Advances in Clinical Medicine
Vol. 13  No. 10 ( 2023 ), Article ID: 73665 , 10 pages
10.12677/ACM.2023.13102235

microRNA-375在肝细胞癌中的研究热点 及发展趋势

——基于文献计量与可视化分析

杜俊泽,李怡君,张维璐*

空军军医大学军事预防医学系军队防疫与流行病学教研室,陕西 西安

收稿日期:2023年9月13日;录用日期:2023年10月8日;发布日期:2023年10月13日

摘要

目的:运用文献计量方法分析microRNA-375在肝细胞癌中的研究现状、热点及发展趋势,为该领域未来研究提供数据参考。方法:基于Web of Science核心合集中2013~2022年有关microRNA-375在肝细胞癌中的相关研究数据,利用可视化分析软件CiteSpace和VOSviewer对文献年度发表量、国家、研究机构、来源期刊、活跃作者及关键词进行文献计量和可视化分析。结果:截至2023年9月15日,共有46,808篇microRNA-375与肝细胞癌的相关研究发表。文献发表量呈逐年上升趋势,中国是最高产的国家,其次是美国和日本,法国中心性最高。Oncotarget发文量最高,Hepatology被引用频次最高。高发文量机构主要集中在中国,Sun Yat-sen University发文量最多,University of California System中心性位列第一。此外,“open label”、“tumor microenvironment”、“phase iii”、“immune checkpoint inhibitors”、“immune infiltration”、“microenvironment”等是该领域的研究热点。结论:本研究通过文献计量分析方法对microRNA-375与肝细胞癌进行了全面概述,为关注该领域的科研人员提供线索。

关键词

肝细胞癌,microRNA-375,文献计量,可视化分析

Research Hotspots and Development Trend of microRNA-375 in Hepatocellular Carcinoma

—Based on Bibliometric and Visualization Analysis

Junze Du, Yijun Li, Weilu Zhang*

Department of Military Epidemiology, School of Military Preventive Medicine, Air Force Medical University, Xi’an Shaanxi

Received: Sep. 13th, 2023; accepted: Oct. 8th, 2023; published: Oct. 13th, 2023

ABSTRACT

Objective: To analyze the current research status, hotspots, and development trend of microRNA-375 in hepatocellular carcinoma using bibliometric methods, and to provide data reference for future research in this field. Methods: Based on the data of relevant studies about microRNA-375 in hepatocellular carcinoma from 2013-2022 in the Web of Science Core Collection, bibliometric and visualization analyses were performed using the visual analysis software CiteSpace and VOSviewer to analyze the literature’s annual publication volume, countries, research institutions, source journals, active authors, and keywords. Results: As of September 15, 2023, a total of 46,808 studies related to microRNA-375 and hepatocellular carcinoma were published. Literature publication showed an increasing trend from year to year, with China being the most prolific country, followed by the United States and Japan, with France having the highest centrality. Oncotarget had the highest number of publications, and Hepatology had the highest citation frequency. Institutions with high publication volume are mainly concentrated in China, Sun Yat-sen University has the highest publication volume, and University of California System is ranked first in terms of centrality. In addition, “open label”, “tumor microenvironment”, “phase iii”, “immune checkpoint inhibitors”, “immune infiltration”, “microenvironment”, “immune checkpoint inhibitors”, “immune infiltration”, “microenvironment”, etc. are the research hotspots in this field. Conclusion: This study provides a comprehensive overview of microRNA-375 and hepatocellular carcinoma by means of bibliometric analysis to provide clues for researchers focusing on this field.

Keywords:Hepatocellular Carcinoma, microRNA-375, Bibliometry, Visual Analysis

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肝细胞癌(Hepatocellular Carcinoma, HCC)是最常见的恶性肿瘤之一,也是全球癌症死亡的第三大常见原因 [1] 。肝细胞癌患者的主要根治性治疗方法是进行肝移植或肝切除手术,虽然已有报道表明根治性肝癌切除术后的不同辅助治疗方法可有效降低术后复发率,但HCC术后生存率仍然很低 [2] 。因此,研究HCC的分子机制、确定早期诊断和预后生物标志物对HCC的治疗方法至关重要。

microRNAs是一组非编码RNA分子,参与调控基因的表达。microRNA-375 (miR-375)作为microRNAs家族最早发现的成员之一,大量研究表明其表达异常与癌症的发生发展相关,如肝癌 [3] 、胃癌 [4] 、乳腺癌 [5] 、鼻咽癌 [6] 、视网膜母细胞瘤 [7] 、胰腺癌 [8] 、食管癌 [9] 、前列腺癌 [10] 等,目前已被证实可作为肿瘤发生的抗癌基因和各种类型癌症的潜在治疗靶点 [11] 。随着对miR-375研究的逐渐深入,其在肿瘤发生发展过程中的关键机制正逐步被揭示。

