Advances in Clinical Medicine
Vol. 13  No. 11 ( 2023 ), Article ID: 75393 , 6 pages
10.12677/ACM.2023.13112488

血管源性的脑白质高信号与认知功能障碍的 研究进展

刘发伟1*,吉维忠2#

1青海大学研究生院,青海 西宁

2青海省人民医院神经内科,青海 西宁

收稿日期:2023年10月14日;录用日期:2023年11月8日;发布日期:2023年11月15日

摘要

血管源性的脑白质高信号(White matter hyperintensity, WMH)是脑小血管病最常见的影像学标志物之一,目前越来越多的研究认为WHM与认知功能障碍的发生发展密切相关,本文主要对WHM与认知功能的关系进行综述,进一步认识WHM对认知功能的影响。

关键词

血管源性的脑白质高信号,认知功能障碍

Research Progress on White Matter Hyperintensity and Cognitive Dysfunction

Fawei Liu1*, Weizhong Ji2#

1Graduate School of Qinghai University, Xining Qinghai

2Department of Neurology, Qinghai Provincial People’s Hospital, Xining Qinghai

Received: Oct. 14th, 2023; accepted: Nov. 8th, 2023; published: Nov. 15th, 2023

ABSTRACT

White matter hypertensity (WMH) is one of the most common imaging markers of cerebral small vessel disease, and more and more studies believe that WHM is closely related to the occurrence and development of cognitive dysfunction. This article reviews the relationship between WHM and cognitive function to further understand the effect of WHM on cognitive function.

Keywords:White Matter Hyperintensity, Cognitive Dysfunction

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 概述

血管源性的脑白质高信号(WMH)不包括神经免疫、感染、代谢或毒性物质等引起的白质高信号,主要表现为双侧脑室周围或皮质下区域的斑点、斑片状、融合性白质改变 [1] 。其主要依据MRI诊断,在T1加权序列上表现为等信号或较脑脊液信号稍高的低信号;T2加权序列上表现为高信号;在T2液体衰减反转恢复序列上表现为高信号;在弥散加权序列上呈等信号。WMH的患病率为9.1%,其患病率随年龄的增长在44~50岁的社区居民中为48%,在60岁以上的人群中上升至65%~100% [2] 。此外有研究指出不同部位WHM的患病率有差异,在60~70岁的个体中87%有深部WMH (DWMH),68%有脑室周围WMH (PVWMH),而在80~90岁的个体中100%有DWMH,95%有PVWMH [3] 。WMH被认为是认知功能下降的重要原因,基线WMH使认知功能障碍和痴呆的风险增加了14%。WMH还使阿尔茨海默病和血管性痴呆的风险分别增加25%和73% [4] 。此外,与基线WMH负荷相比总脑室和脑室周围WMH体积的进展更能预测持续性认知障碍,总WMH体积和PVWMH体积的进展是比基线WMH负担更有力的认知障碍预测指标之一,可赋予更高的认知障碍风险。具体来说PV WMH体积每增加1 mL/年与持续性认知障碍风险增加94%相关 [5] 。

2. 血管源性的白质高信号对认知功能的影响

来自不同研究的大量证据表明,WMH会导致认知功能下降,WMH的严重程度与各个认知领域(执行功能,工作记忆,情景记忆,语言,执行功能和处理速度)均有一定的相关性,特别是在执行功能、信息处理速度和记忆等领域,在调整年龄后仍然显著 [6] [7] 。Binghan Li等 [8] 通过对比轻度WHM与重度WMH组的各认知域量表评分表明:白质损伤患者在执行功能、记忆力、注意力和反应抑制方面受损明显。此外,研究还发现WMH对工作记忆和情景记忆的影响在白质病变的晚期(从Fazekas评分为3分开始)较显著,与没有WMH的个体相比,病变早期(Fazekas评分为1分和2分)在各认知领域中几乎没有表现出任何差异 [6] 。

