Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 65376 , 6 pages
10.12677/ACM.2023.1351095

合并肺动脉高压和肝肾功能衰竭ECMO桥 接下行心脏移植1例

张云龙1,2,王东1,2,张辉2,张歆杰2

1山东大学齐鲁医学院,山东 济南

2山东省千佛山医院冠心病与心脏移植外科,山东 济南

收稿日期:2023年4月17日;录用日期:2023年5月9日;发布日期:2023年5月17日

摘要

心脏移植是解决终末期心脏病患者的主要有效治疗方法,但既往受者的选择多为一般状况较好、肺动脉压力不高、无肝肾功能损害、无需机械辅助的患者,危重症紧急状态的心脏移植较少。本文报道1例ECMO联合IABP辅助下合并肺动脉高压和肝肾功能衰竭的心脏移植患者,围术期出现二次开胸、感染、肺动脉高压、肝肾功能衰竭等并发症,经系统治疗后患者顺利出院,随访9月心功能良好,肝肾功能无明显异常,肺动脉压力基本降至正常,旨在为重症患者心脏移植和心源性肝肾功能衰竭围术期管理经验方面提供临床诊疗参考。

关键词

心脏移植,围术期管理

A Case of ECMO-Assisted Heart Transplantation with Pulmonary Hypertension and Liver/Kidney Failure

Yunlong Zhang1,2, Dong Wang1,2, Hui Zhang2, Xinjie Zhang2

1Qilu Medical College, Shandong University, Jinan Shandong

2Department of Coronary Heart Disease and Heart Transplantation, Qianfoshan Hospital, Jinan Shandong

Received: Apr. 17th, 2023; accepted: May 9th, 2023; published: May 17th, 2023

ABSTRACT

Heart transplantation is the main effective treatment for patients with end-stage heart disease. Most of the recipients were selected for patients with good general condition, low pulmonary artery pressure, no liver and kidney function damage, and no need for mechanical assistance in the past, while it is rare in critical illness emergency. This paper reports a heart transplant patient assisted by ECMO and IABP, with pulmonary hypertension, liver and kidney failure. The patient had complications such as secondary thoracotomy, infection, pulmonary hypertension, liver and kidney failure during the perioperative period. After systemic treatment, the patient was discharged smoothly, followed up for 9 months with great cardiac function, normal liver and kidney function, and declined pulmonary artery pressure. The purpose of this study is to provide clinical reference for the perioperative management of heart transplantation and cardiogenic liver and kidney failure in critically ill patients.

Keywords:Heart Transplantation, Perioperative Management

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

心力衰竭(Heart Failure, HF)是一种复杂的临床综合征,根据美国心脏病学会(American College of Cardiology, ACC)/美国心脏学会(American Heart Association, AHA)指南指出,存在器质性病变,对药物治疗不敏感,持续严重的心衰症状(NYHA III~IV级)干扰日常生活的患者表现出的晚期心力衰竭临床综合征被称为终末期心脏病,是目前美国住院的首要原因 [1] [2] ,患者往往生活质量低下,有报道1年心力衰竭病死率范围为4%~45%,总体平均为33% [3] 。目前国内外心脏移植仍是解决终末期心脏病患者的主要有效治疗方法,但受者的选择多为一般状况尚可、肺动脉压力不高、无肝肾功能损害的患者,危重症紧急状态的心脏移植较少 [4] 。本文报道1例ECMO联合IABP辅助下合并肺动脉高压和肝肾功能衰竭的心脏移植患者,旨在为重症患者心脏移植和心源性肝肾功能衰竭围术期管理经验方面提供临床诊疗参考。