为了解miR-375在HCC领域的研究现状及进展,本研究运用文献计量分析方法,通过分析文献特征来揭示该领域的研究热点及发展趋势,为科研人员提供研究依据及方向。

2. 数据来源与研究方法

2.1. 数据来源

基于Web of Science核心合集对以下主题词进行文献在线检索:TS = ((hepatocellular carcinoma) OR (HCC)) AND ((microRNA-375) OR (miR-375)) AND DT = (Article OR Review) AND LA = (English),限定年份为2013-2022年,检索“完整记录和引用参考文献”形式,并以“纯文本”文档格式下载。在排除重复文献后,截止2023年9月15日,共检索到46,808篇文献。

2.2. 研究方法

通过可视化分析软件CiteSpace (version 6.2.R4)和VOSviewer (version 1.6.19.0)对文献年度发表量、国家、研究机构、来源期刊、活跃作者及关键词进行计量分析和数据可视化。

3. miR-375与肝细胞癌研究的文献计量分析

3.1. 文献发表年度分布

近十年来,miR-375在肝细胞癌中的研究发文量呈逐年稳步上升趋势(图1)。

Figure 1. Annual volume of literature publications of miR-375 in hepatocellular carcinoma

图1. miR-375与肝细胞癌研究的年度文献发表量

3.2. 国家分布及合作关系分析

miR-375在肝细胞癌中的研究文献主要来自于中国(n = 25,785),其次是美国(n = 7733)、日本(n = 4088)、韩国(n = 2859)、意大利(n = 2473)。计算各个国家的中心性,构建国家合作可视化网络(图2(A))。在发文量排名前10的国家中,中国、韩国和埃及中心性不高,而法国中心性最高为0.19,说明法国更注重与其他国家之间的科研合作。危地马拉(n = 4)、南非(n = 61)、尼日利亚(n = 37)国家发文量虽然不高,但中心性位列前5,说明其与周边国家合作密切。

3.3. 研究机构分布及合作关系分析

高发文量机构大多为高等教育学校,其发文总量约占论文总量的26%,文献发表量排名前10的机构中有7所位于中国。Sun Yat-sen University (中山大学)、Fudan University (复旦大学)、Zhejiang University (浙江大学)、Naval Medical University (中国人民解放军海军军医大学)和Egyptian Knowledge Bank (EKB) (埃及知识库)位列前五。中心性排名前3的是University of California System (美国加利福尼亚大学,0.31)、Stanford University (美国斯坦福大学,0.30)和Kindai University (日本近畿大学,0.22)。通过Citespace构建研究机构合作可视化网络(图2(B)),可见研究机构之间的广泛合作。

Figure 2. (A) Country cooperation visualization network; (B) Institutional collaboration visualization network

图2. (A) 国家合作可视化网络;(B) 机构合作可视化网络

3.4. 文献来源期刊分析

Figure 3. (A) Literature source journals density mapping; (B) Co-citation journal density mapping

图3. (A) 文献来源期刊密度图谱;(B) 共引期刊密度图谱;

共有3011个学术期刊发表了miR-375与肝细胞癌的相关文献,期刊密度如图3(A)所示。Oncotarget (n = 1004)、Plos one (n = 972,影响因子IF = 3.7)、Frontiers in oncology (n = 905, IF = 4.7)位列前3。共引期刊密度如图3(B)所示,Hepatology (n = 100,173, IF = 13.5)被引频次最多,其次是Journal of Hepatology (n = 65,534, IF = 25.7)、Gastroenterology (n = 42,819, IF = 29.4)。发文量排名前10的共被引期刊中有7个期刊位于Q1 JCR区域,其中New England Journal of Medicine (IF = 158.5)影响因子最高。

3.5. 活跃作者及作者共被引分析

共有151,963位作者参与了miR-375与肝细胞癌的相关研究,通过合并同名作者后统计出这一研究领域的活跃作者,可见文献发表量排名前10的作者绝大多数来自中国(表1)。Fan,Jia、Zhou,Jian、Kudo,Masatoshi、Zheng,Shusen和Zhang,Wei文献发表量位列前5。其中Kudo,Masatoshi (n = 230)中心性最高为0.50,表明在该领域中与其他作者合作关系密切。通过VOSviewer对作者共被引频次进行统计,在一系列研究中最低被引用频次超过两次以上的作者,共检索到了295,201名。作为西班牙巴塞罗那大学的著名肝癌专家,Llovet,Josep M (n = 17,898)与Bruix,Jordi (n = 13,036)二者合作密切,被引频次远高于其他作者。

