Advances in Clinical Medicine
Vol. 13  No. 09 ( 2023 ), Article ID: 72477 , 5 pages
10.12677/ACM.2023.1392038

儿童糖尿病酮症酸中毒并发脑水肿的综述

薛洁1,买尔江古丽·阿布来克木1,靳瑾2*

1新疆医科大学第五临床医学院,新疆 乌鲁木齐

2新疆医科大学第五附属医院内分泌科,新疆 乌鲁木齐

收稿日期:2023年8月14日;录用日期:2023年9月8日;发布日期:2023年9月15日

摘要

儿童糖尿病常以高血糖、代谢性酸中毒、酮体过量为特征的糖尿病酮症酸中毒(Diabetic ketoacidosis, DKA)急性起病,常伴有不同程度的循环容量衰竭,危及患儿生命。DKA救治过程中可能会发生低血糖、脑水肿等不良后果,其中酮症酸中毒并发的脑水肿是儿童DKA最严重、死亡率最高的并发症,幸存的患儿也可能会遗留永久性神经损伤,DKA有关脑水肿的发生机制非常复杂,本文对儿童糖尿病酮症酸中毒并发脑水肿的流行病学、病理生理机制、危险因素、临床表现、诊断及治疗进行综述。

关键词

儿童,糖尿病酮症酸中毒,脑水肿

A Review of Diabetic Ketoacidosis Complicated with Cerebral Edema in Children

Jie Xue1, Marjangul Ablekim1, Jin Jin2*

1The Fifth Clinical College of Medicine, Xinjiang Medical University, Urumqi Xinjiang

2Department of Endocrinology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Aug. 14th, 2023; accepted: Sep. 8th, 2023; published: Sep. 15th, 2023

ABSTRACT

Diabetic ketoacidosis (DKA), which is characterized by hyperglycemia, metabolic acidosis and ketone body excess, is often accompanied by varying degrees of circulatory volume failure, endangering the life of children. During the treatment of DKA, hypoglycemia, brain edema and other adverse consequences may occur, among which, brain edema complicated by ketoacidosis is the most serious complication with the highest mortality in children with DKA, and children who survive may also suffer permanent neurological damage. The mechanism of brain edema related to DKA is very complex. This article reviews the epidemiology, pathophysiological mechanism, risk factors, clinical manifestations, diagnosis and treatment of diabetic ketoacidosis complicated with cerebral edema in children.

Keywords:Children, Diabetic Ketoacidosis, Cerebral Edema

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

目前全球儿童糖尿病(Diabetes mellitus, DM)患者总数逐年上升,中国上升速度居世界首位,根据一项儿童青少年糖尿病患病率的Meta分析目前中国儿童青少年糖尿病患病率为1.73‰。DKA在儿童中很常见,世界范围内的发病率约为13%~80% [1] [2] ,常因感染、胰岛素泵问题(如:输液器移位或堵塞)以及对胰岛素治疗的依从性差和不依从、能量摄入不足等反复发生。儿童DKA的救治原则与成人相同 [3] :补液、胰岛素应用、维持电解质平衡、适时补碱、去除诱因、治疗合并症及并发症等。脑水肿是儿童糖尿病酮症酸中毒最危险、死亡率最高的并发症,其在成人中罕见,在儿童中常见,这是由于儿童糖尿病β细胞破坏的过程更快、对脱水和酸中毒的代谢代偿机制不完善 [4] 。脑水肿在儿童DKA的发生率约为1%,新发糖尿病儿童脑水肿发生率是已确诊糖尿病儿童的3倍,脑水肿死亡的DKA儿童占因DKA死亡儿童总数的70%~80%,发生脑水肿后的死亡率为20%~50%,约15%~35%的幸存者由于大脑微结构的显著改变而留下永久性的神经功能障碍,包括记忆、注意力和认知障碍 [5] [6] [7] 。因此,对于儿童DKA患者预防及治疗并发的脑水肿极为重要。下面从儿童糖尿病酮症酸中毒并发脑水肿的病理生理机制、危险因素、临床表现、诊断及治疗等方面进行综述。

