World Journal of Cancer Research
Vol. 13  No. 02 ( 2023 ), Article ID: 64832 , 9 pages
10.12677/WJCR.2023.132014

靶向SOS1的抗肿瘤小分子抑制剂研究进展

黄景坤,王卉,朱雍

中国药科大学理学院,江苏 南京

收稿日期:2023年3月27日;录用日期:2023年4月17日;发布日期:2023年4月28日

摘要

大鼠肉瘤(rat sarcoma, RAS)是人类癌症中最常发生突变的癌基因,约占所有人类癌症突变的30%。RAS基因与胞内多条控制增殖、分化等生理过程的通路相关。SOS1 (son of sevenless 1)作为RAS信号通路中的中心节点,可通过蛋白–蛋白相互作用激活RAS蛋白,因此SOS1小分子抑制剂为治疗RAS依赖性癌症提供机遇。最近一些文献和专利文件已经证明了其治疗RAS突变驱动型癌症的潜力,通过对SOS1蛋白及其小分子抑制剂进行总结,为其进一步研究和应用提供参考。

关键词

SOS1,RAS,抗肿瘤,抑制剂

Research Progress of Antitumor Small Molecule Inhibitor Targeting SOS1

Jingkun Huang, Hui Wang, Yong Zhu

School of Science, China Pharmaceutical University, Nanjing Jiangsu

Received: Mar. 27th, 2023; accepted: Apr. 17th, 2023; published: Apr. 28th, 2023

ABSTRACT

Rat sarcoma (RAS) is the most frequently mutated oncogene in human cancer, accounting for approximately 30% of all human cancer mutations. RAS gene is associated with several intracellular pathways which control proliferation, differentiation and other physiological processes. As a central node in RAS signaling pathway, SOS1 (son of sevenless 1) can activate RAS proteins through protein-protein interaction, thus explaining that SOS1 small molecule inhibitors offer an opportunity to treat RAS-dependent cancers. Its potential in the treatment of RAS mutation-driven cancers has been demonstrated in recent literature and patent documents, and the structure and indications of these SOS1 small molecule inhibitors are summarized to provide reference for further research and application.

Keywords:SOS1, RAS, Anti-Cancer, Inhibitor

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

RAS是人类首个发现的原癌基因,RAS作为一个分子开关,在不活跃状态(与GDP结合)与活跃状态(与GTP结合)间转化,此过程由GTP酶激活蛋白(GTPase Activating Proteins, GAPs)和鸟嘌呤交换因子(Guanine nucleotide Exchange Factors, GEFs)调节 [1] 。GEFs (如SOS1)促进RAS蛋白释放GDP,与富集于胞内的GTP结合 [2] ,激活状态下的RAS-GTP能够通过结合下游效应蛋白,影响下游信号通路,从而调节多种生物过程,包括不同组织和细胞类型或不同发育阶段的细胞增殖、分化、迁移和存活 [3] 。

由于Ras蛋白表面光滑以及与三磷酸鸟苷(GTP)有着高度亲和力,其一度被认为是不可成药的靶点 [4] ,直接靶向Ras的药物受到了限制,迫切需要新颖的治疗策略来克服此缺点。近年来,SOS1已成为治疗RAS驱动的癌症的可行靶点,一系列SOS1小分子抑制剂已被开发出用于调节RAS的激活状态,其中一些化合物已进一步被证实有在体内模型中抑制RAS驱动的肿瘤生长的能力 [5] ,本文就SOS1蛋白的结构、周围信号通路及其抑制剂的研究进展进行综述。

2. SOS1蛋白概述

2.1. SOS1蛋白的基本结构与功能

人类SOS1蛋白大小为150 kDa,包含1300个氨基酸残基 [4] 。SOS1蛋白结构域整体分为三部分:氮末端区、催化和变构结构域、碳末端区,通过这些区域共同协作相互作用来调节SOS1的GEF活性 [6] [7] [8] [9] (图1)。

Figure 1. Structure, conformation and regulation of SOS1 proteins [6] [7] [8] [9] . (A) Primary structure of human SOS1 proteins; (B) The interaction process between catalytic and allosteric domains with RAS

