Advances in Applied Mathematics
Vol. 10  No. 05 ( 2021 ), Article ID: 42446 , 7 pages
10.12677/AAM.2021.105161

(2 + 1)维Sawada-Kotera方程波的态转换

庞燕敏

华北电力大学,北京

收稿日期:2021年4月17日;录用日期:2021年5月2日;发布日期:2021年5月20日

摘要

本文研究了(2 + 1)维Sawada-Kotera方程的转换动力学特性。通过Hirato双线性方法和复数化参数,我们给出孤立波解和一阶呼吸波解。基于转换条件,我们得到了几种转换波,包括(振荡) W型或M型孤子、和多峰孤子。接着,我们研究了转换波的时变性质。

关键词

(2 + 1)维Sawada-Kotera方程,态转换,时变性质

State Transition of the Wave for (2 + 1)-Dimensional Sawada-Kotera Equation

Yanmin Pang

North China Electric Power University, Beijing

Received: Apr. 17th, 2021; accepted: May 2nd, 2021; published: May 20th, 2021

ABSTRACT

Under investigation in this work is the (2 + 1)-dimensional Sawada-Kotera equation. By the Hirato bilinear method and complex parameters, we give the solitary-wave solution and the first-order breath-wave solution. Based on the transition condition, we obtained the transformed waves, including the (oscillating) M- and W-shaped solitons and multi-peak solitons. Next, we investigate the time-varying features.

Keywords:(2 + 1)-Dimensional Sawada-Kotera Equation, State Transition, Time-Varying Property

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

众所周知,所有可积方程都有孤子解,这反映了自然界中一种常见的非线性现象 [1]。孤立子 [2] [3] [4] [5] 理论的研究对非线性偏微分方程有重要意义。近来,越来越多的研究者已经注意到精确解的研究,如有理解、怪波解和呼吸波解 [6] [7] [8] [9] [10],它们可以在某些方向上指数地定位解。研究已经发现许多可积方程具有精确解,例如KP方程 [11],非线性薛定谔方程 [12] 和Boussinesq方程 [13]。本文研究的是(2 + 1)维Sawada-Kotera方程

u t ( u x x x x + 5 u u x x + 5 3 u 3 + 5 u x y ) x 5 u u y + 5 u y y d x 5 u x u y d x = 0 (1)

它由Konopelchenko和Dubrovsky首次提出 [14],其中u是变量x,y,t的函数。

本文的结构如下:

第2章给出了几种转换波。首先,我们推导出(2 + 1)维Sawada-Kotera方程的孤立波解和一阶呼吸波解。然后,我们利用转换条件得到转换波。第3章研究了方程(1~2)的转换波的时变性质。通过分析孤立波源和周期波源的相移,我们发现叠加区域随时间而变化,这导致了转换波形状的变化。第4章为结论。

2. 转换波

首先,我们给出以下变换 [1]

u = 6 ( ln f ) x x , (2)

其中, f = f ( x , y , t ) 是一个未知的实函数。将方程(2)代入方程(1),得到双线性式 [1]:

( D x 6 + 5 D x 3 D y 5 D y 2 + D x D t ) f f = 0. (3)

其中, D x , D y D t 表示Hirota双线性算子被定义为 [15]

D x m D y n D t s f g = ( x x ) m ( y y ) n ( t t ) s f ( x , y , t ) g ( x , y , t ) | ( x = x , y = y , t = t )

它的N-孤立波解为

u N = 6 ( ln f N ( x , y , t ) ) x x , f N = μ = 0 , 1 exp ( i = 1 N μ i η i + i < j ( N ) μ i μ j A i j ) , (4)