Table 1. Ten authors with the highest number of publications or citations

表1. 文献发表量最多和被引频次最多的10名作者

3.6. 关键词分析

通过VOSviewer进行关键词共现和网络聚类分析,共提取了68,480个关键词,出现频次超过4000次的关键词为“hepatocellular carcinoma”(肝细胞癌,n = 31,061)、“cancer”(癌症,n = 10,258)、“expression”(表达,n = 9892)、“survival”(生存,n = 5320)和“prognosis”(预后,n = 4692)。图4(A)直观地展示了高频关键词密度图谱。高频关键词共现图谱如图4(B)所示,圆圈大小反映该词的出现频次,不同颜色呈现的是不同聚类,其中,红色聚类最多,有“hepatocellular carcinoma”、“survival”、“prognosis”、“sorafenib”、“liver cirrhosis”等。绿色聚类有“cancer”、“expression”、“proliferation”、“apoptosis”、“growth”等。2013~2022年突显强度最高的30个关键词如图4(C)所示。“hepatocarcinogenesis”突显强度最高,爆发周期为2013~2017年。爆发周期最长的关键词为“in vivo”和“lung cancer”,爆发时间为2013~2018年。根据关键词突显强度及爆发开始时间远近,确定该领域的研究热点可能是“open label”、“tumor microenvironment”、“phase iii”、“immune checkpoint inhibitors”、“immune infiltration”、“microenvironment”。

Figure 4. Keyword analysis. (A) Density mapping of high-frequency keywords; (B) Co-occurrence mapping of high-frequency keywords; (C) The 30 keywords with the strongest prominence from 2013~2022

图4. 关键词分析。(A) 高频关键词密度图谱;(B) 高频关键词共现图谱;(C) 2013~2022年突显度最强的30个关键词

4. 讨论

4.1. 一般数据

近十年来,Web of science 核心合集数据库中miR-375与肝细胞癌的相关研究逐年稳步增长,该领域逐渐引起科研者兴趣,致使更多科研人员致力于相关类型研究,这也意味着该潜在领域可能存在一些关键问题需要解决。高发文量机构及作者主要来自中国,这与中国的经济发展和学术研究投入有关。高质量文章主要发表在Hepatology (肝脏病学,IF = 13.5),对高发文量期刊的分析可以为科研人员选择合适的期刊提供帮助。被引频次排名前10的期刊绝大部分位于Q1 JCR区域,表明miR-375与肝细胞癌相关研究已受到许多高质量杂志的重视。

4.2. 研究热点

随着miRNA研究的兴起,越来越多的科研人员开始关注miRNA与HCC之间的关系,以探索HCC发生发展过程中的关键机制 [12] 。最早作为胰岛特异性microRNA,miR-375已被证明与多种肿瘤的发生发展有关 [13] 。例如miR-375可以调控肺癌肿瘤组织和循环,其表达与非小细胞肺癌的预后成正相关关系,是肺癌治疗诊断的预后标志物 [14] [15] 。有研究发现miR-375在去势抵抗性前列腺癌患者癌症组织中过度表达,并通过干扰特定的信号通路促进肿瘤生长,通过新型miR-375靶标基因可以抑制去势抵抗性前列腺癌的生长 [16] 。在乳腺癌中,下调miR-375的表达可抑制乳腺癌细胞生长,诱导其凋亡 [17] 。有研究表明,miR-375的高表达可显著增加食管癌患者的总生存期,可作为食管癌高发地区的预后生物标志物 [18] 。而在HCC中,有研究数据表明miR-375通过上调靶基因控制细胞凋亡来抑制肝癌细胞的生长 [19] ,可作为诊断HCC的潜在生物标志物 [20] 。

4.2.1. HCC治疗的研究进展

目前,HCC领域的研究热点与其治疗方法有关,早期HCC患者可以通过射频消融、手术切除或肝移植得到治疗 [21] 。然而由于HCC早期症状不明显,大多数患者通常被诊断时已是中晚期,无法进行根治性治疗。对于中期HCC患者主要进行经动脉化疗栓塞术(TACE)等局部区域治疗。有研究表明接受TACE治疗的HCC患者的生存率明显提高,死亡相对风险降低 [22] 。而对于晚期HCC患者,酪氨酸激酶抑制剂(TKI)和免疫检查点抑制剂(ICIs) [23] 等针对肿瘤微环境的全身药物治疗已被证明是患者的有效治疗选择。