图1. SOS1蛋白的结构、构象及调控活性 [6] [7] [8] [9] 。(A) 人类SOS1蛋白的主要结构;(B) 催化和变构结构域与RAS的作用过程

2.1.1. 氮末端区

SOS1蛋白中氮端延伸约含550个氨基酸残基,包含三个明确的结构域:组蛋白样结构域(HD)、Dbl同源结构域(DH)、Pleckstrin同源结构域(PH)和螺旋连接子(HL) (图1(A)),这3个结构域协同调节SOS1 GEF自抑制状态。

HD结构域直接参与中心区域变构位点的阻断,并稳定DH-PH串联模块的基础抑制构像,抑制SOS1 GEF激活 [10] 。最近也有研究表明HD可与COP9信号体的CSN3亚基相互作用 [11] ,这表明该结构域可作为SOS1蛋白稳定和细胞内稳态的调节因子;DH结构域作为特定的GEF具有激活RAC/RHO/CDC42家族GTP酶的作用 [12] ,并且通过碳末端连接PH结构域与细胞膜上的特定脂质结合,这是释放SOS1 GEF自抑制的重要步骤 [13] ;另外,PH结构域与磷酸肌醇磷酸盐结合,可终结SOS1的自抑制状态并激活GEF活性,以完成信号转导任务 [14] 。

2.1.2. 催化和变构结构域

SOS1蛋白的中心区域(约550至1050个氨基酸残基)位于螺旋连接蛋白(Helical Linker, HL)和C端(PR)区域之间,构成了SOS GEF蛋白的催化核心,催化模块通常被称为SOS1cat [15] ,包含两个不同的结构域:包含变构位点的REM (Ras Exchange Motif)结构域,以及包含催化位点的CDC25H结构域(与细胞分裂周期25类似,酵母中的一个RASGEF结构域)。

RAS:SOS1cat晶体的结构表明,复合物的SOS1cat通过涉及RAS的Switch I和Switch II区域的界面与RAS-GDP相互作用并使其稳定 [16] [17] ,其中Switch II提供了SOS1的主要锚定点。在此结构中,从CDC25H结构域主体突出的螺旋发夹元件插入RAS的Switch I和Switch II之间,充当撬开RAS活性位点的分子楔,并迫使释放任何先前结合的核苷酸(GDP) (图2)。由于胞内GTP浓度由GTP高于GDP,一旦与RAS结合的核苷酸被释放,RAS就被GTP结合,由此合成大量激活状态的RAS-GTP。另外,CDC25H域与RAS-GTP结合能力弱于RAS-GDP,证明SOS1单向促进GDP到GTP的交换 [18] 。

在临近的REM的作用下,RAS:SOS1cat复合物中CDC25H结构域的GEF活性也被RAS-GTP变构激活 [13] 。如图1(B)所示,晶体结构中RAS-GDP与CDC25H结构域的活性位点结合后,第二个RAS-GTP分子结合在REM和CDC25H结构域之间的远端位点上。未与RAS结合状态下的SOS1蛋白的CDC25H的螺旋发夹向SOS1的活性位点倾斜,从而限制SOS1与RAS-GDP中SwitchII的结合位点,而第二个RAS-GTP分子与SOS1的变构结合促进了螺旋发夹的旋转和打开,从而释放了此位点 [19] 。

REM和CDC25H结构域通过上述机制的顺序协调作用完成SOS1激活的正反馈循环 [1] ,其中RAS-GTP与原生未与RAS结合的SOS1分子的变构REM位点结合,产生变构激活的CDC25H域,然后产生活性RAS-GTP,又返回至原生SOS1的变构REM位点,继而激活SOS1的CDC25H域。通过这种方式,一旦一个单一的SOS1分子在膜上被RAS-GTP变构激活,数百个RAS分子就可以被该SOS1分子加工激活 [1] 。因此,RAS本身就是SOS1调控的一个重要决定因素 [20] 。

2.1.3. 碳末端区

SOS1蛋白C端为约300氨基酸残基具有整体组成的具备整体的无序结构,采用左旋多脯氨酸II型螺旋构象 [1] [2] [21] ,该碳末端PR区域序列具有4个真正的Proline-Rich motif (PΨΨPPR)以及其他不完全匹配的SH3最小结合位点(ΨPXΨP) [22] 。