其中,

η i = k i ( x + l i y + ω i t ) + η i ( 0 ) , ω i = k i 4 5 k i 2 l i + 5 l i 2 , e A i j = k i 4 3 k i 3 k j + k j 4 + ( l i l j ) 2 3 k i k j ( k j 2 + l i + l j ) + k i 2 ( 4 k j 2 + 2 l i + l j ) + k j 2 ( l i + 2 l j ) k i 4 + 3 k i 3 k j + k j 4 + ( l i l j ) 2 + 3 k i k j ( k j 2 + l i + l j ) + k i 2 ( 4 k j 2 + 2 l i + l j ) + k j 2 ( l i + 2 l j ) (5)

k i , l i , ω i η i ( 0 ) 是自由常数。

考虑 N = 2 ,取 k i , l i η i ( 0 ) 为复常数,即

k 1 = m 1 + i n 1 = k 2 * , l 1 = p 1 + i q 1 = l 2 * , η 1 ( 0 ) = ln λ 1 2 + δ 1 + i γ 1 = ( η 2 ( 0 ) ) * , (6)

其中, 表示复共轭, m 1 , n 1 , p 1 , q 1 , λ 1 ( > 0 ) , δ 1 γ 1 是实值的。把上式代入(4),我们得到 f 2

f 2 ~ 2 λ 2 cosh ( ξ 1 + ln λ 2 ) + λ 1 cos Λ 1 , (7)

其中,

ξ 1 = m 1 x + ( m 1 p 1 n 1 q 1 ) y + ( m 1 ω 1 R n 1 ω 1 I ) t + δ 1 , (8)

Λ 1 = n 1 x + ( m 1 q 1 + n 1 p 1 ) y + ( m 1 ω 1 I + n 1 ω 1 R ) t + γ 1 , (9)

K 1 = 3 n 1 4 m 1 2 n 1 2 3 n 1 2 p 1 m 1 n 1 q 1 q 1 2 3 m 1 4 m 1 2 n 1 2 + 3 m 1 2 p 1 m 1 n 1 q 1 q 1 2 , (10)

λ 2 = 1 4 λ 1 2 K 1 , (11)

ω 1 R = m 1 4 + 6 m 1 2 n 1 2 n 1 4 5 m 1 2 p 1 + 5 n 1 2 p 1 + 5 p 1 2 + 10 m 1 n 1 q 1 5 q 1 2 , ω 1 I = 4 m 1 3 n 1 + 4 m 1 n 1 3 10 m 1 n 1 p 1 5 m 1 2 q 1 + 5 n 1 2 q 1 + 10 p 1 q 1 , (12)

我们把方程(7)带入方程(4)得到呼吸波解

u = 24 λ 2 m 1 2 6 λ 1 2 n 1 2 + 12 λ 1 λ 2 ( m 1 2 n 1 2 ) cosh ( ξ 1 + ln λ 2 ) cos Λ 1 ( 2 λ 2 cosh ( ξ 1 + ln λ 2 ) + λ 1 cos Λ 1 ) 2 + 24 m 1 n 1 λ 1 λ 2 sinh ( ξ 1 + ln λ 2 ) sin Λ 1 ( 2 λ 2 cosh ( ξ 1 + ln λ 2 ) + λ 1 cos Λ 1 ) 2 . (13)

呼吸波解由双曲函数以及三角函数组成。双曲函数和三角函数分别决定孤立波源和周期波源的行为。因此,呼吸波可以被认为是它们的非线性组合。当波数满足

| m 1 m 1 p 1 n 1 q 1 n 1 m 1 q 1 + n 1 p 1 | = 0.

q 1 = 0. (14)

此时,呼吸波发展成了另一种叫做转换波的波。在这种情况下,方程(7)中的函数 f 2 被改写为

f 2 = 2 λ 2 cosh ( ξ 1 * + ln λ 2 ) + λ 1 cos Λ 1 * , (15)

其中,

ξ 1 * = m 1 x + m 1 p 1 y + ( m 1 ω 1 R * n 1 ω 1 I * ) t + δ 1 , (16)

Λ 1 * = n 1 x + n 1 p 1 y + ( m 1 ω 1 I * + n 1 ω 1 R * ) t + γ 1 , (17)

K 1 = 3 n 1 4 m 1 2 n 1 2 3 n 1 2 p 1 3 m 1 4 m 1 2 n 1 2 + 3 m 1 2 p 1 , λ 2 = 1 4 λ 1 2 K 1 * , (18)

