Advances in Clinical Medicine
Vol. 12  No. 10 ( 2022 ), Article ID: 57138 , 7 pages
10.12677/ACM.2022.12101386

醋酸钠对氧糖剥夺损伤后PC12的影响

张雅瑞1,侯庆明1,2*

1青岛大学基础医学院病理学与病理生理学,山东 青岛

2青岛大学神经再生与康复研究院,山东 青岛

收稿日期:2022年9月21日;录用日期:2022年10月14日;发布日期:2022年10月26日

摘要

目的:通过OGD/R处理PC12细胞,证明NaAc在人类缺血性脑卒中中的作用和意义。方法:OGD模型的建立:用无氧糖培养液处理PC12细胞作为脑缺血再灌注损伤的体外模型;使用CCK-8比色法检测OGD损伤后NaAc对PC12细胞的保护状况;使用免疫印迹法Western blot检测OGD损伤后的NaAc对PC12中ATF-6蛋白水平的影响。结果:OGD损伤后,补充浓度为6 mM的NaAc可增加PC12的存活率(n = 6, F = 70.10, P < 0.05);OGD损伤后,PC12中ATF-6的表达升高(t = 2.98, P < 0.05);向正常的PC12细胞补充NaAc后ATF-6表达降低(t = 3.11, P < 0.05);在损伤后的PC12细胞中添加浓度为6 mM的NaAc后,ATF-6的表达水平降低(n = 6, F = 2.09, P < 0.05)。结论:OGD损伤后,PC12中添加浓度为6 mM的NaAc是通过抑制ATF-6的表达来发挥神经保护作用。

关键词

氧糖剥夺,醋酸钠,ATF-6,神经保护

Effect of Sodiun Acetate on PC12 Injury after Oxygen-Glucose Deprivation

Yarui Zhang1, Qingming Hou1,2*

1Pathology and Pathophysiology of the School of Basic Medicine, Qingdao University, Qingdao Shandong

2The Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao Shandong

Received: Sep. 21st, 2022; accepted: Oct. 14th, 2022; published: Oct. 26th, 2022

ABSTRACT

Objective: The purpose of investigating is demonstrated the effect and significance of NaAc in human ischemic stroke by OGD/R treatment of PC12 cells. Methods: Establishment of OGD model: treatment of PC12 cells with Anaerobic sugar culture solution culture solution as an in vitro model of cerebral ischemia reperfusion injury; The protective status of NaAc on PC12 cells after OGD injury was detected using CCK-8 colorimetry; Effects of NaAc after OGD injury on ATF-6 protein levels in PC12 were detected using Western blotting methods. Results: After OGD injury, NaAc 6 mM supplementation increased PC12 survival (n = 6, F = 70.10, P < 0.05) and increased ATF-6 expression in PC12 (t = 2.98, P < 0.05). Supplementation of NaAc 6 mM to normal PC12 reduced the expression of ATF-6 (t = 3.11, P < 0.05). On the contrary, after OGD Supplementation of NaAc 6 mM to PC12 reduced the expression of ATF-6 (n = 6, F = 20.09, P < 0.05). Conclusion: After OGD injury, intra-PC12 NaAc 6 mM supplementation exerts neuroprotective effects by inhibiting the expression of ATF-6 signaling pathway.

Keywords:Oxygen-Glucose Deprivation, Sodium Acetate, ATF-6, Neuroprotection

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

脑卒中(stroke)俗称中风,包括缺血性脑卒中和出血性脑卒中,是全球死亡和永久性障碍的主要原因 [1]。在缺血条件下,由于氧的中断和糖原的消耗非常显著而引起神经功能的永久性缺陷,甚至脑细胞死亡 [2]。广泛的细胞死亡和炎症反应是脑卒中病理学的两个突出方面 [3]。细胞代谢紊乱可引起内质网应激等一系列分子的变化 [4] [5]。研究发现,脑卒中后小鼠脑组织中有显著促进炎症和内质网(Endoplasmic Reticulum, ER)应激的相关分子 [6] [7]。激活转录因子-6即(ATF-6)是内质网状应激的一种相关蛋白质,也是内质网状膜贯通蛋白质 [8] [9]。研究表明,药物可通过ATF-6抑制炎症和内质网状应激,显著减轻中风后脑损伤。醋酸钠又叫乙酸钠(NaAc)作为一种短链脂肪酸发挥着重要的作用。醋酸盐的化学式为C2H3O的一个小分子,在整个生物系统中普遍存在,参与了包含多种代谢途径的许多生化反应,已成为细胞代谢的关键替代燃料。醋酸盐生产的三个主要代谢途径,包括:1) 乙酰辅酶A途径;2) 甘氨酸合成酶依赖途径;3) 还原柠檬酸循环。由于乙酰辅酶A在原核生物和真核生物中都有表达,因此乙酰辅酶A途径被认为是生产醋酸盐的最原始的途径。正常情况下,人血清中的乙酸盐水平仅为0.2 mM左右,而在缺氧或葡萄糖缺乏状态下,乙酸盐可能成为乙酰辅酶A重要来源。补充乙酸盐可能被证明是一种新的、有效的胶质瘤治疗途径。更有文献报道含有乙酸酯的短链脂肪酸显示出降低炎症的作用 [10]。但NaAc的药物价值对脑卒中实验模型机制的研究较少。因此,本研究旨在探讨醋酸钠作为一种新的药物,能否通过氧糖剥夺(OGD)在PC12损伤后ATF-6的表达发挥神经保护作用。