在原生未受刺激的条件下,PR与氮末端区相似,可对原生SOS1蛋白的GEF活性产生自抑制作用 [23] ,但PR结构域能够与生长因子受体结合蛋2 (growth factor receptor-bound protein 2, GRB2)中的SH3 (Src同源3)结构域结合 [24] ,将SOS1募集到特定位置并激活其GEF功能。

2.2. 与SOS1蛋白相关的信号通路

生长因子或细胞因子等信号分子可以激活细胞膜上的受体酪氨酸激酶(receptor tyrosine kinase, RTK),多为表皮生长因子受体激酶(epidermal growth factor receptor, EGFR),RTKs的磷酸酪氨酸残基被激活后,通过解离磷酸基团并传递给GRB2与GRB2的SH2结构域相互作用,激活后的GRB2通过SH3结构域介导将SOS1-GRB2复合物从细胞质中募集到质膜的内表面从而活化SOS1:此位置有助于SOS1的CDC25H结构域触发膜上RAS分子的GDP-GTP交换 [3] [25] [26] 。SOS1 GEF在膜上激活的总体水平与SOS1:GRB2相互作用的可逆结合动力学平衡 [27] ,活性状态的RAS-GTP激活下游信号通路,其中比较重要的是丝裂原活化蛋白激酶(MAPK)通路和磷脂酰肌醇3-激酶(PI3K)通路 [28] (图2)。

RAS-RAF-MEK-ERK信号的程度和动力学的动态控制由正反馈和负反馈回路控制 [1] 。前文已经提到,SOS1中REM结构域中变构位点结合RAS-GTP,增强催化位点的GEF功能,构成一种正反馈调控机制 [2] 。另一方面,MAPK途径中ERK激酶可将SOS1碳末端区特定丝氨酸/苏氨酸残基的磷酸化,以改变其与GRB2的关联并抑制SOS1的功能,构成了负反馈调控机制 [29] [30] 。

Figure 2. Signaling pathways associated with SOS1 proteins [29]

图2. 与SOS1蛋白相关的信号通路 [29]

3. SOS1小分子抑制剂

3.1. 喹唑啉类

3.1.1. BAY-293

BAY-293是由拜耳公司通过高通量片段筛选得到的喹唑啉类SOS1抑制剂,其结构是由喹唑啉母核改造得到,R3取代基都是取代的芳香环,以取代苯和噻吩环最为典型。SOS1:KRAS配合物中化合物3的共晶结构数据揭示了立体中心的(R)构型是首选的对映异构体。喹唑啉核心与SOS1催化结构域中的His905和Tyr884形成π-π堆积,侧链胺与Asp887和Tyr884的相互作用,苯胺NH与Asn879的氢键作用,以及(R)甲基取代基结合于疏水性口袋(图3(A))。6-甲氧基可能对破坏KRAS和SOS1之间的相互作用有作用 [31] 。

BAY-293可抑制KRAS G12C与SOS1结合(IC50为 = 21 nM),也可抑制野生型的KRAS细胞的MAPK通路;在体外实验中,BAY-293与KRAS G12C抑制剂ARS-853联用可协同抑制肿瘤细胞的增殖 [32] 。目前BAY-293仍处在临床前研究阶段 [33] 。

Figure 3. (A) Chemical structures of compounds2 and 3; X-ray co-crystal structure of BAY-293 bound to SOS1 (PDB 5OVI) [31] ; (B) Structural modification process of BI-3406 [33] ; (C) Chemical structures of MRTX0902; X-ray co-crystal structure of MRTX bound to SOS1 (PDB7UKR) [38]

图3. (A) 化合物2与3的结构;BAY-293与SOS1的共晶结构(PDB编码5OVI) [31] ;(B) BI-3406结构改造过程 [33] ;(C) MRTX0902的化学结构;MRTX与SOS1的共晶结构(PDB编码7UKR) [38]