2. 病例资料

2.1. 基本资料

患者男,43岁,2022年4月13日夜间因“憋喘10年,晕厥9天”转入山东省千佛山医院就诊。患者10年前诊断为“扩张型心肌病心功能IV级”,药物保守治疗,9天前突发晕厥,于当地医院气管插管后,反复室颤,多次胸外按压,带气管插管转入,转入我院后血压难以维持,血管活性药物剂量大,去甲肾上腺素0.3 ug/kg/min,肾上腺素0.1 ug/kg/min,多巴胺10 ug/kg/min,血压波动于70~80 mmHg,予以IABP辅助,效果欠佳,乳酸进行性升高,急症予以VA-ECMO置入,置入后血管活性药物减小,血压维持于100m mHg。入院后心脏彩超示左室射血分数(Left Ventricular Ejection Fraction, LVEF) 19%,左室舒张末内径(Left Ventricular End-Diastolic Dimension, LVEDD) 99 mm,二尖瓣重度返流,肺动脉收缩压(Pulmonary Arterial Systolic Pressure, PASP) 60 mmHg,机械辅助10天后于4.24行心脏移植术,术后5天撤除ECMO,撤除ECMO后心包填塞急症开胸探查清理陈旧性血块约1000 ml,无活动性出血,7天撤除IABP,痰培养示多重耐药铜绿假单胞菌,多粘菌素B联合碳青霉烯类抗生素抗感染,术后2周气管切开,继续抗感染、抗排异、维护肝肾功能、脱离呼吸机等对症治疗后,患者于术后10周封闭气管造口后出院。

2.2. 术中情况

采用双腔静脉法同种原位心脏移植术,术前漂浮导管检查示SPAP 70 mmHg,供心冷缺血时间190 min,主动脉阻断119 min,并行循环128 min,总体外循环时间261 min,并行辅助2 h后右室饱满,CVP 20 mmHg,血压需大剂量血管活性药物维持,考虑肺动脉高压停机困难,遂保留ECMO和IABP,撤除体外循环,术后动脉测压95/60 mmHg,肺动脉测压46/26 mmHg,肾上腺素0.19 ug/kg/min,去甲肾上腺素0.25 ug/kg/min,垂体后叶素2.5 U/h泵入,同时予以前列尼尔3 ml/h泵入降肺压。

2.3. 肝肾功能衰竭

患者入院后化验ALT 65.9 U/L,AST 182.9 U/L,总胆红素133.9 umol/L,直接胆红素104.9 mmol/L,间接胆红素29 mmol/L,肌酐329 umol/L,无尿,予以CRRT肾替代治疗,术前总胆红素460.8 umol/L,肌酐180 umol/L。术后肝肾功能未见明显好转,每日予以血浆置换,胆红素继续上升,术后12天总胆红素升高至592.4 umol/L,为避免高胆红素对神经损害,联合应用DPMAS + 血浆置换一周后,总胆红素逐渐下降,降低频率,逐渐停用,术后一月胆红素降至100 umol/L左右,术后4月完全正常。术后无尿持续CRRT,至术后5周尿量逐渐恢复,降低CRRT频率,术后6周尿量4800 ml/天,肌酐正常,肾功能完全恢复。

2.4. 术后随访

术后3天心脏彩超LVEF60%,SPAP33 mmHg,撤除ECMO及IABP辅助后复查心脏彩超LVEF 63%,PASP 51 mmHg,三尖瓣中重度返流,继续前列尼尔泵入,术后三周后停用前列尼尔,口服安立生坦50 mg BID降肺压,术后2月复查心脏彩超LVEDD 42 mm,LVEF 70%,FAC 49%,三尖瓣中重度返流,估测PASP 44 mmHg,术后10周顺利出院,随访至今生命体征平稳,术后6月复查心脏彩超LVEDD 43 mm,LVEF 66%,三尖瓣中度返流,估测PASP 34 mmHg,肝肾功能正常,术后9月再次复查三尖瓣返流减至轻度,估测PASP 31 mmHg。