广谱TKI包括索拉非尼、仑伐替尼、瑞戈非尼和卡博替尼等多激酶抑制剂。索拉非尼作为HCC一线治疗药物,显著改善了晚期HCC患者的总生存期 [24] 。仑伐替尼在一项大型临床III期试验中已被证明患者的总生存期内不劣于索拉非尼,也是晚期HCC患者的一线治疗选择 [25] 。作为索拉非尼之后的二线治疗选择,瑞戈非尼 [26] 和卡博替尼 [27] 均可显著改善索拉非尼治疗后HCC患者的总生存期。

除TKI外,近年来基于ICIs的癌症免疫治疗新策略也取得了进展。一项开放标签、随机、III期临床试验证明了卡博替尼加阿替利珠单抗与索拉非尼联合用药,可改善未经治疗的晚期HCC患者的无进展生存期 [28] 。阿替利珠单抗和贝伐珠单抗的联合治疗也被批准用于晚期HCC患者的一线治疗 [29] 。

4.2.2. MicroRNA-375抑制HCC治疗耐药性

尽管HCC的全身药物治疗方式已经发生了重大转变,但治疗疗效往往受到耐药性的限制。MiR-375可以通过阻断索拉非尼诱导的自噬 [30] ,或通过抑制血小板衍生生长因子C的表达来抑制HCC肿瘤血管生成 [31] ,从而增加HCC对索拉非尼的敏感性。有研究表明miR-375通过下调非SMC凝聚蛋白II复合物亚基G2来诱导HCC细胞凋亡 [3] 。内源性相关蛋白(YAP)是HCC的独立预后危险因素,而miR-375通过抑制该致癌因子水平,减少YAP基因的表达,可以抑制HCC细胞的增殖和侵袭能力 [32] 。

因此miR-375的表达失调与HCC发生发展密切相关,通过探究miR-375及相关信号通路在抗HCC治疗中的多功能性,阐明HCC的关键机制,从而改善HCC患者的核心治疗策略,为早期诊断和预测提供重要线索。

5. 总结

本文基于2013~2022十年以来的microRNA-375与肝细胞癌相关研究,通过文献计量与可视化分析方法,总结该领域的研究现状、研究热点及发展趋势,随着科研人员的不断深入,microRNA作为肝细胞癌的预后生物标志物将会继续成为未来的研究热点。

文章引用

杜俊泽,李怡君,张维璐. microRNA-375在肝细胞癌中的研究热点及发展趋势——基于文献计量与可视化分析
Research Hotspots and Development Trend of microRNA-375 in Hepatocellular Carcinoma—Based on Bibliometric and Visualization Analysis[J]. 临床医学进展, 2023, 13(10): 15992-16001. https://doi.org/10.12677/ACM.2023.13102235

参考文献

  1. 1. Sung, H., Ferlay, J., Siegel, R.L., et al. 2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  2. 2. Feng, X., Feng, G.Y., Tao, J., et al. (2023) Comparison of Different Ad-juvant Therapy Regimen Efficacies in Patients with High Risk of Recurrence after Radical Resection of Hepatocellular Carcinoma. Journal of Cancer Research and Clinical Oncology, 149, 10505-10518. https://doi.org/10.1007/s00432-023-04874-0

  3. 3. Dai, H.T., Wang, S.T., Chen, B., et al. (2022) MicroRNA-375 Inhibits the Malignant Behaviors of Hepatic Carcinoma Cells by Targeting NCAPG2. Neoplasma, 69, 16-27. https://doi.org/10.4149/neo_2021_210318N358

  4. 4. He, J., Wu, J., Dong, S., et al. (2023) Exosome-Encapsulated miR-31, miR-192, and miR-375 Serve as Clinical Biomarkers of Gastric Cancer. Journal of Oncology, 2023, Article ID: 7335456. https://doi.org/10.1155/2023/7335456

  5. 5. Moorthy, R.K., Srinivasan, C., Kannan, M. and Velanganni Arockiam, A.J. (2023) Deregulation of miR-375 Inhibits HOXA5 and Promotes Migration, Invasion, and Cell Prolifera-tion in Breast Cancer. Applied Biochemistry and Biotechnology, 195, 4503-4523. https://doi.org/10.1007/s12010-023-04375-3