3.1.2. BI-3406

BI-3406是由勃林格英格翰公司研发的喹唑啉类SOS1抑制剂,图3(B)显示其改造过程 [33] :喹唑啉母核与SOS1的His 905位点产生π-π堆积作用,喹唑啉2-位甲基取代提高激酶选择性(如EGFR),三氟甲基和氨基取代基更有效地填充SOS1的疏水性口袋,并与M878形成氢键,四氢呋喃取代基平衡溶解度和代谢稳定性,增加与Tyr884的相互作用,甲氧基阻断SOS1 Tyr884位点与KRAS Arg73位点的结合,因此BI-3406可抑制SOS1与KRAS结合(其中对G12C的IC50为5nM)。BI-3406可抑制KRAS G12/G13/Q61突变细胞或野生型细胞内的p-ERK1/2 (IC50为17~57 nM),但其并不能抑制野生型KRAS细胞的增殖,有报道BI-3406与MEK抑制剂联用,可增强肿瘤细胞对MEK抑制剂的敏感程度 [34] ,并能在体外显著抑制人胰腺癌MIA PaCa-2细胞(KRAS G12C)和人结肠癌DLD-1细胞(KRAS G13D)的增殖,目前BI-3406的临床研究暂未公布。

3.2. 多环类

3.2.1. 三元环(取代喹唑啉类化合物) [35]

此类化合物(图4)是基于BAY-293设计得到的,其将喹唑啉环上两个甲氧基成六元环,对SOS1蛋白具有优良的抑制活性和药效学性能,其对SOS1蛋白IC50 = 14.9 nM,对人慢性髓原白血病细胞(K562细胞)的IC50 = 1.79 μM,与BAY-293基本相当。对EGFR及高表达EGFR细胞系均不具有显著的抑制作用,所以此化合物在应用时具有良好的治疗窗口。

3.2.2. 四元环 [36]

四元环13c (图4(A))是基于BI-3406设计得到的,其母核也含有喹唑啉环。首先基于BI-3406设计四环先导化合物40a,BI-3406和40a与SOS1的结合如图4(B)所示,BI-3406和40a的叠合图表明,40a在与SOS1催化结构域的结合模式上与BI-3406相似。BI-3406和40a的喹唑啉环被Y884和H905的侧链堆叠夹在中间,苯乙胺部分深埋在内袋中。环丙烷和40a的四环与Y884的主链和侧链形成了紧密结合,其功能与BI-3406的四氢呋喃相当。因BI-3406的甲氧基增强与SOS1蛋白H905的作用,将40a的第三环扩展为七元环得到13c,13c的七元环可以作为BI-3406甲氧基的等价药效团占据H905附近的溶剂可及区。

13c活性测试中表现出对SOS1有效的抑制作用,IC50低至3.9 nM。并且在体外(生化SOS1抑制IC50 = 3.9 nM,细胞SOS1抑制IC50 = 21 nM)和体内(肿瘤抑制 = 83.0%)均具有很强的抑制作用。由于其具有高代谢稳定性,13c在比格犬中表现出突出的PK特征,其生物利用度为86.8%。毒理学调查显示,13c的心源性猝死风险明显低于BI-3406。这些发现证实了13c对晚期kras突变癌症患者的显著临床益处。目前3c正在临床前试验中进行评估。

3.3. 其他类

3.3.1. BI-1701963

BI-1701963是由德国勃林格殷格翰公司开发,在BI-3406的基础上改造得到,是首款进入临床I期的SOS1抑制剂,但目前具体结构尚未公布。BI-1701963通过与SOS1催化区域(CDC25H结构域)结合,抑制SOS1与KRAS-GDP的结合,使KRAS-GTP的形成减少,从而抑制MAPK信号通路的激活 [34] [37] 。在结肠癌和胰腺癌小鼠PDX模型中,BI-1701963联合曲美替尼可抑制KRAS G12V肿瘤的生长。在EGFR突变肿瘤中,BI-1701963与奥希替尼联用与单独使用后者相比,能显著抑制MAPK通路和PI3K/AKT信号通路的激活。在小鼠CDX模型中,BI-1701963和伊立替康连用对KRAS G12C、G12V和G13D肿瘤细胞均有显著的抑制作用。在结肠癌PDX模型中,BI-1701963与AMG510联用可显著抑制KRAS G12C肿瘤的生长 [38] 。目前也开展了一系列上述药物连用的临床试验,但试验结果尚未报道。