2. 材料与方法

2.1. 实验材料

NaAc购自上海艾比化学试剂有限公司;PC12细胞购自中国科学院上海生命科学研究所;细胞培养试剂DMEM-H-Glucose、青霉素–链霉素(100×)全部从Gibico公司购买;胎牛血清是从四季青公司购买的;CCK-8购自北京Bioss生物技术有限公司;多功能酶标器购自美国Molecular Devices公司;ATF-6是Affinity抗体公司购买的;β-actin从武汉三鹰生物技术公司购买;二抗在北京索莱宝科技有限公司购买;PMSF、蛋白磷酸酶抑制剂(All-inone, 100×)从索莱宝(北京)科技有限公司购买;RIPA分解液购自上海碧云天生物技术有限公司。

2.2. PC12细胞培养

将含有PC12细胞的冻存管从液氮罐取出后立即转移到37℃水浴锅中至完全融化,吸取冻存管中的PC12细胞悬液并转移到含有5 mL完全培养基(DMEM培养基 + 体积分数0.10胎牛血清 + 体积分数0.01青链霉素混合液)的离心管中。然后用吸管吹打混匀后以1000 r/min离心5 min,弃掉上清液。再次与5 mL完全培养基混匀,接种到培养瓶中,在37℃、含体积分数0.05 CO2的培养箱中培养。每2~3 d传代1次,传到第3代且细胞融合度达到90%时进行下一步实验。

2.3. OGD/再灌注损伤模型制备

PC12细胞培养3d后,以磷酸盐缓冲液PBS轻轻冲洗2次,Control组加入有糖细胞外液,ODG组加入无糖细胞外液。然后将OGD组细胞置于37℃厌氧箱中低氧处理1 h (气体参数设置为体积分数0.01 O2 + 体积分数0.94N2 + 体积分数0.05 CO2)将Conrtol组PC12细胞置于正常培养箱中,氧处理结束后,将各组培养液换为等体积无血清培养液。

2.4. 分组及处理

为了研究NaAc对OGD损伤后PC12细胞存活率的影响,实验将培养的PC12分成Control组(正常的培养液)、OGD组(无糖无氧的培养液处理)、OGD+NaAc组(无糖无氧的培养液中加入浓度为6 mM的NaAc);为了研究缺血再灌注损伤后PC12细胞中ATF-6蛋白量的变化,将实验分为Control组(DMSO处理组)、OGD/R 6 h组(氧糖剥夺复氧6 h);为研究NaAc对ATF-6在正常PC12细胞中表达的影响,将实验分成Control组(正常的培养液处理),NaAc组(6 mM浓度的NaAc);为了研究PC12细胞中NaAc的增加对OGD损伤后ATF-6表达量的影响,将实验分为Control组(正常的培养液处理)、OGD组(无糖无氧的培养液处理);OGD + NaAc组(无糖无氧的培养液加入6 mM浓度的NaAc)。各组蛋白含量的检测均在OGD复氧后6 h进行。

2.5. 免疫印迹法检测(Western Blotting)