目前越来越多的证据表明,WMH的体积、形状和空间位置可能与认知功能障碍有显著的神经病理学和临床关联。WMH体积与轻度认知障碍、痴呆和总死亡率的风险呈正相关,WMH体积的增加可能会加重患者的认知功能损伤,具体表现为WMH体积越大患者的信息处理速度和执行能力越低,整体认知功能越差,出现痴呆的可能性增加 [9] [10] ,与此同时较高的WMH体积还可能会在一定程度上降低WMH体积对认知功能的影响。Sen Zhang等 [4] 发现与WMH体积相比,WMH形状可能是认知功能的更好决定因素,WMH与总白质体积的比率可能会减少脑萎缩的影响,从而更准确地反映认知功能障碍的可能性 [11] 。WMH的形状不规则性和融合性与WMH病理学的严重程度有关,脑室周围、融合性WMH的形状复杂性增加与较低的执行功能和记忆功能相关,值得注意的是,WMH形状与执行功能之间的关联与WMH体积无关。此外WMH的数量和严重程度也与患者的认知功能呈正相关。WMH总量的增加与执行功能、记忆和语言表现较差之间存在显著关联 [12] 。

由于脑室周围WMH (PVWMH)和深部WMH (DWMH)在大脑中具有不同的病理特征和解剖位置,因此它们对认知障碍的影响不同 [13] 。PVWMH更常见于侧脑室的前角和后角,被认为是非缺血性的,反映了更普遍的胶质增生,其与脑缺血和邻近纤维束脱髓鞘以及脑室周围室管膜丢失有关。相比之下DWMH通常是点状病变,常出现在白质的半卵圆中心,被认为是缺血源性的 [14] [15] 。研究发现,WMH与认知功能之间的关系在脑室周围区域比在非脑室周围区域更明显,PVWMH对认知功能的影响比DWMH更强烈,与特定领域的认知能力更差相关 [16] [17] 。这可能是PWMH与大脑中的小血管相邻,对皮质间长距离纤维的连接有影响,这些纤维将皮层连接到深灰质和其他远处的大脑区域,它们可能容易受到损害皮质动脉并最终引起远端灌注不足的病理影响。而深部白质传递涉及特定脑区域的相对较短的皮质下纤维 [2] [9] 。Xuemei Qi [18] 等也通过对比非痴呆患者的WMH严重程度与认知功能下降的关系后指出,脑室周围和皮质下WMH病变与MMSE评分下降显著相关,其中脑室周围WMH的严重程度预测MMSE评分下降更快。

WMH的不同空间位置可能导致特定的认知功能障碍。研究观察到WMH与记忆之间的关系更多地分布在整个大脑中,颞枕叶和顶枕叶的WMH与处理速度以及言语记忆障碍有关、脑室周围和颞叶皮质WMH分别与处理速度和情景记忆独立相关 [17] [19] 。同时,不同部位的脑血流变化与认知功能的损伤有关。右侧丘脑和左侧前额叶皮层的脑血流较高与更好的执行功能有关,额叶较高脑血流与更好的情景记忆有关,而扣带回的脑血流较低与更快速的认知功能障碍有关,额叶和丘脑的脑血流与患者的注意力和执行功能显著相关 [20] 。此外,融合WMH可能会使受试者的认知能力下降风险增加3倍,给患者带来沉重的认知障碍负担 [21] 。

3. 可能的机制

目前人们普遍认为认知功能通常依赖于底层大脑网络的大规模结构白质连接的完整性,其中整体认知功能与白质完整性之间具有显著的相关性 [22] [23] 。在有轻度认知障碍的WMH受试者中发现涉及认知网络的皮质下核和皮质枢纽区域,特别是扣带皮层的全脑功能连接显著降低,全脑功能连接改变可以部分解释WMH与认知之间的关联 [24] 。研究发现额叶–皮质下回路,基底神经节和丘脑之间的相互作用的破坏导致断开综合征并介导大脑认知功能 [20] ,WMH的空间分布及广泛的微观结构破坏,可能直接影响特定的大脑网络,从而导致认知功能障碍 [15] [25] 。Laura W M Vergoossen等 [26] 发现WMH病变会干扰白质的轨迹,并可能破坏分布性灰质区域之间的连接,白质连接的变化可能导致一般认知能力下降和各种特定认知领域的下降,包括信息处理速度、执行功能、注意力以及记忆力。Carolyn D Langen等 [27] 通过调查大脑连接、断开和认知功能之间的关系发现,特定连接中的有效连接对独立于WMH存在的信息处理速度非常重要,更好的认知功能对应独立于WMH存在的特定连接中的更高的连接性。此外与连接组相比,断开组与认知功能的关联要显著的多,与WMH相关的断开性比连接性更能解释认知功能的变化。