3. 讨论

3.1. 肺动脉高压患者的心脏移植

既往国内外研究普遍认为肺动脉高压是心脏移植术后不良预后的重要因素 [5] ,但也有研究认为轻中度肺动脉高压与术后早期右心功能不全相关,而远期生存率与不合并肺动脉高压患者无明显相关性 [6] [7] ,可谨慎得进行移植,但合并重度肺动脉高压患者报道较少。国际上目前采用肺血管阻力(Pulmonary Vascular Resistance, PVR)描述肺动脉高压,术前行Swan-Ganz漂浮导管检查,获得基线肺动脉收缩压、肺动脉舒张压(Pulmonary Artery Diastolic Pressure, PADP)、肺动脉平均压(mean Pulmonary Arterial Pressure, mPAP),用热稀释法计算心输出量,计算跨肺压力梯度TPG = mPAP-PAWP;PVR = TPG/CO。目前临床广泛采用的测量心输出量(Cardiac Output, CO)的方法是热稀释法,将5%的葡萄糖冰水由Swan-Ganz导管的近端孔注入右心房后,冰水与血液混合,经右心室被泵入肺动脉,这部分血液的温度随时间逐渐升高。Swan-Ganz导管远端的温度感受器可以感知这种温度的变化,并由机器计算心输出量。但术前行VA-ECMO辅助患者因静脉管引流等血流动力学原因,无法准确测得CO,无法获取准确的PVR,但现有研究已发现ECMO辅助下患者PAP有明显下降 [8] 。我国心脏移植指南把不可逆的肺动脉高压[定义为肺动脉收缩压(PASP) > 60 mmHg,TPG > 15 mmHg,PVR > 6 WU]视为心脏移植的绝对禁忌证 [9] 。本例患者术前漂浮导管示PASP 64 mmHg,术中右室饱满无法脱离ECMO停体外循环,术后24 h内肺动脉收缩压波动于50~60 mmHg,肺动脉高压明确。对于这一类患者,我中心已有一定围术期管理经验,复跳后延长并行辅助时间,让复跳的供心空跳一段时间,逐步减小体外循环流量,延长体外循环时间,逐渐增加右心前负荷,同时予以前列腺素、一氧化氮等药物扩张肺循环,不推荐使用硝普钠。严格监测心肌收缩、心室膨胀、心率和节律变化,避免心室膨胀引起心肌牵拉损伤,同时维持平均动脉压为60~80 mmHg,保证全身脏器和心内膜下充足的血供,必要时予以IABP或ECMO辅助脱离体外循环,考虑移植术后风险较高的患者,可予以左心室辅助装置(Left Ventricular Assist Device, LVAD)植入或心肺联合移植。国际上现有研究提出植入LVAD后,心脏负荷卸载,可以逆转心肌重构 [10] ,也能逆转肺血管重构,降低肺阻力 [11] ,现有研究认为增高的肺阻力通常在心脏移植后1月内恢复 [12] ,本例患者术后3天ECMO辅助下心脏彩超LVEF 60%,PASP 33 mmHg,撤除ECMO及IABP辅助后心超LVEF 63%,PASP 51 mmHg,三尖瓣中重度返流,术后2月心超LVEDD 42 mm,LVEF 70%,FAC 49%,三尖瓣中重度返流,PASP 44 mmHg,出院后继续服用安立生坦50 mg BID,用于靶向降肺压,术后4月LVEF 69%,LVEDD 51 mm,FAC 43%,PASP 39 mmHg,三尖瓣轻度返流,术后9月复查LVEDD 42 mm,LVEF 66%,三尖瓣轻度返流,PASP 31 mmHg,肺动脉高压和三尖瓣返流程度明显缓解,与国际研究相符。对于严重肺动脉高压的终末期心脏病患者,ECMO和IABP的机械辅助能明显改善围术期预后,而远期肺动脉高压可逐渐逆转。

3.2. 心脏移植患者围术期机械辅助管理

终末期心脏病晚期通常表现为顽固性心衰和各种室性心律失常,药物等一般治疗难以纠正,全身低灌注、水钠潴留等多种因素影响肝、肾、肺功能,在血压难以维持、频发室性心率失常、严重低氧血症、急性肾前性肾衰时需予以IABP、呼吸机、CRRT等机械辅助,维持各脏器灌注同时提高氧合,以维持生命体征,必要时需及时予以VA-ECMO置入,但这些机械辅助无法根治患者心功能不全,只能作为桥接心脏移植的手段,机械辅助会造成凝血因子、血小板等大量消耗,同时大量炎症介质产生、脏器低灌注会引发肝肾功能衰竭,需积极寻找供心,尽早完成手术撤除机械辅助。本例扩张型心肌病患者心包腔增大,术前ECMO辅助,同时因肺动脉高压停机困难,术中体外循环时间较长,凝血因子消耗,术中渗血较多,心包腔存有积血,因术后继续ECMO辅助,未表现出心脏压塞症状。在撤除ECMO辅助后,本例患者出现心包填塞表现,于床旁急症开胸,因此对于扩张型心肌病行心脏移植术后ECMO辅助的患者,术后需补充大量凝血因子和止血药物,在撤机前需评估心包血块大小和是否心包填塞可能,做好急症开胸探查的准备。