各组蛋白于复氧后6小时提取,用RIPA裂解液在冰上裂解细胞,用BCA法测定相应蛋白浓度,配置浓缩胶和分离胶,每孔10 μg蛋白计算上样量,电泳后转膜至PVDF膜上,用5% (wt/vol)牛血清白蛋白或5% (wt/ol)脱脂干奶在TBST(含0.1%TBS Tween20)中封闭膜。在室温下孵育60分钟,在4℃下与ATF-6的一抗(比例为1:1000)孵育过夜,用TBST溶液清洗PVDF膜3次,每次10分钟,然后在室温下与HRP偶联的二抗孵育60分钟。用TBST溶液清洗PVDF膜3次,每次10分钟,用化学发光试剂检测抗原–抗体复合物。用Image J软件对蛋白条带进行半定量分析,实验重复3次取平均值。

2.6. CCK-8比色法

弃掉96孔板中的培养基,然后用PBS清洗一次细胞,每孔加入浓度为10%的CCK-8溶液(避免产生气泡),在培养箱中避光孵育4 h;使用酶标仪检测各孔在波长450 nm处的吸光度(A)值并进一步计算细胞存活率,OGD组细胞存活率(%) = OGD组/对照组 × 100%;OGD + NaAC组细胞存活率(%) = OGD + NaAC组/OGD组 × 100%。

2.7. 统计学处理

使用Graph Pad Prism8.0软件对所得数据结果进行统计学分析。计量数据以c ± s形式表示,多组比较采用单因素方差分析 [11],两独立样本均数的比较采用t检验,组间两项比较采用LSD-t检验。以P < 0.05为差异具有统计学意义。

3. 结果

3.1. NaAc对OGD损伤后PC12细胞存活的影响

OGD损伤及加入NaAc后,培养PC12细胞的存活变化见表1。各组PC12细胞中ATF-6的存活率有显著差异,(n = 6, F = 70.10, P < 0.05)与Control组相比,OGD组PC12细胞的存活率明显降低,差异具有统计学意义(tlsd = 10.89, p < 0.05);OGD + NaAc组的PC12细胞的存活率与Control组相比明显降低,差异具有统计学意义(tlsd = 6.40, p < 0.05);与OGD组相比,OGD + NaAc组PC12细胞的存活率明显升高,差异具有统计学意义,(tlsd = 6.04, p < 0.05)。

Table 1. The effect of NaAc on the survival of PC12 cells after OGD injury (n = 6, x/%, x ¯ ± s )

表1. NaAc对OGD损伤后PC12细胞存活的影响(n = 6, x/%, x ¯ ± s )

n = 6,x/%, x ¯ ± s *代表与Control组比较**代表与OGD组比较,P < 0.05。

3.2. OGD损伤后PC12细胞中ATF-6水平变化

Western blot检测结果表明,AFT-6在PC12细胞中内表达,并且在OGD损伤后的PC12细胞中ATF-6的表达增加。OGD/R 6 h组与Control组相比,ATF-6蛋白表达明显上升(t = 2.98, P < 0.05)。这些数据表明ATF-6介导了OGD后细胞的损伤。见图1

Figure 1. Western blot detection of changes in AFTF-6 protein levels within PC12 cells after OGD/R 6 h

图1. OGD/R 6 h后PC12细胞内AFTF-6蛋白水平变化的Western blot检测

3.3. 补充NaAc对正常PC12细胞中ATF-6表达的影响

在正常PC12细胞中加入NaAc 6 mM,Western blot检测结果表明,在培养相同时间的PC12细胞中,NaAc组ATF-6蛋白表达水平较Control组明显下降(t = 3.11, P < 0.05)。见图2。这些数据说明了NaAc可以使正常PC12细胞中的ATF-6表达量降低。

Figure 2. Western blot detection of the effect of NaAc on ATF-6 protein levels in normal PC12 cells

图2. NaAc对正常PC12细胞中ATF-6蛋白水平影响的Western blot检测

3.4. OGD损伤后补充NaAc对PC12细胞中ATF-6的表达的影响

在PC12细胞OGD 2 h后新培养基中加入NaAc 6 mM,于再灌注6小时后Western blot检测结果显示,各组PC12细胞中ATF-6的表达量有显著差异(n = 6, F = 20.09, P < 0.05);在OGD 6 h后,OGD组的ATF-6蛋白表达水平升高(tlsd = 6.33, P < 0.05);OGD + NaAc组的ATF-6蛋白表达水平与OGD组相比明显降低(tlsd = 2.94, P < 0.05);与Control组相比,OGD + NaAc组的ATF-6表达明显上升,差异具有统计学意义(tlsd = 3.39, P < 0.05)。见图3,说明了OGD损伤后ATF-6表达量升高,补充NaAc使PC12细胞内ATF-6表达量降低。