3.3.2. MRTX0902

MRTX0902是由MRTX公司研发的酞嗪类SOS1抑制剂,现已进入临床I/II期,是一种有效的、选择性的、脑穿透性的、口服生物可利用的SOS1结合剂,其与SOS1的共晶结构显示(图3(C)),MRTX0902可通过酞嗪核心与Glu902之间形成盐桥以破坏SOS1:KRASG12C间相互作用,3-氰基取代基的吸电子特性而增强了与Phe890的π-π堆积作用,取代的苯环也提供了与SOS1后口袋互补的形状。MRTX0902与KRASG12C抑制剂MRTX849联合使用,可增强MAPK通路的抑制作用,并在MIA PaCa-2肿瘤异种移植模型中几乎完全消除肿瘤 [10] 。MRTX0902已完成研究性新药(IND)使能研究,并将作出进一步的分析。

Figure 4. (A) Chemical structures of substituted quinazoline cyclic compounds [34] ; (B) Chemical structures of BI-3406, 40a, and 13c [35] ; (C) Binding mode of BI-3406 (green), 40a (blue), and 13c (red) on theSOS1 catalytic pocket [35]

图4. (A) 取代喹唑啉环类三元环的化学结构 [34] ;(B) BI-3406, 40a, 13c的化学结构 [35] ;(C) BI-3406 (绿色)、40a (蓝色)和13c (红色)在SOS1催化口袋上的结合模式 [35]

4. 总结与展望

从早期鉴定出在SOS1:RAS界面结合的片段开始,对具有治疗RAS驱动癌症潜力的SOS1抑制剂的研究已经持续了近十年,但目前还没有一款上市的SOS1化合物,仅有两例处于临床研究中,缺少公开披露的临床研究数据,因此寻找高选择性和低毒性的SOS1抑制剂是此类药物研究的重点。此外,SOS1抑制剂与MEK抑制剂联用等联合用药途径是克服单一用药局限性的重要思路。总之,虽然SOS1化合物的开发还不够成熟,但是该类小分子对于“不可成药”靶点Ras而言,是一种可行的替代策略,SOS1作为一个新靶点,急切需要开发其抑制剂为肿瘤患者提供有效的治疗方案。

文章引用

黄景坤,王 卉,朱 雍. 靶向SOS1的抗肿瘤小分子抑制剂研究进展
Research Progress of Antitumor Small Molecule Inhibitor Targeting SOS1[J]. 世界肿瘤研究, 2023, 13(02): 97-105. https://doi.org/10.12677/WJCR.2023.132014

参考文献

  1. 1. Cherfils, J. and Zeghouf, M. (2013) Regulation of Small GTPases by GEFs, GAPs and GDIs. Physiologjcal Reviews, 93, 269-309.
    https://doi.org/10.1152/physrev.00003.2012

  2. 2. Bos, J.L., Rehmann, H. and Wittinghofer, A. (2007) GEFs and GAPs: Critical Elements in the Control of Small G Proteins. Cell, 129, 865-877.
    https://doi.org/10.1016/j.cell.2007.05.018

  3. 3. Buday, L. and Downward, J. (2008) Many Faces of Ras Activation. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1786, 178-187.
    https://doi.org/10.1016/j.bbcan.2008.05.001

  4. 4. Zhang, Z., Gao, R., Hu, Q., Peacock, H., Peacock, D.M., Dai, S., Shokat, K.M. and Suga, H. (2020) GTP-State-Selective Cyclic Peptide Ligands of K-Ras (G12D) Block Its Interaction with Raf. ACS Central Science, 6, 1753-1761.
    https://doi.org/10.1021/acscentsci.0c00514

  5. 5. Hillig, R.C. and Bader, N. (2022) Chapter Six: Targeting RAS on Cogenesis with SOS1 Inhibitors. In: O’Bryan, J.P. and Piazza, G.A., Eds., Advances in Cancer Research, Vol. 153, Academic Press, Cambridge, 169-203.
    https://doi.org/10.1016/bs.acr.2021.07.001

  6. 6. Hoang, H.M., Umutesi, H.G. and Heo, J. (2021) Allosteric Autoactivation of SOS and Its Kinetic Mechanism. Small GTPases, 12, 44-59.
    https://doi.org/10.1080/21541248.2019.1601954