此外WMH还可能促进脑萎缩导致认知功能下降。一方面,WMH可以通过损伤在白质束中穿越大脑的长距离轴突导致远端相应的大脑皮层萎缩,另一方面WMH和海马萎缩显示出累加效应,脑室周围WMH与海马萎缩相关 [2] 。一项基于DTI数据的研究表明WHM、认知障碍和脑萎缩在老年人中通常共存,顶叶WMH与皮质和右额叶萎缩有关,总WMH体积与右额叶和顶叶区域的皮质萎缩有关并导致记忆力损伤,进一步影响WMH进展 [1] [3] 。

4. WMH的防治

血管源性的脑白质高信号的防治主要分为WMH相关危险因素预防及认知功能的改善以防止认知障碍进一步恶化。WMH的主要危险因素是年龄和高血压,它们均与认知功能障碍和痴呆的风险增高有关 [28] 。高血压被视为与WMH相关的最强心血管危险因素之一,其与不规则的WMH形状之间存在关联,血压降低可能会减少WMH进展,因此建议管理血压以减轻WMH的总负担和进展 [15] [29] 。此外遗传和环境暴露于糖尿病,血脂异常、吸烟、饮酒和肥胖之间的复杂相互作用也起着重要作用,因此改变小血管疾病的危险因素是一个重要的治疗目标 [20] 。

在调整年龄、性别、教育程度和基线认知后,身体活动总量和WMH负担对病理变化有显著的相互作用,据估计更多的身体活动可以预防约3%的痴呆症。Suhang Song等 [30] 发现,更多的身体活动量在相同程度的脑病理学下表现出更好的认知表现,其与更好的认知功能和较少的认知能力下降有关。身体活动可以通过减轻大脑变化对认知功能的不利影响来帮助维持认知或防止认知能力下降。此外,认知训练已被证明有望改善老年人的认知功能,适应性、多领域的认知训练导致信息处理速度、工作记忆表现更佳。同时,与工作记忆训练变化相比,信息处理速度训练变化似乎对白质高信号负荷特别敏感 [31] 。一项对135项研究的meta分析发现认知储备的所有方面与各认知领域的认知表现均呈正相关。同时,教育对WMH相关的认知功能的贡献可能比工作时间活动和休闲时间活动更大。更高的教育程度为个人提供了更多的知识、技能和认知刺激,从而提高了认知能力 [32] 。

目前尚缺乏针对性改善认知功能的药物。胆碱酯酶抑制剂、中枢烟碱受体调节剂和N-甲基-d-天冬氨酸受体拮抗剂等药物的临床试验表明,对WMH引起的血管认知障碍有一定效果 [2] [33] [34] 。多奈哌齐、加兰他敏、卡巴拉汀等药物可以改善血管性认知障碍的症状 [35] [36] [37] 。此外银杏叶可以改善能量供应、受损的海马神经发生和神经可塑性。研究表明银杏叶提取物可用于缓解与认知障碍相关的各种症状,具有良好的疗效 [38] 。而且中医也是如此,中医已广泛应用于临床实践,在血管性认知障碍的预防和治疗方面均取得了一定程度的疗效 [39] [40] 。

5. 总结

WMH被认为是认知功能障碍发生发展的重要因素,其患病率随年龄的增长不断升高。WMH与临床记忆、注意力、执行功能和整体认知功能的下降有关,对居民尤其是老年人的生活产生严重的影响。但不同类型、形状、体积、位置分布的WHM对认知功能的影响仍有差异,目前虽缺乏白质微观结构完整性和功能改变的系统评估方法,但尽可能地评估WHM的信息,控制血管危险因素、保持健康的生活方式,可降低WHM所致认知功能障碍的风险,对WHM的发生发展及预防和诊治均有重要作用。

文章引用

刘发伟,吉维忠. 血管源性的脑白质高信号与认知功能障碍的研究进展
Research Progress on White Matter Hyperintensity and Cognitive Dysfunction[J]. 临床医学进展, 2023, 13(11): 17744-17749. https://doi.org/10.12677/ACM.2023.13112488