Figure 3. Western blot detection of the effect of adding NaAc on changes in ATF-6 protein levels within PC12 cells after OGD/R 6h

图3. OGD/R 6h后加入NaAc对PC12细胞内ATF-6蛋白水平变化影响的Western blot检测

4. 讨论

脑卒中是一种全球发病率高、致残率高、死亡率高的疾病,也是造成全球永久性致残和死亡的主要原因,但目前治疗水平仍面临巨大挑战 [12] [13]。缺血性脑卒中占其85%左右 [14],形成以神经元坏死为主的核心区及缺血半暗带 [15] [16]。半暗带内出现神经元代谢紊乱,同时伴有凋亡发生。细胞代谢紊乱可引起一系列分子变化,包括内质网应激障碍 [4] [5]。同时缺血区因突发糖氧供应而中断代谢紊乱,未折叠或错误折叠的蛋白质蓄积在内质网中,诱发内质网应激 [17] 和细胞稳态失衡,从而进一步引起组织和器官损伤 [18]。缺血性中风占绝大多数,发病时给很多家庭和社会造成了沉重的负担 [19]。因此,寻找脑缺血再灌注损伤后可能的内质网应激相关靶点,对寻找减轻脑损伤的药物具有重要意义。

越来越多的证据表明内质网应激在细胞存活过程中起着重要作用 [20] [21] [22]。内质网应激信号路径包括ATF-6、IRE1-α和PERK等路径。研究表明,脊髓损伤后大鼠神经元出现内质网应激,ATF-6表达升高,miR-211-5p直接靶向作用于ATF-6,缓解神经元凋亡和炎症 [23]。也有证据表明阿尔茨海默病患者神经元样细胞内质网应激相关蛋白ATF-6表达升高,草酸可通过下调ATF-6表达发挥细胞保护作用 [24]。提示ATF-6及其下游通路对细胞命运有很大影响。醋酸钠(NaAc)由不能消化的食品残渣和肠道内源性上皮源性粘液的厌氧发酵产生,NaAc作为短链脂肪酸,含有醋酸酯的短链脂肪酸显示出降低炎症的作用 [12] 在缺氧或葡萄糖缺乏状态下,醋酸盐可能成为乙酰辅酶A的重要来源,补充醋酸盐是一种新的、有效的胶质瘤治疗途径 [25]。显而易见,乙酸盐的补充增强了小鼠的抗应激能力 [26]。并且,NaAc通过上调p53通路来抑制肿瘤细胞的生存 [27],确认了OGD损伤后的NaAc对PC12细胞的影响。因此,补充NaAc可能成为缺血性脑卒中治疗的新靶点。

本研究采用PC12细胞培养后OGD体外模型,证明了NaAc对缺血再灌注损伤的作用机制。缺血再灌注损伤后,PC12细胞中ATF-6蛋白水平表达升高,补充NaAc抑制ATF-6表达,促进细胞存活。有文献报道,NaAc可以自由通过血脑屏障和细胞膜,增加蛋白质的乙酰化 [25]。补充NaAc还可能通过促进p53的表达发挥神经保护作用 [25] [28]。NaAc还具有抑制炎症、促进细胞自主代谢调节等多种作用 [29]。因此,NaAc可能通过抑制ATF-6的表达来抑制炎症和内质网应激,对脑缺血再灌注损伤起保护作用。

然而,本研究也存在一些局限性,首先,需要进一步研究与内质网应激相关分子ATF-6相关的下游效应因子或信号通路,如ATF-6/CHOP,ATF-6/AKT信号通路来验证OGD/R诱导的神经损伤。其次,将进一步开展神经元培养和建立体内模型等方法,采用多指标分析进一步证实NaAc对脑卒中的神经保护作用。综上所述,NaAc作为一种很有前途的治疗药物,在治疗脑卒中发挥着重要意义,后续将在动物模型中继续探讨。

基金项目

国家自然科学基金资助项目(8217051911)。

文章引用

张雅瑞,侯庆明. 醋酸钠对氧糖剥夺损伤后PC12的影响
Effect of Sodiun Acetate on PC12 Injury after Oxygen-Glucose Deprivation[J]. 临床医学进展, 2022, 12(10): 9582-9588. https://doi.org/10.12677/ACM.2022.12101386

参考文献

  1. 1. Saunders, D.H., Sanderson, M., Hayes, S., et al. (2020) Physical Fitness Training for Patients with Stroke. Stroke, 51, e299-e300. https://doi.org/10.1161/STROKEAHA.120.030826

