Advances in Clinical Medicine
Vol. 13  No. 08 ( 2023 ), Article ID: 70761 , 8 pages
10.12677/ACM.2023.1381818

生物标志物在诊断和筛查肌肉减少症中 的应用前景

李洪安1,王叶2*

1青海大学临床医学院,青海 西宁

2青海省人民医院内分泌科,青海 西宁

收稿日期:2023年7月18日;录用日期:2023年8月10日;发布日期:2023年8月17日

摘要

肌肉减少症(简称肌少症)是一种衰老相关的疾病,表现为年龄相关的骨骼肌质量和功能的衰退。肌少症缺乏特异的临床表现,轻症较难发现,一旦出现衰弱、跌倒等不良事件,通常伴随着显著的肌肉质量下降及功能减退。因此选择简单有效的工具,早期识别肌少症进行干预,有利于延缓疾病的发生和发展,维护患者生活质量。本文通过总结相关国内外文献,对肌少症的现有诊断标准及筛查工具进行分析和比较,重点探讨目前诊筛工具的优势与不足,并对肌少症生物标志物进行分析总结,以期为肌少症筛查工具的选择及准确评估提供思考。生物标志物以其独有的特点,在肌少症的筛查和诊断中可能具有潜在价值。

关键词

肌肉减少症,诊断,筛查工具,生物标志物

Application Prospects of Biomarkers in the Diagnosis and Screening of Sarcopenia

Hong’an Li1, Ye Wang2*

1School of Clinical Medicine, Qinghai University, Xining Qinghai

2Endocrinology Department of Qinghai Provincial People’s Hospital, Xining Qinghai

Received: Jul. 18th, 2023; accepted: Aug. 10th, 2023; published: Aug. 17th, 2023

ABSTRACT

Sarcopenia is an age-related disease characterized by age-related decline in skeletal muscle mass and function. Sarcopenia lacks specific clinical manifestations and is difficult to detect in mild cases. Once adverse events such as weakness and falls occur, it is usually accompanied by significant loss of muscle mass and function. Therefore, the selection of simple and effective tools and early identification of sarcopenia for intervention are conducive to delaying the occurrence and development of the disease and maintaining the quality of life of patients. This article summarizes the relevant domestic and foreign literature, analyzes and compares the existing diagnostic criteria and screening tools for sarcopenia, focuses on the advantages and disadvantages of the current diagnostic and screening tools, and analyzes and summarizes the biomarkers of sarcopenia, in order to provide thinking for the selection and accurate evaluation of screening tools for sarcopenia. With their unique characteristics, biomarkers may have potential value in the screening and diagnosis of sarcopenia.

Keywords:Sarcopenia, Diagnosis, Screening Tools, Biomarkers

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 肌少症的定义

早在1931年,Critchley [1] 就在肌肉活检中观察到人类骨骼肌中某些纤维类型随着时间的推移而流失。随时间进展的瘦体重及尿肌酐的下降反映肌肉质量下降,并且与体力活动、力量下降以及基础代谢率下降有关 [2] [3] 。1989年,Rosenberg提出了“sarcopenia”一词,描述这种年龄相关的肌肉减少现象,并认为肌肉减少可能是导致老年人体能下降、虚弱以及平衡和活动能力降低的重要原因。在获得了正式的名称后,与年龄相关的肌肉衰退受到了越来越多的研究和关注。2010年老年人肌少症欧洲工作组 [4] (European Working Group on Sarcopenia in Older People, EWGSOP)将肌肉减少症定义为一种以骨骼肌质量和力量进行性和全身性丧失为特征的综合征。

2. 肌少症的诊断

EWGSOP 2010提供了基于肌肉质量、肌肉力量的诊断标准作为参考。考虑到与西方同时代人相比,亚洲人在人体测量学、文化和生活方式上的差异,亚洲肌少症工作组提供了修改后的标准AWGS 2014 [5] 。