参考文献

  1. 1. Chen, J., Ge, A., Zhou, Y., et al. (2023) White Matter Integrity Mediates the Associations between White Matter Hyper-intensities and Cognitive Function in Patients with Silent Cerebrovascular Diseases. CNS Neuroscience & Therapeutics, 29, 412-428. https://doi.org/10.1111/cns.14015

  2. 2. Chen, Y., Wang, X., Guan, L., et al. (2021) Role of White Matter Hyperintensities and Related Risk Factors in Vascular Cognitive Impairment: A Review. Biomolecules, 11, Article 1102. https://doi.org/10.3390/biom11081102

  3. 3. Meng, F., Yang, Y. and Jin, G. (2022) Research Progress on MRI for White Matter Hyperintensity of Presumed Vascular Origin and Cognitive Impairment. Frontiers in Neurosci-ence, 13, Article ID: 865920. https://doi.org/10.3389/fneur.2022.865920

  4. 4. Zhang, S., Hu, Y., Yang, H., et al. (2023) Value of White Matter Hyperintensity Volume and Total White Matter Volume for Evaluating Cognitive Impairment in Patients with Cerebral Small-Vessel Disease. Frontiers in Aging Neuroscience, 15, Article ID: 1096808. https://doi.org/10.3389/fnagi.2023.1096808

  5. 5. Silbert, L.C., Howieson, D.B., Dodge, H., et al. (2009) Cognitive Impairment Risk: White Matter Hyperintensity Progression Matters. Neurology, 73, 120-125. https://doi.org/10.1212/WNL.0b013e3181ad53fd

  6. 6. Zeng, W., Chen, Y., Zhu, Z., et al. (2020) Severity of White Matter Hyperintensities: Lesion Patterns, Cognition, and Microstructural Changes. Journal of Cerebral Blood Flow & Metabolism, 40, 2454-2463. https://doi.org/10.1177/0271678X19893600

  7. 7. Yang, D., Li, J., Ke, Z., et al. (2023) Subsystem Mechanisms of Default Mode Network Underlying White Matter Hyperintensity-Related Cognitive Impairment. Human Brain Mapping, 44, 2365-2379. https://doi.org/10.1002/hbm.26215

  8. 8. Li, B., Du, B., Gu, Z., et al. (2022) Correlations among Peripheral Blood Markers, White Matter Hyperintensity, and Cognitive Function in Patients with Non-Disabling Ischemic Cerebrovascular Events. Frontiers in Aging Neuroscience, 14, Article ID: 1023195. https://doi.org/10.3389/fnagi.2022.1023195

  9. 9. Qiao, S., Li, H., Guo, F., et al. (2022) Research Progress on Cognitive Impairment and the Expression of Serum Inflammatory Markers in Patients with White Matter Hyperintensities: A Narrative Review. Annals of Translational Medicine, 10, 421. https://doi.org/10.21037/atm-22-1016

  10. 10. Wang, Y.L., Chen, W., Cai, W.J., et al. (2020) Associations of White Matter Hyperintensities with Cognitive Decline: A Longi-tudinal Study. Journal of Alzheimer’s Disease, 73, 759-768. https://doi.org/10.3233/JAD-191005

  11. 11. Zwartbol, M.H.T., Ghaznawi, R., Jaarsma-Coes, M., et al. (2022) White Matter Hyperintensity Shape Is Associated with Cognitive Functioning—The SMART-MR Study. Neurobiology of Aging, 120, 81-87. https://doi.org/10.1016/j.neurobiolaging.2022.08.009

  12. 12. Chen, T.Y., Chan, P.C., Tsai, C.F., et al. (2022) White Matter Hyperintensities in Dementia with Lewy Bodies Are Associated with Poorer Cognitive Function and Higher De-mentia Stages. Frontiers in Aging Neuroscience, 14, Article ID: 935652. https://doi.org/10.3389/fnagi.2022.935652

  13. 13. Karvelas, N. and Elahi, F.M. (2023) White Matter Hyperintensities: Complex Predictor of Complex Outcomes. Journal of the American Heart Association, 12, e030351. https://doi.org/10.1161/JAHA.123.030351