  2. 2. Ma, Y., Nie, H., Chen, H., et al. (2015) NAD⁺/NADH Metabolism and NAD⁺-Dependent Enzymes in Cell Death and Ischemic Brain Injury: Current Advances and Therapeutic Implications. Current Medicinal Chemistry, 22, 1239-1247. https://doi.org/10.2174/0929867322666150209154420

  3. 3. Lu, Y.Y., Li, Z.Z., Jiang, D.S., et al. (2013) TRAF1 Is a Critical Regulator of Cerebral Ischaemia-Reperfusion Injury and Neuronal Death. Nature Communications, 4, Article No. 2852. https://doi.org/10.1038/ncomms3852

  4. 4. Pires Monteiro, S., Voogd, E., Muzzi, L., et al. (2021) Neu-roprotective Effect of Hypoxic Preconditioning and Neuronal Activation in a in Vitro Human Model of the Ischemic Pe-numbra. Journal of Neural Engineering, 18, Article ID: 036016. https://doi.org/10.1088/1741-2552/abe68a

  5. 5. Prentice, H., Gharibani, P.M., Ma, Z., et al. (2017) Neuroprotective Functions through Inhibition of ER Stress by Taurine or Taurine Combination Treatments in a Rat Stroke Model. Ad-vances in Experimental Medicine and Biology, 975, 193-205. https://doi.org/10.1007/978-94-024-1079-2_17

  6. 6. Ridder, D.A. and Schwaninger, M. (2009) NF-kappaB Sig-naling in Cerebral Ischemia. Neuroscience, 158, 995-1006. https://doi.org/10.1016/j.neuroscience.2008.07.007

  7. 7. Harari, O.A. and Liao, J.K. (2010) NF-κB and Innate Im-munity in Ischemic Stroke. Annals of the New York Academy of Sciences, 1207, 32-40. https://doi.org/10.1111/j.1749-6632.2010.05735.x

  8. 8. Burkewitz, K., Dutta, S., Kelley, C.A., et al. (2020) Atf-6 Regulates Lifespan through ER-Mitochondrial Calcium Homeostasis. Cell Reports, 32, Article ID: 108125. https://doi.org/10.1016/j.celrep.2020.108125

  9. 9. Ogata, S., Kameda, K., Kono, T., et al. (2019) Expressions of ATF6, XBP1, and GRP78 in Normal Tissue, Atypical Adenomatous Hyperplasia, and Adenocarcinoma of the Lung. Human Pathology, 83, 22-28. https://doi.org/10.1016/j.humpath.2018.08.009

  10. 10. Pandey, S.K., Yadav, S., Temre, M.K., et al. (2018) Tracking Acetate through a Journey of Living World: Evolution as Alternative Cellular Fuel with Potential for Application in Can-cer Therapeutics. Life Sciences, 215, 86-95. https://doi.org/10.1016/j.lfs.2018.11.004

  11. 11. Blagosklonny, M.V., An, W.G., Romanova, L.Y., et al. (1998) p53 Inhibits Hypoxia-Inducible Factor-Stimulated Transcription. The Journal of Biological Chemistry, 273, 11995-11998. https://doi.org/10.1074/jbc.273.20.11995

  12. 12. Markus, H.S., Brainin, M. and Fisher, M. (2020) Tracking the Global Burden of Stoke and Dementia: World Stroke Day 2020. International Journal of Stroke, 15, 817-818. https://doi.org/10.1177/1747493020959186

  13. 13. Vosler, P.S. and Chen, J. (2009) Potential Molecular Targets for Translational Stroke Research. Stroke, 40, S119-S120. https://doi.org/10.1161/STROKEAHA.108.533109

  14. 14. Feigin, V.L., Forouzanfar, M.H., Krishnamurthi, R., et al. (2014) Global and Regional Burden of Stroke during 1990-2010: Findings from the Global Burden of Disease Study 2010. The Lancet (London, England), 383, 245-254. https://doi.org/10.1016/S0140-6736(13)61953-4

  15. 15. Yang, S.H. and Liu, R. (2021) Four Decades of Ischemic Penumbra and Its Implication for Ischemic Stroke. Translational Stroke Research, 12, 937-945. https://doi.org/10.1007/s12975-021-00916-2

  16. 16. Uzdensky, A.B. (2020) Regulation of Apoptosis in the Ischemic Penumbra in the First Day Post-Stroke. Neural Regeneration Research, 15, 253-254. https://doi.org/10.4103/1673-5374.265546