依据相关指南共识,肌少症的诊断应从肌肉质量、肌肉力量及肌肉功能三个方面入手。然而目前国际组织在针对肌少症的诊断方法和标准方面仍未达成一致,尤其在肌肉质量测定部分存在较多争议,包括如何最好地测量肌肉质量、选择何种测量工具和技术,以及确定什么是“正常”肌肉质量的标准等。

2.1. 肌肉质量

磁共振成像(MRI)和计算机断层扫描(CT)被认为是无创评估肌肉数量/质量的金标准。然而,由于设备成本高、缺乏便携性以及存在辐射暴露,限制了其在临床诊断及社区筛查中的应用。双能X线吸收法(DXA)是一种成熟的低辐射技术,是研究和临床应用的首选替代方法,但与CT和MRI相比DXA无法评估肌肉内脂肪。生物电阻抗分析法(BIA)根据导体体积与其电阻之间的关系来估计脂肪体积和瘦体重,无创、廉价、便携。AWGS 2014支持使用BIA法测量四肢肌肉质量,然而其准确性不仅受年龄、种族等人口学资料影响,还受身体脂肪、结缔组织等非肌肉组织含量、机体水分以及电解质的影响,准确性低于成像方式 [6] 。此外,超声评估虽然有安全、无创、便携的优点,但实际应用价值尚未得到一致认可。

2.2. 肌肉力量

欧洲和亚洲肌少症工作组都建议将握力作为评价肌肉力量的常用手段。最新版亚洲肌少症诊断标准AWGS 2019 [7] 推荐的标准姿势是Smedley测力计全肘伸展站立和Jamar测力计90˚肘屈曲。测量标准是在最大努力等长收缩中使用双手或惯用手进行至2次试验的最大读数。

2.3. 肌肉功能

AWGS 2019建议根据6米步行试验、5次椅子站立测试或SPPB评分来识别低体能。评估方法简单、廉价,没有场所的限制。

AWGS2019将肌肉质量下降同时伴有肌肉力量或肌肉功能降低判定为肌少症,将肌肉力量降低伴或不伴肌肉功能下降判定为可能肌少症,三者同时下降为严重肌少症。

3. 肌少症的筛查

欧洲和亚洲工作组都推荐DXA法或BIA法用于在实践中评估肌肉质量。同时,建议在评估肌肉力量和表现时分别使用握力和步速。然而这些方法在实践中应用并不广泛。近年来,不同国家和地区的研究人员开发了各种肌少症筛查量表,成为辅助临床诊断,指导公共卫生政策的宝贵工具。

2013年Malmstrom等人 [8] 编制的SARC-F量表,由力量、行走辅助、从椅子上站起来、爬楼梯和跌倒5部分组成,以计分的方式评价肌少症风险,现常用于肌肉减少症风险的筛查,在预测肌少症方面具有很高的特异性。由于它的敏感性仅在3.8%和33.3%之间,使得很多肌少症患者可能会被遗漏。2014年由Shinya Ishii等人 [9] 开发,包括年龄、握力和小腿周长3个变量的模型,在筛查老年人肌少症风险中,敏感性和特异性分别达到男性84.9%、88.2%,女性75.5%、92.0%。2016年Barbosa-Silva等人 [10] 在SARC-F问卷的基础上添加了小腿围,用来补充对肌肉质量的评估,形成了SARC-CalF评分,大大提高了SARC-F的灵敏度和准确性。2018年Tomoki Tanaka等人 [11] 开发了Yubi-Wakka测试(指环测试),该测试要求受试者用自己双手的食指和拇指做一个环,轻轻地绕着非惯用小腿的最厚部分,检查与指环周长相比,非惯用小腿周长是否“更大”、“刚好合适”或“更小”,开创了更为个体化的评价标准,达到70.00%灵敏度和85.65%特异度。此外,迷你肌肉减少症风险评估(MSRA),认知障碍评分(6-CIT)在实际应用中都显示出各自独特的价值 [12] [13] 。