  14. 14. Lahna, D., Schwartz, D.L., Woltjer, R., et al. (2022) Venous Col-lagenosis as Pathogenesis of White Matter Hyperintensity. Annals of Neurology, 92, 992-1000. https://doi.org/10.1002/ana.26487

  15. 15. Veldsman, M., Kindalova, P., Husain, M., et al. (2020) Spatial Distribution and Cognitive Impact of Cerebrovascular Risk-Related White Matter Hyperintensities. NeuroImage: Clinical, 28, Article ID: 102405. https://doi.org/10.1016/j.nicl.2020.102405

  16. 16. Melazzini, L., Mackay, C.E., Bordin, V., et al. (2021) White Matter Hyperintensities Classified According to Intensity and Spatial Location Reveal Specific Associations with Cognitive Per-formance. NeuroImage: Clinical, 30, Article ID: 102616. https://doi.org/10.1016/j.nicl.2021.102616

  17. 17. Jimenez-Balado, J., Corlier, F., Habeck, C., et al. (2022) Effects of White Matter Hyperintensities Distribution and Clustering on Late-Life Cognitive Impairment. Scientific Reports, 12, Ar-ticle No. 1955. https://doi.org/10.1038/s41598-022-06019-8

  18. 18. Qi, X., Tang, H., Luo, Q., et al. (2019) White Matter Hyperin-tensities Predict Cognitive Decline: A Community-Based Study. Canadian Journal of Neurological Sciences, 46, 383-388. https://doi.org/10.1017/cjn.2019.47

  19. 19. Kaskikallio, A., Karrasch, M., Koikkalainen, J., et al. (2019) White Matter Hyperintensities and Cognitive Impairment in Healthy and Pathological Aging: A Quantified Brain MRI Study. Dementia and Geriatric Cognitive Disorders, 48, 297-307. https://doi.org/10.1159/000506124

  20. 20. Huang, C.J., Zhou, X., Yuan, X., et al. (2021) Contribution of Inflammation and Hypoperfusion to White Matter Hyperintensi-ties-Related Cognitive Impairment. Frontiers in Neurology, 12, Article ID: 786840. https://doi.org/10.3389/fneur.2021.786840

  21. 21. Ding, D., Xiong, Y., Zhao, Q., et al. (2018) White Matter Hyper-intensity Predicts the Risk of Incident Cognitive Decline in Community Dwelling Elderly. Journal of Alzheimer’s Dis-ease, 61, 1333-1341. https://doi.org/10.3233/JAD-170876

  22. 22. Kuang, Q., Huang, M., Lei, Y., et al. (2023) Clinical and Cognitive Cor-relates Tractography Analysis in Patients with White Matter Hyperintensity of Vascular Origin. Frontiers in Neurosci-ence, 17, Article ID: 1187979. https://doi.org/10.3389/fnins.2023.1187979

  23. 23. Quandt, F., Fischer, F., Schroder, J., et al. (2020) Higher White Matter Hyperintensity Lesion Load Is Associated with Reduced Long-Range Functional Connectivity. Brain Communi-cations, 2, fcaa111. https://doi.org/10.1093/braincomms/fcaa111

  24. 24. Zhu, W., Huang, H., Yang, S., et al. (2019) Dysfunctional Ar-chitecture Underlies White Matter Hyperintensities with and without Cognitive Impairment. Journal of Alzheimer’s Dis-ease, 71, 461-476. https://doi.org/10.3233/JAD-190174

  25. 25. Wang, S., Zhang, F., Huang, P., et al. (2022) Superficial White Matter Microstructure Affects Processing Speed in Cerebral Small Vessel Disease. Human Brain Mapping, 43, 5310-5325. https://doi.org/10.1002/hbm.26004

  26. 26. Vergoossen, L.W.M., Jansen, J.F.A., van Sloten, T.T., et al. (2021) Inter-play of White Matter Hyperintensities, Cerebral Networks, and Cognitive Function in an Adult Population: Diffu-sion-Tensor Imaging in the Maastricht Study. Radiology, 298, 384-392. https://doi.org/10.1148/radiol.2021202634

  27. 27. Langen, C.D., Cremers, L.G.M., de Groot, M., et al. (2018) Dis-connection Due to White Matter Hyperintensities Is Associated with Lower Cognitive Scores. Neuroimage, 183, 745-756. https://doi.org/10.1016/j.neuroimage.2018.08.037