ω 1 R = m 1 4 + 6 m 1 2 n 1 2 n 1 4 5 m 1 2 p 1 + 5 n 1 2 p 1 + 5 p 1 2 , ω 1 I = 4 m 1 3 n 1 + 4 m 1 n 1 3 10 m 1 n 1 p 1 , (19)

我们将方程(15)代入方程(4)得到转换波解的表达式为

u = 24 λ 2 m 1 2 6 λ 1 2 n 1 2 + 12 λ 1 λ 2 ( m 1 2 n 1 2 ) cosh ( ξ 1 * + ln λ 2 ) cos Λ 1 * ( 2 λ 2 cosh ( ξ 1 * + ln λ 2 ) + λ 1 cos Λ 1 * ) 2 + 24 m 1 n 1 λ 1 sinh λ 2 ( ξ 1 * + ln λ 2 ) sin Λ 1 * ( 2 λ 2 cosh ( ξ 1 * + ln λ 2 ) + λ 1 cos Λ 1 * ) 2 . (20)

当参数满足一定的物理条件时,转换波可以被展示为M型孤子(见图1)、振荡W型(M型)孤子(见图2图3)、多峰孤子(见图4)。(a)表示几种转换波的三维结构,(b)表示它们在y = 0处的截面图。

(a) (b)

Figure 1. M-shaped soliton. The parameters are m 1 = 1 , n 1 = 1.5 , p 1 = 1 , δ 1 = 0 , γ 1 = 0 , λ 1 = 2

图1. M型孤子。参数为 m 1 = 1 , n 1 = 1.5 , p 1 = 1 , δ 1 = 0 , γ 1 = 0 , λ 1 = 2

(a) (b)

Figure 2. The oscillating W-shaped soliton. The parameters are m 1 = 0.4 , n 1 = 1.2 , p 1 = 1 , δ 1 = 0 , γ 1 = 0 , λ 1 = 2

图2. 振荡W型孤子。参数为 m 1 = 0.4 , n 1 = 1.2 , p 1 = 1 , δ 1 = 0 , γ 1 = 0 , λ 1 = 2

(a) (b)

Figure 3. Theoscillating M-shaped soliton. The parameters are m 1 = 0.55 , n 1 = 1.2 , p 1 = 1 , δ 1 = 0 , γ 1 = 0 , λ 1 = 2

图3. 振荡M型孤子。参数为 m 1 = 0.55 , n 1 = 1.2 , p 1 = 1 , δ 1 = 0 , γ 1 = 0 , λ 1 = 2

(a) (b)

Figure 4. The multi-peak soliton. The parameters are m 1 = 0.3 , n 1 = 1.5 , p 1 = 1 , δ 1 = 0 , γ 1 = 0 , λ 1 = 2

图4. 多峰孤子。参数为 m 1 = 0.3 , n 1 = 1.5 , p 1 = 1 , δ 1 = 0 , γ 1 = 0 , λ 1 = 2

3. 时变性质

转换波的孤立波源和周期波源的相位如下

φ s ( t ) = ( m 1 ω 1 R n 1 ω 1 I ) t + δ 1 + ln λ 2 , (21)

φ p ( t ) = ( m 1 ω 1 I + n 1 ω 1 R ) t + γ 1 , (22)

它们之间的相位差是

φ d = [ ( m 1 n 1 ) ω 1 R ( m 1 n 1 ) ω 1 I ] t + δ 1 + ln λ 2 γ 1 ,

与时间变量t有关。因此,这些转换波的形状随时间而变化。

本节介绍W型或M型孤子和振荡W型或M型孤子的时变性质。图5(a)~(c)是M型或W型孤子在三个不同时刻的密度图。图5(d)是它们在三个不同时刻的截面图,从中我们看到W型孤子和M型孤子交替变换。图6(a)~(c)是振荡M型或振荡W型孤子在三个不同时刻的密度图。图6(d)是它们在三个不同时刻的截面图,从中我们看出转换波有明显的时变性质。

(a) (b) (c)(d)