4. 生物标志物

生物标志物是指一种可量化的生物学参数,被测量和评估为正常生物过程、致病过程中或对治疗干预的药理学反应的指标 [14] 。

AWGS2019提出肌肉减少症的发病机制可能涉及细胞衰老、神经肌肉接头活性降低、肌因子产生异常、激素状态改变、促炎因子作用增强、线粒体功能下降、以及伴随食欲下降的营养不良。基于对发病机制的探索与阐明,本文综述了肌少症生物标志物的最新研究进展。

4.1. 肌肉代谢相关生物标志物

肌酸主要存在于骨骼肌中,D3-肌酸稀释法估计肌肉质量与人类的全身肌肉质量的MRI测量值非常一致,有望成为量化骨骼肌质量的新手段 [15] ;肌酐是肌肉中磷酸肌酸的分解产物,在稳态条件下,血清肌酐水平可以可靠的反映肌肉质量。N末端III型前胶原(PIIINP)是肌肉中胶原蛋白合成过程中蛋白水解裂解释放的片段,是衡量肌肉重塑的生物标志物;3-甲基组氨酸(3MH)可诱导肌原纤维蛋白水解,与VI型胶原蛋白均被提议作为肌肉组织损伤的生物标志物 [16] 。

4.2. 神经肌肉接头相关生物标志物

肌肉神经支配的丧失会导致肌肉无力、运动障碍并导致肌肉萎缩。C端集聚蛋白片段(CAF)被认为是神经肌肉接头突触后分化的关键组织者,已有研究发现CAF22与身体表现、肌肉力量之间的关联,被提议作为源自神经肌肉接头退化的肌少症的新型生物标志物 [17] 。此外,脑源性神经营养因子(BDNF)和神经胶质细胞系源性神经营养因子(GDNF)也不同程度影响神经肌肉接头功能。

4.3. 肌肉、脂肪组织细胞因子

肌细胞因子、脂肪因子与肌肉代谢密切相关,并通过多种途径影响骨骼活动。肌肉生长抑制素也称为生长分化因子-8 (GDF-8),是一种肌肉生长的负调节因子,其表达随年龄增长而增长,部分解释与年龄相关的肌肉萎缩和力量下降 [18] 。生长分化因子-15 (GDF-15)也是一种转化生长因子-β,随着年龄增长而增加,与肌肉量低呈正相关,可能作为潜在的肌少症生物标志物 [19] 。卵泡抑素是肌肉生长抑制素的强抑制剂,通过激活素/肌肉生长抑制素信号传导通路发挥作用,研究显示女性卵泡抑素与骨量、肌肉量和力量呈负相关,并且相关性不受运动和维生素D水平的影响 [20] 。鸢尾素是一种新型肌细胞因子,与股四头肌横截面积(CSA)和肌肉质量呈正相关。循环鸢尾素水平识别肌少症准确性高,是一种新型潜在生物标志物 [21] 。瘦素是一种促炎性脂肪因子,较高水平的血清瘦素与肌肉质量和功能差之间存在关联 [22] ;抗炎脂肪因子脂联素在促进卫星细胞肌生成、抑制蛋白水解、维持肌纤维大小方面发挥有益作用。有大型流行病学研究观察到高血清脂联素水平与低骨骼肌质量、低肌肉密度、身体机能减退和高肌少症发生率的关联,是潜在的肌少症生物标志物 [23] 。基质GLA (γ-羧基谷氨酸)蛋白(MGP)也是一种脂肪因子,可调节肌肉、脂肪和骨骼的代谢。脱磷去羧化MGP (Dp-ucMGP)血浆水平与步态速度、四肢骨骼肌质量和四肢骨骼肌质量指数等肌少症参数相关,可能是肌少症表征中良好的生物标志物 [24] 。