  7. 7. Bandaru, P., Kondo, Y. and Kuriyan, J. (2019) The Interdependent Activation of Son-of-Sevenless and Ras. Cold Spring Harbor Perspectives in Medicine, 9, 1-14.
    https://doi.org/10.1101/cshperspect.a031534

  8. 8. Lee, Y.K., Low-Nam, S.T., Chung, J.K., Hansen, S.D., Lam, H.Y.M., Alvarez, S. and Groves, J.T. (2017) Mechanism of SOS PR-Domain Autoinhibition Revealed by Single-Molecule Assays on Native Protein from Lysate. Nature Communications, 8, Article No. 15061.
    https://doi.org/10.1038/ncomms15061

  9. 9. Toma-Fukai, S. and Shimizu, T. (2019) Structural Insights into the Regulation Mechanism of Small GTPases by GEFs. Molecules, 24, Article 3308.
    https://doi.org/10.3390/molecules24183308

  10. 10. Gureasko, J., Kuchment, O., Makino, D.L., Sondermann, H., Bar-Sagi, D. and Kuriyan, J. (2010) Role of the Histone Domain in the Autoinhibition and Activation of the Ras Activator Son of Sevenless. PNAS, 107, 3430-3405.
    https://doi.org/10.1073/pnas.0913915107

  11. 11. Zarich, N., Anta, B., Fernandez-Medarde, A., Ballester, A., de Lucas, M.P., Camara, A.B., Anta, B., Oliva, J.L., Rojas-Cabaneros, J.M. and Santos, E. (2019) The CSN3 Subunit of the COP9 Signalo Some Interacts with the HD Region of SOS1 Regulating Stability of this GEF Protein. Oncogenesis, 8, Article No. 2.
    https://doi.org/10.1038/s41389-018-0111-1

  12. 12. Soisson, S.M., Nimnual A.S., Uy, M., Bar-Sagi, D. and Kuriyan, J. (1998) Crystal Structure of the Dbl and Pleckstrin Homology Domains from the Human Son of Sevenless Protein. Cell, 95, 259-268.
    https://doi.org/10.1016/S0092-8674(00)81756-0

  13. 13. Gureasko, J., Galush, Boykevisch, W.J., Sondermann, S.H., Bar-Sagi, D., Groves, J.T. andKuriyan, J. (2008) Membrane-Dependent Signal Integration by the Ras Activator Son of Sevenless. Nature Structural & Molecular Biology, 15, 452-461.
    https://doi.org/10.1038/nsmb.1418

  14. 14. Yadav, K.K. and Bar-Sagi, D. (2010) Allosteric Gating of Son of Sevenless Activity by the Histone Domain. PNAS, 107, 3436-3440.
    https://doi.org/10.1073/pnas.0914315107

  15. 15. Margarit, S.M., Sondermann, H., Hall, B.E., Nagar, B., Hoelz, A., Pirruccello, M., Bar-Sagi, D. and Kuriyan, J. (2003) Structural Evidence for Feedback Activation by Ras∙GTP of the Ras-Specific Nucleotide Exchange Factor SOS. Cell, 112, 685-695.
    https://doi.org/10.1016/S0092-8674(03)00149-1

  16. 16. Boriack-Sjodin, P.A., Margarit, S.M., Bar-Sagi, D. and Kuriyan, J. (1998) The Structural Basis of the Activation of Ras by SOS. Nature, 394, 337-343.
    https://doi.org/10.1038/28548

  17. 17. Hall, B.E., Yang, S.S., Boriack-Sjodin, P.A., Kuriyan, J. and Bar-Sagi, D. (2001) Structure-Based Mutagenesis Reveals Distinct Functions for Ras Switch 1 and Switch 2 in SOS-Catalyzed Guanine Nucleotide Exchange. Journal of Biological Chemistry, 276, 27629-27637.
    https://doi.org/10.1074/jbc.M101727200

  18. 18. Vo, U., Vajpai, N., Flavell, L., Bobby, R., Breeze, A.L., Embrey, K.J. and Golovanov, A.P. (2016) Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (SOS) Using Site-Specific NMR Reporter Signals and Intrinsic Fluorescence. Journal of Biological Chemistry, 291, 1703-1718.
    https://doi.org/10.1074/jbc.M115.691238