2. 病理生理机制

儿童DKA有关脑水肿的发生机制非常复杂,目前认为可能与快速输液与血清渗透压突然变化、血脑屏障的破坏、DKA导致的脑损伤、补充低渗液过多、血糖下降过快、酸中毒过于严重以及补充碳酸氢钠过多等有关 [3] [8] 。目前文献记载有关脑水肿发生的机制可能为 [9] :血脑屏障允许水在血浆和脑细胞之间相对自由流动,但可以阻止某些物质从血液进入脑组织,在高渗条件下(如高钠血症、高血糖和DKA)脑细胞通过调节细胞内渗透压来适应其细胞外的高渗环境,防止细胞内水分流失到周围的高渗血浆中。在临床治疗过程中,使用含钠量低的液体可能会通过减少保留在血管中的液体体积而加剧正常脑灌注重建的延迟,使用等渗盐水可能会减缓细胞内脱水的修复;更快速地输注液体可能会增加与脑再灌注相关的血管源性脑水肿,特别是在缺血导致血脑屏障破裂的情况下 [10] 。目前来自DKA动物和人类研究的数据支持脑灌注不足和再灌注可能与DKA相关的脑损伤有关的假设 [10] :① 在未经治疗的DKA期间:脑血流量(CBF)较低,存在脑细胞肿胀(细胞毒性脑水肿);大脑中的高能量磷酸盐水平较低,乳酸水平升高,同样表明CBF不足;脑内N-乙酰天门冬氨酸(NAA)与肌酸(神经元健康的指标)的比率也较低;② 在使用胰岛素和盐水治疗期间:CBF水平升高至高于正常水平,且随着CBF的升高,血管源性脑水肿发生;在治疗早期大脑高能磷酸盐水平进一步下降;脑内NAA与肌酸的比率在DKA治疗期间开始下降。这些数据表明:DKA本身可能对CBF和代谢产生不利影响,但在使用胰岛素和盐水治疗期间可能会发生进一步的脑损伤。液体治疗在脑水肿发病机制中的潜在作用目前仍需进一步探索 [11] 。

3. 危险因素、临床表现及诊断

3.1. 危险因素

目前已知的儿童脑水肿危险因素主要有以下几方面 [12] :新发糖尿病患者年龄较轻(特别是年龄小于5岁的儿童),DKA长时间未缓解,出现低碳酸血症,血清尿素氮增加,酸中毒较严重,早期血清有效渗透压下降,治疗期间血清钠浓度上升减弱或葡萄糖校正钠早期下降,在液体治疗的第一个小时内给予胰岛素等。

3.2. 临床表现及诊断

儿童DKA治疗期间头痛的发作、呕吐的复发、意识的改变等都需高度警惕脑水肿。临床上显著的脑水肿通常发生在治疗开始后的12小时内,但也可能发生在治疗开始前,极少数发生在治疗开始后的24~48小时内,而意识改变通常在12~24小时内出现 [3] 。脑水肿的诊断可参考基于神经状态床边评估方法 [9] :1个诊断标准 + 2个主要标准或1个主要标准 + 2个次要标准的,其灵敏度为92%,假阳性率仅为4%。诊断标准包括:1) 疼痛导致异常运动或语言反应;2) 去皮层强直或去大脑强直;3) 脑神经麻痹(特别是III、IV、VI对脑神经);4) 神经源性呼吸异常(如呼噜、呼吸急促、潮式呼吸、呼吸暂停);主要标准:1) 与年龄不相称的大小便失禁;2) 意识改变;3) 不是由于睡眠或复苏引起的心率持续下降超过20次/min;次要标准:1) 呕吐;2) 头痛;3) 嗜睡;4) 年龄 < 5岁;5) 舒张压 > 90 mmHg。当临床表现满足脑水肿诊断标准时,即应开始脑水肿治疗,而不必等到神经放射学确认 [12] 。当出现需要进行紧急神经外科手术的病变(如颅内出血)或可能需要进行抗凝治疗的病变(如脑血管血栓形成)、临床表现所提示的局灶性或严重的进行性头痛或局灶性神经缺损才需要进行神经影像学检查 [13] 。脑水肿的判定必要时需要眼底检查、颅脑CT/MRI检查和神经内科医师进行评估。