4.4. 炎症相关生物标志物

炎症是衰老的标志之一,在骨骼肌中,炎症可以直接触发肌肉分解代谢或抑制生长因子,导致肌肉力量下降和活动能力下降,是引起肌少症的重要原因。目前已研究证实与肌少症发生相关的炎症标志物有白细胞介素-6 (IL-6)、肿瘤坏死因子-α (TNF-α)、C-反应蛋白(CRP)、热休克蛋白72 (HSP72)、巨噬细胞迁移抑制因子(MIF)、P选择素、γ干扰素(IFN-γ)、可溶性肿瘤坏死因子受体1 (sTNFR-1)、髓过氧化物酶(MPO)、巨噬细胞迁移抑制因子(MIF)、肿瘤坏死因子样弱凋亡诱导物(TWEAK)、高温相关丝氨酸蛋白酶A1 (HtrA1)等。近年来,有研究指出血浆抗肿瘤坏死因子-α (抗TNF-α)与TNF-α呈正相关,较TNF-α更稳定,更合适作为肌少症生物标志物 [25] 。

4.5. 营养相关生物标志物

营养不良是导致肌少症的重要病因,也是营养支持的治疗基础。沙特一项有关肥胖人群的调查 [26] 显示,肌少症患者的总胆固醇(TC)和甘油三酯(TG)显著升高,高密度脂蛋白胆固醇(HDL-C)显著降低。作为糖尿病的重要并发症,糖尿病病程长、血糖控制不佳与肌少症密切相关,但糖化血红蛋白(HbA1C)与肌少症是否相关目前争论不一。蛋白质中白蛋白是反映人体内脏蛋白质状态的合适的生物标志物,与患有肌少症的老年人相比,没有肌少症的老年人血白蛋白含量更高 [27] 。血红蛋白水平与肌肉减少症独立相关,与肌肉力量的相关性强于肌肉质量 [28] 。氨基酸中低水平的亮氨酸和谷氨酸与低肌肉力量显著相关,其中亮氨酸也与肌肉质量相关 [29] ;较高的组氨酸和较低的丙氨酸水平与步速差有关 [30] ;精胺/亚精胺比的比值与肌肉减少症的进展程度成反比 [31] 。其他营养指标如维生素B12、维生素C、D、E,无机盐中的钠、钙、镁、硒均已证实与肌少症发病相关。

4.6. 内分泌激素相关生物标志物

胰岛素样生长因子1 (IGF-1)途径激活蛋白质合成并抑制降解,从而控制肌肉蛋白质周转的平衡。与年龄相关的IGF-1下降,被认为是肌肉减少的一个致病因素,与肌肉质量、握力和步态速度相关 [32] 。性激素具有增加瘦体重和骨矿物质密度的抗衰老特性,保持年轻的荷尔蒙水平可有效防止肌肉流失。研究表明脱氢表雄酮(DHEA)与握力和步态速度呈正相关,排除运动的影响后相关性仍存在,是比雌二醇和睾酮更好的肌肉力量和步速生物标志物 [20] 。

4.7. 遗传学相关生物标志物

大量研究表明,某些类型的基因变异以及蛋白质编码和非编码基因的失调与肌少症有关。非编码RNA中miRNA和lncRNA已被提议作为肌少症的新型生物标志物和可能的治疗靶点 [33] 。进一步的RNA测序分析也在近期的一项试验中实现:Motoki Furutani等人 [34] 从外周血单核细胞中获取信使RNA,利用RNA测序检测到六个差异表达基因(FAR1,GNL2,HERC5,MRPL47,NUBP2和S100A11),并利用基因集富集分析检测到两个功能模块(MYH9和FLNA)。在使用步幅、HERC5、S100A1和FLNA构建的风险预测模型中显示出良好的诊断效能。另一项研究在基因表达库中检索肌少症相关基因谱,通过WGNCA和LASSO分析鉴定了六种诊断生物标志物(ARHGAP36、FAM171A1、GPCPD1、MT1X、ZNF415和RXRG) [35] 。分子遗传学的应用为未来肌肉减少症的诊断和筛查提供了新的见解。