  19. 19. Freedman, T.S., Sondermann, H., Kuchment, O., Friedland, G.D., Kortemme, T. and Kuriyan, J. (2009) Differences in Flexibility Underlie Functional Differences in the Ras Activators Son of Sevenless and Ras Guanine Nucleotide Releasing Factor 1. Structure, 17, 41-53.
    https://doi.org/10.1016/j.str.2008.11.004

  20. 20. Sondermann, H., Soisson, S.M., Boykevisch, S., Yang, S.S., Bar-Sagi, D. and Kuriyan, J. (2004) Structural Analysis of Autoinhibition in the Ras Activator Son of Sevenless. Cell, 119, 393-405.
    https://doi.org/10.1016/j.cell.2004.10.005

  21. 21. Alessi, D.R., Cuenda, A., Cohen, P., Dudley, D.T. and Saltiel, A.R. (1995) PD 098059 Is a Specific Inhibitor of the Activation of Mitogen-Activated Protein Kinase Kinase in Vitro and in Vivo. Journal of Biological Chemistry, 270, 27489-27494.
    https://doi.org/10.1074/jbc.270.46.27489

  22. 22. Zarich, N., Oliva, J.L., Martinez, N., Jorge, R., Ballester, A., Gutierrez-Eisman, S., Garcia-Vargas, S. and Rojas, J.M. (2006) Grb2 Is a Negative Modulator of the Intrinsic Ras-GEF Activity of HSOS1. Molecular Biology of the Cell, 17, 3591-3597.
    https://doi.org/10.1091/mbc.e05-12-1104

  23. 23. Corbalán-García, S., Margarit, S.M., Galron,D., Yang, S.S. and Bar-Sagi, D. (1998) Regulation of SOS Activity by Intramolecular Interactions. Molecular and Cellular Biology, 18, 880-886.
    https://doi.org/10.1128/MCB.18.2.880

  24. 24. Nimnual, A. and Bar-Sagi, D. (2002) The Two Hats of SOS. Science Signaling, 2002, epe36.
    https://doi.org/10.1126/stke.2002.145.pe36

  25. 25. Rojas, J.M., Oliva, J.L. and Santos, E. (2011) Mammalian Son of Sevenless Guanine Nucleotide Exchange Factors: Old Concepts and New Perspectives. Genes & Cancer, 2, 298-305.
    https://doi.org/10.1177/1947601911408078

  26. 26. Pierre, S., Bats, A.S. and Coumoul, X. (2011) Understanding SOS (Son of Sevenless). Biochemical Pharmacology, 82, 1049-1056.
    https://doi.org/10.1016/j.bcp.2011.07.072

  27. 27. Christensen, S.M., Tu, H.-L., Jun, J.E., Alvarez, S., Triplet, M.G., Iwig, J.S., Yadav, K.K., Bar-Sagi, D., Roose, J.P. and Groves, J.T. (2016) One-Way Membrane Trafficking of SOS in Receptor-Triggered Ras Activation. Nature Structural & Molecular Biology, 23, 838-846.
    https://doi.org/10.1038/nsmb.3275

  28. 28. Ambrogio, C. (2021) ES28.03 Mechanisms of Resistance to KRAS G12C Inhibitors. Journal of Thoracic Oncology, 16, S96.
    https://doi.org/10.1016/j.jtho.2021.01.062

  29. 29. Corbalan-Garcia, S., Yang, S.S., Degenhardt K.R. and Bar-Sagi D. (1996) Identification of the Mitogen-Activated Protein Kinase Phosphorylation Sites on Human SOS1 that Regulate Interaction with Grb2. Molecular and Cellular Biology, 16, 5674-5682.
    https://doi.org/10.1128/MCB.16.10.5674

  30. 30. Rozakis-Adcock, M., van der Geer, P., Mbamalu, G. and Pawson, T. (1995) MAP Kinase Phosphorylation of mSos1 Promotes Dissociation of mSos1-Shc and mSos1-EGF Receptor Complexes. Oncogene, 11, 1417-1426.