4. 治疗

脑水肿可以在影像学检查中发现,但许多患者根据临床症状诊断脑水肿时并没有影像学的异常恶化,因此,在等待影像学结果的同时,DKA相关脑损伤的治疗不应延迟,发生脑水肿或怀疑脑水肿时,应立即开始治疗 [3] [7] [14] :根据需要调整给液速度以维持正常血压,同时控制补液量和速度降低脑水肿发生风险,避免可能损害脑灌注压的低血压;建议输注甘露醇(0.25~1.0 g/kg)或3%生理盐水(5~10 mL/kg,30分钟)对症治疗,如症状改善不明显,可重复使用;必要时给予气管插管、过度通气。一项为期11年的回顾性队列研究显示:在美国许多机构,高渗盐水已取代甘露醇成为最常用的高渗剂,尽管使用高渗盐水和甘露醇的预后效果还需要进一步的研究,但目前数据表明,使用高渗盐水预后可能差于甘露醇,而且可能增加死亡率 [15] [16] 。降糖时血糖浓度降至200~250 mg/dl时,立即用5%~10%的葡萄糖溶液代替生理盐水,同时应使血糖维持在150~200 mg/dl之间,直到DKA完全缓解。补液必须循序渐进,同时控制血糖下降速度 [3] [12] [17] [18] 。同时在治疗过程中应注意血清钠的监测,因为测量到的血清钠水平没有升高或进一步下降,被认为是发生脑水肿的潜在征兆;但血清钠浓度的快速持续升高也可能提示因尿崩症导致尿液中游离水的流失而引起的脑水肿 [13] 。即使重症儿童也应尽可能避免插管,因为在插管过程中或插管后二氧化碳分压升高,若高于患者一直维持的水平,可能引起脑脊液(CSF) pH值下降,从而导致脑水肿恶化 [19] 。

5. 小结

DKA患儿中有0.5%~3%出现症状性或严重脑水肿,无症状或亚临床脑水肿更为常见,脑水肿若延误救治会增加患儿不良预后和死亡风险 [20] [21] ,在儿童DKA救治过程中早期识别、及时正确治疗可降低儿童不良预后的风险。但目前关于儿童DKA脑水肿发生机制尚未完全阐明,关于儿童DKA治疗中的补液方案也面临很大争议,尚需更多有关儿童DKA的高质量临床研究,为临床决策提供依据。

基金项目

短链脂肪酸激活GPR43上调AMPK信号传导通路对小鼠胰岛β细胞线粒体功能研究(2022D01C318)。

文章引用

薛 洁,买尔江古丽·阿布来克木,靳 瑾. 儿童糖尿病酮症酸中毒并发脑水肿的综述
A Review of Diabetic Ketoacidosis Complicated with Cerebral Edema in Chil-dren[J]. 临床医学进展, 2023, 13(09): 14574-14578. https://doi.org/10.12677/ACM.2023.1392038

参考文献

  1. 1. Von Oettingen, J.E., Rhodes, E.T. and Wolfsdorf, J.I. (2018) Resolution of Ketoacidosis in Children with New Onset Diabetes: Evaluation of Various Definitions. Diabetes Research and Clinical Practice, 135, 76-84. https://doi.org/10.1016/j.diabres.2017.09.011

  2. 2. Elgenidy, A., Awad, A.K., Saad, K., et al. (2023) Incidence of Diabetic Ketoacidosis during Covid-19 Pandemic: A Meta-Analysis of 124,597 Children with Diabetes. Pediatric Re-search, 93, 1149-1160. https://doi.org/10.1038/s41390-022-02241-2

  3. 3. Glaser, N., Fritsch, M., Priyambada, L., et al. (2022) ISPAD Clinical Practice Consensus Guidelines 2022: Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar State. Pediatric Diabetes, 23, 835-856. https://doi.org/10.1111/pedi.13406

  4. 4. Jamarin, V. and Marzuki, N. (2022) Mild and Severe Diabetic Ketoacidosis in Children: A Report of Two Cases. Paediatrica Indonesiana, 62, 291-294. https://doi.org/10.14238/pi62.4.2022.291-4

  5. 5. Taiwo, A. (2022) Is Intravenous Fluid Therapy Associated with Cerebral Oedema in Paediatric Diabetic Ketoacidosis? Literature Review and Critical Appraisal of Evidence. Journal of Advances in Medicine and Medical Research, 34, 57-63. https://doi.org/10.9734/jammr/2022/v34i431286

  6. 6. Hsia, D.S., Tarai, S.G., Alimi, A., et al. (2015) Fluid Management in Pediatric Patients with DKA and Rates of Suspected Clinical Cerebral Edema. Pediatric Diabetes, 16, 338-344. https://doi.org/10.1111/pedi.12268

  7. 7. Mayer-Davis, E.J., Kahkoska, A.R., Jefferies, C., et al. (2018) ISPAD Clinical Practice Consensus Guidelines 2018: Definition, Epi-demiology, and Classification of Diabetes in Children and Adolescents. Pediatric Diabetes, 19, 7-19. https://doi.org/10.1111/pedi.12773

  8. 8. Frontino, G., Rigamonti, A. and Bonfanti, R. (2015) Acid-Base Problems in Diabetic Ketoacidosis. The New England Journal of Medicine, 372, 1969. https://doi.org/10.1056/NEJMc1502745