4.8. 其他生物标志物

代谢组学研究的深入,将更多的代谢指标带入大众的视野。一项血清蛋白质组学谱分析 [36] ,鉴定出两种具有诊断价值的蛋白质(CETP和APOA2),显示出与肌少症良好的相关性。肠道菌群中的益生菌如乳酸菌属、双歧杆菌属,有望成为新的诊断及治疗靶点 [37] 。

5. 小结

影像学诊断标准由于成本高、应用难度大,在临床实践中无法普遍使用,在社区筛查中也难以推行。适当的筛查工具可早期识别疾病,但受测试者和受试者主观因素影响,较难形成统一的标准。相比之下,生物标志物通常易于获得、可供重复、能在世界各地不同实验室实现并且检测结果不会留下主观空间,在疾病的诊断和筛查中具有独特价值。

由于肌少症复杂的病理生理学,目前尚无一种生物标志物可以准确描述肌少症的全部特征。创建一组互补的生物标志物,可以弥补单一指标在准确性、特异性、灵敏性方面的不足,减少单一标志物易受的机体代谢化境影响。对不同发病机制的标志物进行分析和建模的多维方法可能提供一种科学模型对肌少症进行早期识别、风险分层、并对病情进展及疗效进行监测。Ju Yeon Kwak等人 [38] 在21种生物标志物中选择了IL-6、SPARC、MIF和IGF-1并基于多元回归系数形成了风险评分,在诊断肌少症中受试者工作特征曲线下面积(AUC)达到了0.763,高于单一标志物。最佳截止值1.529的设置也为该模型作为筛查工具运用提供了可能。AUC作为比较两种工具诊断效能的可量化指标,截至值(cut point)的获取兼顾了作为诊断工具必要的灵敏度和特异度,为诊断值的设置提供依据。统计工具的应用使利用多种生物标志物对肌少症进行分子诊断和预后判断成为可能。

随着基础医学领域先进工具的应用、计算机领域科学技术的革新,未来将会筛选出更多潜在生物标志物,以供诊断选择。从中筛选出临床常用、易于获取的指标,构建科学有效的筛查模型,也是未来研究的方向,在肌少症的二级预防中具有重要意义。

文章引用

李洪安,王 叶. 生物标志物在诊断和筛查肌肉减少症中的应用前景
Application Prospects of Biomarkers in the Diagnosis and Screening of Sarcopenia[J]. 临床医学进展, 2023, 13(08): 12982-12989. https://doi.org/10.12677/ACM.2023.1381818

参考文献

  1. 1. Critchley, M. (1931) The Neurology of Old Age. The Lancet, 1, 1221-1230. https://doi.org/10.1016/S0140-6736(00)90761-X

  2. 2. Forbes, G.B. and Halloran, E. (1976) The Adult Decline in Lean Body Mass. Human Biology, 48, 161-173.

  3. 3. Rosenberg, I.H. (1997) Sarcopenia: Origins and Clinical Rele-vance. The Journal of Nutrition, 127, 990s-991s. https://doi.org/10.1093/jn/127.5.990S

  4. 4. Cruz-Jentoft, A.J., Baeyens, J.P., Bauer, J.M., Boirie, Y., Cederholm, T., Landi, F., Martin, F.C., et al. (2010) Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing, 39, 412-423. https://doi.org/10.1093/ageing/afq034

  5. 5. Chen, L.-K., Liu, L.-K., Woo, J., Assantachai, P., Auyeung, T.-W., Bahyah, K.S., et al. (2014) Sarcopenia in Asia: Consensus Report of the Asian Working Group for Sarcopenia. Journal of the American Medical Directors Association, 15, 95-101. https://doi.org/10.1016/j.jamda.2013.11.025

  6. 6. Sillanpaa, E., Cheng, S., Hakkinen, K., Finni, T., Walker, S., Pe-sola, A., et al. (2014) Body Composition in 18- to 88-Year-Old Adults—Comparison of Multifrequency Bioimpedance and Dual-Energy X-Ray Absorptiometry. Obesity (Silver Spring), 22, 101-109. https://doi.org/10.1002/oby.20583