3.3. 心脏移植患者围术期肝肾功能不全

终末期心脏病患者随病情进展,左右心功能均有下降,右心功能不全会引起水钠潴留、肝淤血,左心无力引起低灌注肝肾损害,同时合并手术打击,药物诱导,体外循环损伤血细胞,胆红素代谢异常或胆汁淤积,以及炎症、感染、脓毒血症产生的炎症介质会进一步加剧多器官功能障碍,伴凝血障碍或肝性脑病为重症,预后差,死亡风险高 [13] 。本例患者术前肝肾功能严重衰竭,术前总胆红素460.8 umol/L,肌酐180 umol/L,但患者既往无肝肾基础性疾病,考虑为心源性休克导致的急性肝肾功能不全,手术风险高,对于这类患者行心脏移植手术的预后国内外报道较少。急性肝肾功能不全在纠正原发病因后通常可以逆转,因此在急性期内的肝肾替代治疗尤为重要。CRRT治疗急性肾衰在国内外已获得广泛推广,同时还可清除炎症介质,减少多脏器损伤 [14] 。在危重患者的肝活检组织中,人们发现面向胆管的胆汁酸排泄泵表达降低,而面向体循环的替代转运蛋白表达上调,这可能是胆汁酸生成和向体循环运输的适应性改变的结果,因此有研究提出轻度胆红素增高在一定程度上可能对机体有益 [15] ,但过高的胆红素可通过血脑屏障,影响脑细胞氧代谢,引起神经功能障碍 [16] 。本例患者的治疗经验表明,围术期肝功能异常采用双重血浆分子吸附系统(Dual Plasma Molecular Adsorption System, DPMAS)联合血浆置换降低胆红素,在常规治疗维护心脏功能的支持下,予以肝肾功能替代治疗,维持患者内环境,在患者心功能恢复后,可逆转急性肝肾功能损害。

3.4. 术后感染

国际上很早以前就发现心脏移植术后早期发生感染严重影响患者预后 [17] ,且术后感染多发生于肺部,感染高发可能与术后呼吸机辅助时间长、早期大剂量免疫抑制剂等因素有关。本例患者术后1周痰培养示多重耐药铜绿假单胞菌,术后2周气管切开,静脉输注多粘菌素B联合碳青霉烯类抗生素,同时予以免疫球蛋白输注1月余后,肺炎逐渐好转,术后2月封闭气管造口。由于铜绿假单胞菌多种易突变的耐药基因的作用 [18] ,国内外对其的治疗手段较为有限,目前仅有多粘菌素、头孢他啶/头孢洛赞联合阿维巴坦能有效控制铜绿感染,但头孢他啶/头孢洛赞联合阿维巴坦仅对野生毒株无耐药性,对临床分离出的毒株仍会诱导产生耐药性 [19] 。现有研究证明多粘菌素B联合碳青霉烯类优于多粘菌素B单药治疗 [20] 。一项吸入多粘菌素B治疗小鼠铜绿假单胞菌肺部感染模型研究指出,多粘菌素B经肺和呼吸道给药途径比静脉给药有一定优势 [21] ,能降低大剂量静脉给药后药物对肾脏的负担,提高感染灶局部药物浓度,一项吸入性多粘菌素B治疗铜绿假单胞菌肺炎的临床研究也证实了这种优势 [22] ,目前最大的多中心回顾性研究发现,感染多重耐药铜绿假单胞菌的医院获得性肺炎患者,多粘菌素B静脉应用并联合吸入治疗其临床有效率(66.7% VS 47.6%, P = 0.008)和微生物清除率(59.4% VS 41%, P < 0.001)均显著高于单用静脉治疗 [23] ,但仍需进一步的临床数据支持。