  6. 6. Xu, J., Li, B., Song, W., et al. (2021) Tumor Suppressor Func-tions of miRNA-375 in Nasopharyngeal Carcinoma through Inhibition of Ubiquitin-Specific Protease 1 Expression. The International Journal of Biochemistry & Cell Biology, 141, Article ID: 106092. https://doi.org/10.1016/j.biocel.2021.106092

  7. 7. Liu, L., Xiao, C. and Sun, Q. (2022) MiRNA-375 Inhibits Reti-noblastoma Progression through Targeting ERBB2 and Inhibiting MAPK1/MAPK3 Signalling Pathway. Cutaneous and Ocular Toxicology, 41, 1-10. https://doi.org/10.1080/15569527.2021.1994587

  8. 8. Xu, W., Lou, W. and Mei, L. (2023) A Key Regulatory Loop AK4P1/miR-375/SP1 in Pancreatic Adenocarcinoma. Epigenetics, 18, Article ID: 2148433. https://doi.org/10.1080/15592294.2022.2148433

  9. 9. Chen, J., Cai, Z., Hu, J., et al. (2023) MicroRNA-375 in Ex-tracellular Vesicles—Novel Marker for Esophageal Cancer Diagnosis. Medicine, 102, e32826. https://doi.org/10.1097/MD.0000000000032826

  10. 10. Liu, Y., Yang, C., Chen, S., et al. (2023) Cancer-Derived Exosomal miR-375 Targets DIP2C and Promotes Osteoblastic Metastasis and Prostate Cancer Progression by Regulating the Wnt Signaling Pathway. Cancer Gene Therapy, 30, 437-449. https://doi.org/10.1038/s41417-022-00563-1

  11. 11. Wei, J., Lu, Y., Wang, R., et al. (2021) MicroRNA-375: Poten-tial Cancer Suppressor and Therapeutic Drug. Bioscience Reports, 41, BSR20211494. https://doi.org/10.1042/BSR20211494

  12. 12. Peng, C., Ye, Y., Wang, Z., et al. (2019) Circulating microRNAs for the Diagnosis of Hepatocellular Carcinoma. Digestive and Liver Disease, 51, 621-631. https://doi.org/10.1016/j.dld.2018.12.011

  13. 13. Solís-Toro, D., Mosquera Escudero, M. and García-Perdomo, H.A. (2022) Association between Circulating MicroRNAs and the Metabolic Syndrome in Adult Populations: A Systematic Review. Diabetes & Metabolic Syndrome, 16, Article ID: 102376. https://doi.org/10.1016/j.dsx.2021.102376

  14. 14. Zhong, S., Golpon, H., Zardo, P. and Borlak, J. (2021) MiRNAs in Lung Cancer. A Systematic Review Identifies Predictive and Prognostic miRNA Candidates for Precision Medicine in Lung Cancer. Translational Research, 230, 164-196. https://doi.org/10.1016/j.trsl.2020.11.012

  15. 15. Zhan, B., Lu, D., Luo, P. and Wang, B.L. (2016) Prognostic Value of Expression of MicroRNAs in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Clinical Laboratory, 62, 2203-2211. https://doi.org/10.7754/Clin.Lab.2016.160426

  16. 16. Gan, J., Liu, S., Zhang, Y., et al. (2022) MicroRNA-375 Is a Therapeutic Target for Castration-Resistant Prostate Cancer through the PTPN4/STAT3 Axis. Experimental & Molecular Medicine, 54, 1290-1305. https://doi.org/10.1038/s12276-022-00837-6

  17. 17. Tang, W., Li, G.S., Li, J.D., et al. (2020) The Role of Upregu-lated miR-375 Expression in Breast Cancer: An in Vitro and in Silico Study. Pathology, Research and Practice, 216, Ar-ticle ID: 152754. https://doi.org/10.1016/j.prp.2019.152754

  18. 18. He, Y., Jin, J., Wang, L., et al. (2017) Evaluation of miR-21 and miR-375 as Prognostic Biomarkers in Oesophageal Cancer in High-Risk Areas in China. Clinical & Experimental Me-tastasis, 34, 73-84. https://doi.org/10.1007/s10585-016-9828-4

  19. 19. Li, L., Jia, L. and Ding, Y. (2018) Upregulation of miR-375 In-hibits Human Liver Cancer Cell Growth by Modulating Cell Proliferation and Apoptosis via Targeting ErbB2. Oncology Letters, 16, 3319-3326. https://doi.org/10.3892/ol.2018.9011