  7. 7. Chen, L.-K., Woo, J., Assantachai, P., Auyeung, T.-W., Chou, M.-Y., Iiji-ma, K., et al. (2020) Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medical Directors Association, 21, 300-307.e2. https://doi.org/10.1016/j.jamda.2019.12.012

  8. 8. Malmstrom, T.K. and Morley, J.E. (2013) SARC-F: A Simple Questionnaire to Rapidly Diagnose Sarcopenia. Journal of the American Medical Directors Association, 14, 531-532. https://doi.org/10.1016/j.jamda.2013.05.018

  9. 9. Ishii, S., Tanaka, T., Shibasaki, K., Ouchi, Y., Kikutani, T., Hi-gashiguchi, T., et al. (2014) Development of a Simple Screening Test for Sarcopenia in Older Adults. Geriatrics & Ger-ontology International, 14, 93-101. https://doi.org/10.1111/ggi.12197

  10. 10. Barbosa-Silva, T.G., Menezes, A.M.B., Bielemann, R.M., Malmstrom, T.K. and Gonzalez, M.C. (2016) Enhancing SARC-F: Improving Sarcopenia Screening in the Clinical Practice. Journal of the American Medical Directors Association, 17, 1136-1141. https://doi.org/10.1016/j.jamda.2016.08.004

  11. 11. Tanaka, T., Takahashi, K., Akishita, M., Tsuji, T. and Iijima, K. (2018) “Yubi-Wakka” (Finger-Ring) Test: A Practical Self-Screening Method for Sarcopenia, and a Predictor of Disability and Mortality among Japanese Community-Dwelling Older Adults. Geriatrics & Gerontology International, 18, 224-232. https://doi.org/10.1111/ggi.13163

  12. 12. Rossi, A.P., Micciolo, R., Rubele, S., Fantin, F., Caliari, C., Zoico, E., et al. (2017) Assessing the Risk of Sarcopenia in the El-derly: The Mini Sarcopenia Risk Assessment (MSRA) Questionnaire. The Journal of Nutrition, Health Aging, 21, 743-749. https://doi.org/10.1007/s12603-017-0921-4

  13. 13. O’Sullivan, D., O’Regan, N.A. and Timmons, S. (2016) Validity and Reliability of the 6-Item Cognitive Impairment Test for Screening Cognitive Impairment: A Review. Demen-tia and Geriatric Cognitive Disorders, 42, 42-49. https://doi.org/10.1159/000448241

  14. 14. Curcio, F., Ferro, G., Basile, C., Liguori, I., Parrella, P., Pirozzi, F., et al. (2016) Biomarkers in Sarcopenia: A Multifactorial Approach. Experimental Gerontology, 85, 1-8. https://doi.org/10.1016/j.exger.2016.09.007

  15. 15. Clark, R.V., Walker, A.C., O’Connor-Semmes, R.L., Leonard, M.S., Miller, R.R., Stimpson, S.A., et al. (2014) Total Body Skeletal Muscle Mass: Estimation by Creatine (methyl-d3) Dilution in Humans. Journal of Applied Physiology (1985), 116, 1605-1613. https://doi.org/10.1152/japplphysiol.00045.2014

  16. 16. Casati, M., Costa, A.S., Capitanio, D., Ponzoni, L., Ferri, E., Agostini, S. and Lori, E. (2019) The Biological Foundations of Sarcopenia: Established and Promising Markers. Fron-tiers in Medicine (Lausanne), 6, Article No. 184. https://doi.org/10.3389/fmed.2019.00184

  17. 17. Monti, E., Sarto, F., Sartori, R., Zanchettin, G., Lofler, S., Kern, H., Narici, M.V. and Zampieri, S. (2023) C-Terminal Agrin Fragment as a Biomarker of Muscle Wasting and Weakness: A Narrative Review. Journal of Cachexia, Sarcopenia and Muscle, 14, 730-744. https://doi.org/10.1002/jcsm.13189