4. 结论

综上所述,本例合并肺动脉高压、肝肾功能衰竭、ECMO桥接下行心脏移植的危重症患者在经过系统治疗后获得良好的预后,围术期治疗经验值得借鉴,可以挽救患者生命、改善生活质量。

文章引用

张云龙,王 东,张 辉,张歆杰. 合并肺动脉高压和肝肾功能衰竭ECMO桥接下行心脏移植1例
A Case of ECMO-Assisted Heart Transplantation with Pulmonary Hypertension and Liver/Kidney Failure[J]. 临床医学进展, 2023, 13(05): 7834-7839. https://doi.org/10.12677/ACM.2023.1351095

参考文献

  1. 1. Heidenreich, P.A., Bozkurt, B., Aguilar, D., et al. (2022) 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145, e876-e894. https://doi.org/10.1161/CIR.0000000000001062

  2. 2. Orso, F., Fabbri, G. and Maggioni, A.P. (2017) Epidemiol-ogy of Heart Failure. In: Bauersachs, J., Butler, J. and Sandner, P., Eds., Heart Failure, Handbook of Experimental Pharmacology, Vol. 243, Springer, Berlin, 15-33. https://doi.org/10.1007/164_2016_74

  3. 3. Emmons-Bell, S., Johnson, C. and Roth, G. (2022) Prevalence, Inci-dence and Survival of Heart Failure: A Systematic Review. Heart (British Cardiac Society), 108, 1351-1360. https://doi.org/10.1136/heartjnl-2021-320131

  4. 4. Rushton, S., Parameshwar, J., Lim, S., et al. (2020) The Intro-duction of a Super-Urgent Heart Allocation Scheme in the UK: A 2-Year Review. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation, 39, 1109-1117. https://doi.org/10.1016/j.healun.2020.06.013

  5. 5. Hosenpud, J.D., Bennett, L.E., Keck, B.M., et al. (2000) The Registry of the International Society for Heart and Lung Transplantation: Seventeenth Official Report-2000. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation, 19, 909-931. https://doi.org/10.1016/S1053-2498(00)00138-8

  6. 6. Chang, P.P., Longenecker, J.C., Wang, N.Y., et al. (2005) Mild vs Severe Pulmonary Hypertension before Heart Transplantation: Different Effects on Posttransplantation Pulmo-nary Hypertension and Mortality. The Journal of Heart and Lung Transplantation: The Official Publication of the Inter-national Society for Heart Transplantation, 24, 998-1007. https://doi.org/10.1016/j.healun.2004.07.013

  7. 7. Vakil, K., Duval, S., Sharma, A., et al. (2014) Impact of Pre-Transplant Pulmonary Hypertension on Survival after Heart Transplantation: A UNOS Registry Analysis. Interna-tional Journal of Cardiology, 176, 595-599. https://doi.org/10.1016/j.ijcard.2014.08.072

  8. 8. Russ, M., Steiner, E., Boemke, W., et al. (2022) Extracorporeal Membrane Oxygenation Blood Flow and Blood Recirculation Compromise Thermodilution-Based Measurements of Cardiac Output. ASAIO Journal (American Society for Artificial Internal Organs: 1992), 68, 721-729. https://doi.org/10.1097/MAT.0000000000001592

  9. 9. 黄洁, 李飞. 中国心脏移植受者术前评估与准备技术规范(2019版) [J]. 中华移植杂志(电子版), 2019, 13(1): 1-7.

  10. 10. Tseliou, E., Lavine, K.J., Wever-Pinzon, O., et al. (2022) Biology of Myocardial Recovery in Advanced Heart Failure with Long-Term Mechanical Support. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation, 41, 1309-1323. https://doi.org/10.1016/j.healun.2022.07.007

  11. 11. Goland, S., Czer, L.S., Kass, R.M., et al. (2007) Pre-Existing Pulmonary Hypertension in Patients with End-Stage Heart Failure: Impact on Clinical Outcome and Hemodynamic Fol-low-Up after Orthotopic Heart Transplantation. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation, 26, 312-318. https://doi.org/10.1016/j.healun.2006.12.012