  9. 9. Muir, A.B., Quisling, R.G., Yang, M.C. and Rosenbloom, A.L. (2004) Cerebral Edema in Childhood Diabetic Ketoacidosis: Natural History, Radiographic Findings, and Early Identifi-cation. Diabetes Care, 27, 1541-1546. https://doi.org/10.2337/diacare.27.7.1541

  10. 10. Glaser, N.S., Ghetti, S., Casper, T.C., Dean, J.M. and Kuppermann, N. (2013) Pediatric Diabetic Ketoacidosis, Fluid Therapy, and Cerebral Injury: The Design of a Factorial Randomized Controlled Trial. Pediatric Diabetes, 14, 435-446. https://doi.org/10.1111/pedi.12027

  11. 11. Wolfsdorf, J.I. (2014) The International Society of Pediatric and Adoles-cent Diabetes Guidelines for Management of Diabetic Ketoacidosis: Do the Guidelines Need to Be Modified? Pediatric Diabetes, 15, 277-286. https://doi.org/10.1111/pedi.12154

  12. 12. Lapolla, A., Amaro, F., Bruttomesso, D., et al. (2020) Diabetic Ketoacido-sis: A Consensus Statement of the Italian Association of Medical Diabetologists (AMD), Italian Society of Diabetology (SID), Italian Society of Endocrinology and Pediatric Diabetoloy (SIEDP). Nutrition, Metabolism and Cardiovascular Diseases, 30, 1633-1644. https://doi.org/10.1016/j.numecd.2020.06.006

  13. 13. Wolfsdorf, J.I., Glaser, N., Agus, M., et al. (2018) ISPAD Clinical Practice Consensus Guidelines 2018: Diabetic Ketoacidosis and the Hyperglycemic Hyperosmolar State. Pediat-ric Diabetes, 19, 155-177. https://doi.org/10.1111/pedi.12701

  14. 14. Akcan, N., Uysalol, M., Kandemir, I., et al. (2021) Evaluation of the Effi-cacy and Safety of 3 Different Management Protocols in Pediatric Diabetic Ketoacidosis. Pediatric Emergency Care, 37, e707-e712. https://doi.org/10.1097/PEC.0000000000001770

  15. 15. Tasker, R.C. and Burns, J. (2014) Hypertonic Saline Thera-py for Cerebral Edema in Diabetic Ketoacidosis: No Change Yet, Please. Pediatric Critical Care Medicine, 15, 284-285. https://doi.org/10.1097/PCC.0000000000000046

  16. 16. DeCourcey, D.D., Steil, G.M., Wypij, D. and Agus, M.S.D. (2013) Increasing Use of Hypertonic Saline Over Mannitol in the Treatment of Symptomatic Cerebral Edema in Pediatric Diabetic Ketoacidosis: An 11-Year Retrospective Analysis of Mortality. Pediatric Critical Care Medicine, 14, 694-700. https://doi.org/10.1097/PCC.0b013e3182975cab

  17. 17. Nyenwe, E.A. and Kitabchi, A.E. (2011) Evidence-Based Management of Hyperglycemic Emergencies in Diabetes Mellitus. Diabetes Research and Clinical Practice, 94, 340-351. https://doi.org/10.1016/j.diabres.2011.09.012

  18. 18. Wolfsdorf, J. (2019) Neither Fluid Rate Nor Sodium Content Affect Neurocognitive Outcomes in DKA. The Journal of Pediatrics, 206, 298-301. https://doi.org/10.1016/j.jpeds.2018.12.072

  19. 19. Tasker, R.C., Lutman, D. and Peters, M.J. (2005) Hyperventila-tion in Severe Diabetic Ketoacidosis. Pediatric Critical Care Medicine, 6, 405-411. https://doi.org/10.1097/01.PCC.0000164343.20418.37

  20. 20. Mohamad, I.L., Saad, K., Abdel-Azeem, A., et al. (2015) Evaluation of Pulmonary Function Changes in Children with Type 1 Diabetes Mellitus in Upper Egypt. Thera-peutic Advances in Endocrinology and Metabolism, 6, 87-91. https://doi.org/10.1177/2042018815580514

  21. 21. Shafi, O. and Kumar, V. (2018) Initial Fluid Therapy in Pediatric Diabetic Ketoacidosis: A Comparison of Hypertonic Saline Solution and Normal Saline Solution. Pediatric Endocrinolo-gy Diabetes and Metabolism, 24, 56-64. https://doi.org/10.18544/PEDM-24.02.0103

  22. NOTES

    *通讯作者。

期刊菜单