Figure 5. The time-varying property of M-shaped solitons

图5. M型孤子的时变性质

(a) (b) (c)(d)

Figure 6. The time-varying property of oscillating W-shaped solitons

图6. 振荡W型孤子的时变性质

4. 结论

本文研究了(2 + 1)维Sawada-Kotera方程的不同类型的转换波,包括M型孤子(见图1)、振荡W型或M型孤子(见图2图3)和多峰孤子(见图4)。另外,我们讨论了几种转换波的时变性质(见图5图6)。我们发现叠加区域随时间而变化,这造成转换波发生形变。

致谢

本文作者衷心感谢审稿人的意见和建议。

文章引用

庞燕敏. (2 + 1)维Sawada-Kotera方程波的态转换
State Transition of the Wave for (2 + 1)-Dimensional Sawada-Kotera Equation[J]. 应用数学进展, 2021, 10(05): 1515-1521. https://doi.org/10.12677/AAM.2021.105161

参考文献

  1. 1. Chen, Y., Huang, L.L., et al. (2017) Lump Solutions and Interaction Phenomenon for (2 + 1)-Dimensional Sawada-Kotera Equation. Communications in Theoretical Physics, 67, 473. https://doi.org/10.1088/0253-6102/67/5/473

  2. 2. 李翊神. 孤子与可积系统[M]. 上海: 上海科技教育出版社, 1999.

  3. 3. 黄景宁, 徐济仲, 熊吟涛. 孤子: 概念、原理和应用[M]. 北京: 高等教育出版社, 2004.

  4. 4. 陈登远. 孤子引论[M]. 北京: 科学出版社, 2006.

  5. 5. 広田良吾, 王红艳, 李春霞, 等. 孤子理论中的直接方法[M]. 北京: 清华大学出版社, 2008.

  6. 6. Akhmediev, N., Ankiewicz, A. and Taki, M. (2009) Waves That Appear from Nowhere and Disappear without a Trace. Physics Letters A, 373, 675-678.

  7. 7. Osborne, A.R. (2010) Nonlinear Ocean Waves and the Inverse Scattering Transform. Academic Press Inc., Cambridge.

  8. 8. Kuznetsov, E.A. (1977) Solitons in Parametrically Unstable Plasma. Doklady Akademiinauk SSSR, 22, 507-508.

  9. 9. Falcon, É., Laroche, C. and Fauve, S. (2002) Observation of Depression Solitary Surface Waves on a Thin Fluid Layer. Physical Review Letters, 89, Article ID: 204501. https://doi.org/10.1103/PhysRevLett.89.204501

  10. 10. Pelinovsky, D.E., Stepanyants, Y.A. and Kivshar, Y.S. (1995) Self-Focusing of Plane Dark Solitons in Nonlinear Defocusing Media. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 51, 5016-5026. https://doi.org/10.1103/PhysRevE.51.5016

  11. 11. Manakov, S.V., Zakharov, V.E., Bordag, L.A., et al. (1977) Two-Dimensional Solitons of the Kadomtsev-Petviashvili Equation and Their Interaction. Physics Letters A, 63, 205-206. https://doi.org/10.1016/0375-9601(77)90875-1

  12. 12. Peregrine, D.H. (1983) Water Waves, Nonlinear Schrdinger Equations and Their Solutions. The ANZIAM Journal, 25, 16-43. https://doi.org/10.1017/S0334270000003891

  13. 13. Ma, H.C. and Deng, A.P. (2016) Lump Solution of (2 + 1)-Dimensional Boussinesq Equation. Communications in Theoretical Physics, 65, 546-552. https://doi.org/10.1088/0253-6102/65/5/546

  14. 14. Konopelchenko, B.G. and Dubrovsky, V.G. (1984) Some New Integrable Nonlinear Evolution Equations in 2+1 Dimensions. Physics Letters A, 102, 15-17. https://doi.org/10.1016/0375-9601(84)90442-0

  15. 15. Hirota, R. (2004) The Direct Method in Soliton Theory. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511543043

期刊菜单