  28. 28. Garnier-Crussard, A., Desestret, V., Cotton, F., et al. (2020) White Matter Hyperintensities in Ageing: Pathophysiology, Associated Cognitive Disorders and Prevention. La Revue de Médecine Interne, 41, 475-484. https://doi.org/10.1016/j.revmed.2020.02.009

  29. 29. Keller, J.A., Kant, I.M.J., Slooter, A.J.C., et al. (2022) Different Cardiovascular Risk Factors Are Related to Distinct White Matter Hyperintensity MRI Phenotypes in Older Adults. NeuroImage: Clinical, 35, Article ID: 103131. https://doi.org/10.1016/j.nicl.2022.103131

  30. 30. Song, S., Gaynor, A.M., Gazes, Y., et al. (2022) Physical Activity Moderates the Association between White Matter Hyperintensity Burden and Cognitive Change. Frontiers in Aging Neuroscience, 14, Article ID: 945645. https://doi.org/10.3389/fnagi.2022.945645

  31. 31. Boutzoukas, E.M., O’Shea, A., Kraft, J.N., et al. (2022) Higher White Matter Hyperintensity Load Adversely Affects Pre-Post Proximal Cognitive Training Performance in Healthy Older Adults. GeroScience, 44, 1441-1455. https://doi.org/10.1007/s11357-022-00538-y

  32. 32. Ye, Q., Zhu, H., Chen, H., et al. (2022) Effects of Cognitive Reserve Proxies on Cognitive Function and Frontoparietal Control Network in Subjects with White Matter Hyperintensi-ties: A Cross-Sectional Functional Magnetic Resonance Imaging Study. CNS Neuroscience & Therapeutics, 28, 932-941. https://doi.org/10.1111/cns.13824

  33. 33. Erkinjuntti, T., Roman, G. and Gauthier, S. (2004) Treatment of Vascular Dementia—Evidence from Clinical Trials with Cholinesterase Inhibitors. Journal of the Neurological Sciences, 226, 63-66. https://doi.org/10.1016/j.jns.2004.09.018

  34. 34. Farlow, M.R. (2006) Use of Antidementia Agents in Vascular De-mentia: Beyond Alzheimer Disease. Mayo Clinic Proceedings, 81, 1350-1358. https://doi.org/10.4065/81.10.1350

  35. 35. Farooq, M.U., Min, J., Goshgarian, C., et al. (2017) Pharmacotherapy for Vascular Cognitive Impairment. CNS Drugs, 31, 759-76. https://doi.org/10.1007/s40263-017-0459-3

  36. 36. Craig, D. and Birks, J. (2005) Rivastigmine for Vascular Cognitive Impairment. Cochrane Database of Systematic Reviews, Article No. CD004744. https://doi.org/10.1002/14651858.CD004744.pub2

  37. 37. Shi, X., Ren, G., Cui, Y., et al. (2022) Comparative Efficacy and Acceptability of Cholinesterase Inhibitors and Memantine Based on Dosage in Patients with Vascular Cognitive Impairment: A Network Meta-Analysis. Current Alzheimer Research, 19, 133-145. https://doi.org/10.2174/1567205019666220120112301

  38. 38. Birks, J. and Grimley Evans, J. (2009) Ginkgo Biloba for Cognitive Impairment and Dementia. Cochrane Database of Systematic Reviews, CD003120. https://doi.org/10.1002/14651858.CD003120.pub3

  39. 39. Lu, H., Dang, M., Chen, K., et al. (2023) Naoxin’an Cap-sules Protect Brain Function and Structure in Patients with Vascular Cognitive Impairment. Frontiers in Pharmacology 14, Article ID: 1129125. https://doi.org/10.3389/fphar.2023.1129125

  40. 40. Feng, M., Lu, J., May, B.H., et al. (2016) Chinese Herbal Medi-cine for Patients with Vascular Cognitive Impairment No Dementia: Protocol for a Systematic Review. BMJ Open, 6, e010295. https://doi.org/10.1136/bmjopen-2015-010295

  41. NOTES

    *第一作者。

    #通讯作者。

期刊菜单