  12. 12. Mikus, E., Stepanenko, A., Krabatsch, T., et al. (2011) Left Ventricular Assist Device or Heart Transplantation: Impact of Transpulmonary Gradient and Pulmonary Vascular Resistance on Decision Making. European Journal of Cardio-Thoracic Surgery: Official Journal of the Euro-pean Association for Cardio-Thoracic Surgery, 39, 310-316. https://doi.org/10.1016/j.ejcts.2010.05.031

  13. 13. Perez Ruiz de Garibay, A., Kortgen, A., Leonhardt, J., et al. (2022) Critical Care Hepatology: Definitions, Incidence, Prognosis and Role of Liver Failure in Critically Ill Patients. Critical Care (London, England), 26, Article No. 289. https://doi.org/10.1186/s13054-022-04163-1

  14. 14. Vinsonneau, C., Camus, C., Combes, A., et al. (2006) Continuous Venovenous Haemodiafiltration versus Intermittent Haemodialysis for Acute Renal Failure in Patients with Multiple-Organ Dysfunction Syndrome: A Multicentre Randomised trial. The Lancet (London, England), 368, 379-385. https://doi.org/10.1016/S0140-6736(06)69111-3

  15. 15. Jenniskens, M., Langouche, L., Vanwijngaerden, Y.M., et al. (2016) Cholestatic Liver (Dys)function during Sepsis and Other Critical Illnesses. Intensive Care Medicine, 42, 16-27. https://doi.org/10.1007/s00134-015-4054-0

  16. 16. Watchko, J.F. and Tiribelli, C. (2013) Bilirubin-Induced Neuro-logic Damage—Mechanisms and Management Approaches. The New England Journal of Medicine, 369, 2021-2030. https://doi.org/10.1056/NEJMra1308124

  17. 17. Montoya, J.G., Giraldo, L.F., Efron, B., et al. (2001) Infectious Complications among 620 Consecutive Heart Transplant Patients at Stanford University Medical Center. Clinical Infec-tious Diseases: An Official Publication of the Infectious Diseases Society of America, 33, 629-640. https://doi.org/10.1086/322733

  18. 18. Horcajada, J.P., Montero, M., Oliver, A., et al. (2019) Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clinical Micro-biology Reviews, 32, e00031-19. https://doi.org/10.1128/CMR.00031-19

  19. 19. Vanscoy, B.D., Mendes, R.E., Castanheira, M., et al. (2014) Rela-tionship between Ceftolozane-Tazobactam Exposure and Selection for Pseudomonas aeruginosa Resistance in a Hol-low-Fiber Infection Model. Antimicrobial Agents and Chemotherapy, 58, 6024-6031. https://doi.org/10.1128/AAC.02310-13

  20. 20. Ribera, A., Benavent, E., Lora-Tamayo, J., et al. (2015) Osteoarticular Infection Caused by MDR Pseudomonas aeruginosa: The Benefits of Combination Therapy with Colistin plus β-Lactams. The Journal of Antimicrobial Chemotherapy, 70, 3357-3365. https://doi.org/10.1093/jac/dkv281

  21. 21. Lin, Y.W., Zhou, Q., Onufrak, N.J., et al. (2017) Aerosolized Polymyxin B for Treatment of Respiratory Tract Infections: Determination of Pharmacokinetic-Pharmacodynamic Indices for Aero-solized Polymyxin B against Pseudomonas aeruginosa in a Mouse Lung Infection Model. Antimicrobial Agents and Chemotherapy, 61, e00211-17. https://doi.org/10.1128/AAC.00211-17

  22. 22. Pereira, G.H., Muller, P.R. and Levin, A.S. (2007) Salvage Treatment of Pneumonia and Initial Treatment of Tracheobronchitis Caused by Multidrug-Resistant Gram-Negative Bacilli with In-haled Polymyxin B. Diagnostic Microbiology and Infectious Disease, 58, 235-240. https://doi.org/10.1016/j.diagmicrobio.2007.01.008

  23. 23. Korkmaz Ekren, P., Toreyin, N., Sayiner, A., et al. (2016) The Role of Aerolized Colistin in the Treatment of Hospital-Acquired Pneumonia: Experience of Multicenter from Turkey. Critical Care Medicine, 44, e304. https://doi.org/10.1097/CCM.0000000000001539

期刊菜单