro-pean Journal of Nuclear Medicine and Molecular Imaging, 47, 1116-1126. https://doi.org/10.1007/s00259-020-04684-3

  42. 42. Chen, L., Yang, Q., Bao, J., Liu, D., Huang, X. and Wang, J. (2017) Direct Comparison of PET/CT and MRI to Predict the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer: A Meta-Analysis. Scientific Reports, 7, Article No. 8479. https://doi.org/10.1038/s41598-017-08852-8

  43. 43. Sasada, S., Kimura, Y., Emi, A., et al. (2020) Tumor-Infiltrating Lymphocyte Score Based on FDG PET/CT for Predicting the Effect of Neoadjuvant Chemotherapy in Breast Cancer. An-ticancer Research, 40, 3395-3400. https://doi.org/10.21873/anticanres.14323

  44. NOTES

    *通讯作者。

期刊菜单