  18. 18. Baczek, J., Silkiewicz, M. and Wojszel, Z.B. (2020) Myostatin as a Bi-omarker of Muscle Wasting and Other Pathologies-State of the Art and Knowledge Gaps. Nutrients, 12, Article No. 2401. https://doi.org/10.3390/nu12082401

  19. 19. De Paepe, B. (2022) The Cytokine Growth Differentiation Factor-15 and Skeletal Muscle Health: Portrait of an Emerging Widely Applicable Disease Biomarker. International Journal of Molec-ular Sciences, 23, Article No. 13180. https://doi.org/10.3390/ijms232113180

  20. 20. Du, Y., Xu, C., Shi, H., Jiang, X., Tang, W., Wu, X., et al. (2021) Serum Concentrations of Oxytocin, DHEA and Follistatin Are Associated with Osteoporosis or Sarcopenia In commu-nity-Dwelling Postmenopausal Women. BMC Geriatrics, 21, Article No. 542. https://doi.org/10.1186/s12877-021-02481-7

  21. 21. Chang, J.S., Kim, T.H., Nguyen, T.T., Park, K.S., Kim, N. and Kong, I.D. (2017) Circulating Irisin Levels as a Predictive Biomarker for Sarcopenia: A Cross-Sectional Communi-ty-Based Study. Geriatrics & Gerontology International, 17, 2266-2273. https://doi.org/10.1111/ggi.13030

  22. 22. Paris, M.T., Bell, K.E. and Mourtzakis, M. (2020) Myokines and Adi-pokines in Sarcopenia: Understanding Cross-Talk between Skeletal Muscle and Adipose Tissue and the Role of Exercise. Current Opinion in Pharmacology, 52, 61-66. https://doi.org/10.1016/j.coph.2020.06.003

  23. 23. Walowski, C.O., Herpich, C., Enderle, J., Braun, W., Both, M., Hasler, M., et al. (2023) Analysis of the Adiponectin Paradox in Healthy Older People. Journal of Cachexia, Sarcopenia and Muscle, 14, 270-278. https://doi.org/10.1002/jcsm.13127

  24. 24. Schweighofer, N., Haudum, C.W., Trummer, O., Lind, A., Kolesnik, E., Mursic, I., et al. (2022) Dp-ucMGP as a Biomarker in Sarcopenia. Nutrients, 14, Article No. 5400.https://doi.org/10.3390/nu14245400

  25. 25. Lin, W.J., Lee, W.J., Peng, L.N., Huang, Y.L., Tung, C.Y., Lin, C.H., Tsai, T.F. and Chen, L.K. (2023) Anti-Tumor Necrosis Factor-Alpha Is Potentially Better than Tumor Necrosis Factor-Alpha as the Biomarker for Sarcopenia: Results from the I-Lan Longitudinal Aging Study. Experimental Geron-tology, 172, Article ID: 112053. https://doi.org/10.1016/j.exger.2022.112053

  26. 26. Habib, S.S., Alkahtani, S., Alhussain, M. and Aljuhani, O. (2020) Sarcopenia Coexisting with High Adiposity Exacerbates Insulin Resistance and Dyslipidemia in Saudi Adult Men. Dia-betes, Metabolic Syndrome and Obesity, 13, 3089-3097. https://doi.org/10.2147/DMSO.S260382

  27. 27. Silva-Fhon, J.R., Rojas-Huayta, V.M., Aparco-Balboa, J.P., Cespedes-Panduro, B. and Partezani-Rodrigues, R.A. (2021) Sarcopenia and Blood Albumin: A Systematic Review with Meta-Analysis. Biomedica, 41, 590-603. https://doi.org/10.7705/biomedica.5765