  17. 17. Gupta, S., Biswas, J., Gupta, P., et al. (2019) Salubrinal Attenuates Nitric Oxide Mediated PERK:IRE1α: ATF-6 Signaling and DNA Damage in Neuronal Cells. Neurochemistry Interna-tional, 131, Article ID: 104581. https://doi.org/10.1016/j.neuint.2019.104581

  18. 18. Wu, F., Qiu, J., Fan, Y., et al. (2018) Apelin-13 Attenuates ER Stress-Mediated Neuronal Apoptosis by Activating Gα(i)/Gα(q)-CK2 Signaling in Ischemic Stroke. Experimental Neu-rology, 302, 136-144. https://doi.org/10.1016/j.expneurol.2018.01.006

  19. 19. Jin, W.Y., Lin, S.L., Hou, R.L., et al. (2016) Associations between Maternal Lipid Profile and Pregnancy Complications and Perinatal Outcomes: A Population-Based Study from China. BMC Pregnancy and Childbirth, 16, Article No. 60. https://doi.org/10.1186/s12884-016-0852-9

  20. 20. Fu, J., Peng, L., Wang, W., et al. (2019) Sodium Valproate Reduces Neuronal Apoptosis in Acute Pentylenetetrzole-Induced Seizures via Inhibiting ER Stress. Neurochemical Research, 44, 2517-2526. https://doi.org/10.1007/s11064-019-02870-w

  21. 21. Almanza, A., Carlesso, A., Chintha, C., et al. (2019) Endoplas-mic Reticulum Stress Signalling—From Basic Mechanisms to Clinical Applications. The FEBS Journal, 286, 241-278. https://doi.org/10.1111/febs.14608

  22. 22. Kong, F.J., Ma, L.L., Guo, J.J., et al. (2018) Endoplasmic Reticulum Stress/Autophagy Pathway Is Involved in Diabetes-Induced Neuronal Apoptosis and Cognitive Decline in Mice. Clinical Science (London, England: 1979), 132, 111-125. https://doi.org/10.1042/CS20171432

  23. 23. Zhang, H.-C., Piao, M., Guo, M., et al. (2020) MicroRNA-211-5p Attenuates Spinal Cord Injury via Targeting of Activating Transcription Factor 6. Tissue and Cell, 68, Article ID: 101459. https://doi.org/10.1016/j.tice.2020.101459

  24. 24. Li, X., Zhang, X., Xing, R., et al. (2021) Syringic Acid Demonstrates Promising Protective Effect against Tau Fibrillization and Cytotoxicity through Regulation of Endoplasmic Reticulum Stress-Mediated Pathway as a Prelude to Alzheimer’s Disease. Interna-tional Journal of Biological Macromolecules, 192, 491-497. https://doi.org/10.1016/j.ijbiomac.2021.09.173

  25. 25. Reisenauer, C.J., Bhatt, D.P., Mitteness, D.J., et al. (2011) Ac-etate Supplementation Attenuates Lipopolysaccharide- Induced Neuroinflammation. Journal of Neurochemistry, 117, 264-274. https://doi.org/10.1111/j.1471-4159.2011.07198.x

  26. 26. Huang, W., Hu, W., Cai, L., et al. (2021) Acetate Supple-mentation Produces Antidepressant-Like Effect via Enhanced Histone Acetylation. Journal of Affective Disorders, 281, 51-60. https://doi.org/10.1016/j.jad.2020.11.121

  27. 27. Pandey, S.K., Yadav, S., Goel, Y., et al. (2019) Cytotoxic Action of Acetate on Tumor Cells of Thymic Origin: Role of MCT-1, pH Homeostasis and Altered Cell Survival Regula-tion. Biochimie, 157, 1-9. https://doi.org/10.1016/j.biochi.2018.10.022

  28. 28. Suzuki, H., Tomida, A. and Tsuruo, T. (2001) Dephosphorylated Hypoxia-Inducible Factor 1alpha as a Mediator of p53-Dependent Apoptosis during Hypoxia. Oncogene, 20, 5779-5788. https://doi.org/10.1038/sj.onc.1204742

  29. 29. Bose, S., Ramesh, V. and Locasale, J.W. (2019) Acetate Metabolism in Physiology, Cancer, and Beyond. Trends in Cell Biology, 29, 695-703. https://doi.org/10.1016/j.tcb.2019.05.005

期刊菜单