  20. 20. Mirzaei, H.R., Sahebkar, A., Mohammadi, M., et al. (2016) Circulating microRNAs in Hepatocellular Carcinoma: Potential Diagnostic and Prognostic Biomarkers. Current Pharmaceutical De-sign, 22, 5257-5269. https://doi.org/10.2174/1381612822666160303110838

  21. 21. Jiang, Y.Q., Wang, Z.X., Deng, Y.N., et al. (2019) Efficacy of Hepatic Resection vs. Radiofrequency Ablation for Patients with Very-Early-Stage or Early-Stage Hepatocel-lular Carcinoma: A Population-Based Study with Stratification by Age and Tumor Size. Frontiers in Oncology, 9, Article 113. https://doi.org/10.3389/fonc.2019.00113

  22. 22. Ko, K.L., Mak, L.Y., Cheung, K.S. and Yuen, M.F. (2020) Hepatocellular Carcinoma: Recent Advances and Emerging Medical Therapies. F1000Research, 9, Article 620. https://doi.org/10.12688/f1000research.24543.1

  23. 23. 王靖超, 安斌斌, 王志鑫, 等. 晚期肝细胞癌的免疫治疗现状综述[J]. 临床医学进展, 2021, 11(12): 5740-5746.

  24. 24. Vogel, A. and Saborowski, A. (2020) Current Strategies for the Treatment of Intermediate and Advanced Hepatocellular Carcinoma. Cancer Treatment Reviews, 82, Article ID: 101946. https://doi.org/10.1016/j.ctrv.2019.101946

  25. 25. Kudo, M., Finn, R.S., Qin, S., et al. (2018) Lenvatinib versus Sorafenib in First-Line Treatment of Patients with Unresectable Hepatocellular Carcinoma: A Randomised Phase 3 Non-Inferiority Trial. The Lancet, 391, 1163-1173. https://doi.org/10.1016/S0140-6736(18)30207-1

  26. 26. Yoo, C., Park, J.W., Kim, Y.J., et al. (2019) Multicenter Retrospective Analysis of the Safety and Efficacy of Regorafenib after Progression on Sorafenib in Korean Patients with Hepatocellular Carcinoma. Investigational New Drugs, 37, 567-572. https://doi.org/10.1007/s10637-018-0707-5

  27. 27. Trojan, J. (2020) Cabozantinib for the Treatment of Advanced Hepatocellular Carcinoma: Current Data and Future Perspectives. Drugs, 80, 1203-1210. https://doi.org/10.1007/s40265-020-01361-5

  28. 28. Kelley, R.K., Rimassa, L., Cheng, A.L., et al. (2022) Cabozan-tinib plus Atezolizumab versus Sorafenib for Advanced Hepatocellular Carcinoma (COSMIC-312): A Multicentre, Open-Label, Randomised, Phase 3 Trial. The Lancet Oncology, 23, 995-1008. https://doi.org/10.1016/S1470-2045(22)00326-6

  29. 29. Casak, S.J., Donoghue, M., Fashoyin-Aje, L., et al. (2021) FDA Approval Summary: Atezolizumab plus Bevacizumab for the Treatment of Patients with Advanced Unresectable or Metastatic Hepatocellular Carcinoma. Clinical Cancer Research, 27, 1836-1841. https://doi.org/10.1158/1078-0432.CCR-20-3407

  30. 30. Yang, S., Wang, M., Yang, L., et al. (2020) Mi-croRNA-375 Targets ATG14 to Inhibit Autophagy and Sensitize Hepatocellular Carcinoma Cells to Sorafenib. Onco-Targets and Therapy, 13, 3557-3570. https://doi.org/10.2147/OTT.S247655

  31. 31. Li, D., Wang, T., Sun, F.F., et al. (2021) MicroRNA-375 Represses Tumor Angiogenesis and Reverses Resistance to Sorafenib in Hepatocarcinoma. Cancer Gene Therapy, 28, 126-140. https://doi.org/10.1038/s41417-020-0191-x

  32. 32. Liu, A.M., Poon, R.T. and Luk, J.M. (2010) MicroRNA-375 Targets Hippo-Signaling Effector YAP in Liver Cancer and Inhibits Tumor Properties. Biochemical and Biophysical Re-search Communications, 394, 623-627. https://doi.org/10.1016/j.bbrc.2010.03.036

  33. NOTES

    *通讯作者。

期刊菜单