  28. 28. Tseng, S.H., Lee, W.J., Peng, L.N., Lin, M.H. and Chen, L.K. (2021) Associations between Hemoglobin Levels and Sarcopenia and Its Components: Results from the I-Lan Longitudinal Study. Experimental Gerontology, 150, Article ID: 111379. https://doi.org/10.1016/j.exger.2021.111379

  29. 29. Nakajima, H., Okada, H., Kobayashi, A., Takahashi, F., Okamura, T., Hashimoto, Y., et al. (2023) Leucine and Glutamic Acid as a Biomarker of Sarcopenic Risk in Japanese People with Type 2 Diabetes. Nutrients, 15, Article No. 2400. https://doi.org/10.3390/nu15102400

  30. 30. Osawa, Y., Candia, J., Abe, Y., Tajima, T., Oguma, Y. and Arai, Y. (2023) Plasma Amino Acid Signature for Sarcopenic Phenotypes in Community-Dwelling Octogenarians: Results from the Kawasaki Aging Wellbeing Project. Experimental Gerontology, 178, Article ID: 112230. https://doi.org/10.1016/j.exger.2023.112230

  31. 31. Sanayama, H., Ito, K., Ookawara, S., Uemura, T., Sakiyama, Y., Sugawara, H., et al. (2023) Whole Blood Spermine/Spermidine Ratio as a New Indicator of Sarcopenia Status in Older Adults. Biomedicines, 11, Article No. 1403. https://doi.org/10.3390/biomedicines11051403

  32. 32. Hata, R., Miyamoto, K., Abe, Y., Sasaki, T., Oguma, Y., Ta-jima, T., et al. (2023) Osteoporosis and Sarcopenia Are Associated with Each Other and Reduced IGF1 Levels Are a Risk for both Diseases in the Very Old Elderly. Bone, 166, Article ID: 116570. https://doi.org/10.1016/j.bone.2022.116570

  33. 33. Ghafouri-Fard, S., Askari, A., Mahmud Hussen, B., Taheri, M. and Kiani, A. (2023) Sarcopenia and Noncoding RNAs: A Comprehensive Review. Journal of Cellular Physiology, 238, 1416-1430. https://doi.org/10.1002/jcp.31031

  34. 34. Furutani, M., Suganuma, M., Akiyama, S., Mitsumori, R., Takemura, M., Matsui, Y., et al. (2023) RNA-Sequencing Analysis Identification of Potential Biomarkers for Diagnosis of Sarcopenia. Journals of Gerontology—Series A Biological Sciences and Medical Sciences, glad150. https://doi.org/10.1093/gerona/glad150

  35. 35. Lin, S., Ling, M., Chen, C., Cai, X., Yang, F. and Fan, Y. (2022) Screening Potential Diagnostic Biomarkers for Age-Related Sarcopenia in the Elderly Population by WGCNA and LASSO. BioMed Research International, 2022, Article ID: 7483911. https://doi.org/10.1155/2022/7483911

  36. 36. Wu, J., Cao, L., Wang, J., Wang, Y., Hao, H. and Huang, L. (2022) Characterization of Serum Protein Expression Profiles in the Early Sarcopenia Older Adults with Low Grip Strength: A Cross-Sectional Study. BMC Musculoskeletal Disorders, 23, Article No. 894. https://doi.org/10.1186/s12891-022-05844-2

  37. 37. D’Amico, F., Barone, M., Brigidi, P. and Turroni, S. (2023) Gut Microbiota in Relation to Frailty and Clinical Outcomes. Current Opinion in Clinical Nutrition & Metabolic Care, 26, 219-225. https://doi.org/10.1097/MCO.0000000000000926

  38. 38. Kwak, J.Y., Hwang, H., Kim, S.K., Choi, J.Y., Lee, S.M., Bang, H., et al. (2018) Prediction of Sarcopenia Using a Combination of Multiple Serum Biomarkers. Scientific Reports, 8, Article No. 8574. https://doi.org/10.1038/s41598-018-26617-9

  39. NOTES

    *通讯作者。

期刊菜单