  31. 31. Thompson, S.K., Buckl, A., Dossetter, A.G., Griffen, E. and Gill, A. (2021) Small Molecule Son of Sevenless 1 (SOS1) Inhibitors: A Review of the Patent Literature. Expert Opinion on Therapeutic Patents, 31, 1189-1204.
    https://doi.org/10.1080/13543776.2021.1952984

  32. 32. Hillig, R.C., Sautier, B., Schroeder, J., Moosmayer, D., Hilpmann, A., Stegmann, C.M., Werbeck, N.D., Briem, H., Boemer, U., Weiske, J., Badock, V., Mastouri, J., Petersen, K., Siemeister, G., Kahmann, J.D., Wegener, D., Bohnke, N., Eis, K., Graham, K., Wortmann, L., von Nussbaum, F. and Bader, B. (2019) Discovery of Potent SOS1 Inhibitors that Block RAS Activation via Disruption of the RAS-SOS1 Interaction. Proceedings of the National Academy of Sciences of the United States of America, 116, 2551-2560.
    https://doi.org/10.1073/pnas.1812963116

  33. 33. Liceras-Boillos, P., Jimeno, D., Garcia-Navas, R., Lorenzo-Martin, L.F., Menacho-Marquez, M., Segrelles, C., Gomez, C., Calzada, N., Fuentes-Mateos, R., Paramio, J.M., Bustelo, X.R., Baltanas, F.C. and Santos, E. (2018) Differential Role of the RasGEFs SOS1 and SOS2 in Mouse Skin Homeostasis and Carcinogenesis. Molecular and Cellular Biology, 38, 4538-4551.
    https://doi.org/10.1128/MCB.00049-18

  34. 34. Hofmann, M.H., Gmachl, M., Ramharter, J., Savarese, F., Gerlach, D., Marszalek, J.R., Sanderson, M.P., Kessler, D., Trapani, F., Arnhof, H., Rumpel, K., Botesteanu, D.A., Ettmayer, P., Gerstberger, T., Kofink, C., Wunberg, T., Zoephel, A., Fu, S.C., Teh, J.L., Bottcher, J., Pototschnig, N., Schachinger, F., Schipany, K., Lieb, S., Vellano, C.P., O’Connell, J.C., Mendes, R.L., Moll, J., Petronczki, M., Heffernan, T.P., Pearson, M., McConnell, D.B. and Kraut, N. (2021) BI-3406, a Potent and Selective SOS1-KRAS Interaction Inhibitor, Is Effective in KRAS-Driven Cancers through Combined MEK Inhibition. Cancer Discovery, 11, 142-157.
    https://doi.org/10.1158/2159-8290.CD-20-0142

  35. 35. 唐春雷, 范懿庆, 范为正, 姜虹羽, 等. 一种取代喹唑啉类化合物、药物组合物及其用途[P]. 中国专利, 115141188. 2022-10-04.

  36. 36. He, H., Zhang, Y., Xu, J., Li, Y., Fang, H., Liu, Y. and Zhang, S. (2022) Discovery of Orally Bioavailable SOS1 Inhibitors for Suppressing KRAS-Driven Carcinoma. Journal of Medicinal Chemistry, 65, 13158-13171.
    https://doi.org/10.1021/acs.jmedchem.2c00986

  37. 37. Hofmann, M.H., Lu, H., Duenzinger, U., Gerlach, D., Trapani, F., Machado, A.A., Daniele, J.R., Waizenegger, I., Gmachl, M., Rudolph, D., Vellano, C.P., Marotti, M., Vucenovic, V., Heffernan, T.P., Marszalek, J.R., Petronczki, M.P. and Kraut, N. (2021) Abstract CT210: Trial in Process: Phase 1 Studies of BI 1701963, a SOS1: KRAS Inhibitor, in Combination with MEK Inhibitors, Irreversible KRASG12C Inhibitors or Irinotecan. Cancer Reaserch, 81, CT210.
    https://doi.org/10.1158/1538-7445.AM2021-CT210

  38. 38. Theard, P.L., Sheffels, E., Sealover, N.E., Linke, A.J., Pratico, D.J. and Kortum, R.L. (2020) Marked Synergy by Vertical inhibition of EGFR Signaling in NSCLC Spheroids Shows SOS1 Is a Therapeutic Target in EGFR-Mutated Cancer. eLife, 9, e58204.
    https://doi.org/10.7554/eLife.58204

期刊菜单