Advances in Clinical Medicine
Vol. 13  No. 12 ( 2023 ), Article ID: 77546 , 8 pages
10.12677/ACM.2023.13122724

Eph家族受体在机体生理和病理过程中作用 机制的研究进展

董春旭1,朱国强2,黄立2*

1济宁医学院临床医学院,山东 济宁

2济宁医学院附属医院眼科,山东 济宁

收稿日期:2023年11月21日;录用日期:2023年12月14日;发布日期:2023年12月20日

摘要

促红细胞生成素肝细胞激酶(Erythropoietin-producing hepatocellular, Eph)受体家族作为目前已知最大的酪氨酸激酶受体家族,通过受体–配体结合,介导人类从胚胎发育到成人组织稳态诸多生物学功能的调节,参与机体各种免疫反应。研究发现,Eph受体在包括神经系统发育、细胞迁移、血管形成等许多生理发育过程中起重要作用,在调节免疫反应、肿瘤、炎症、损伤修复等病理过程中也发挥着重要功能。进一步深入的研究Eph家族受体的生物学功能能够更好的对临床疾病进行预防、诊断和治疗,了解调控Eph表达的转录和转录后机制在生物学上具有深远的意义。本篇综述通过从Eph受体家族参与神经发育调节、血管形成、介导免疫反应等方面探讨其在机体生理和病理中的作用机制,总结其在不同机体反应中的作用规律,对临床疾病的诊断、治疗等进一步提供新思路。

关键词

促红细胞生成素肝细胞激酶受体,免疫炎症反应,血管生成,损伤修复,神经发育

Research Progress on the Mechanism of Action of Eph Family Receptors in Physiological and Pathological Processes of the Body

Chunxu Dong1, Guoqiang Zhu2, Li Huang2*

1Department of Clinical Medicine, Jining Medical University, Jining Shandong

2Ophthalmology, Affiliated Hospital of Jining Medical University, Jining Shandong

Received: Nov. 21st, 2023; accepted: Dec. 14th, 2023; published: Dec. 20th, 2023

ABSTRACT

The Erythropoietin-producing hepatocellular kinase receptor family, as the largest tyrosine kinase receptor family known to date, mediates the regulation of many biological functions from embryonic development to adult tissue homeostasis and participates in a variety of immune responses through receptor-ligand binding. It has been found that Eph receptors play important roles in many physiological developmental processes, including nervous system development, cell migration, and blood vessel formation, as well as in the regulation of immune responses, tumors, inflammation, and damage repair. Further in-depth study of the biological functions of the Eph family of receptors can lead to better prevention, diagnosis and treatment of clinical diseases, and understanding the transcriptional and post-transcriptional mechanisms that regulate the expression of Eph has far-reaching significance in biology. In this review, we explore the mechanism of Eph receptors in the physiology and pathology of the body from the aspects of their participation in neurodevelopmental regulation, angiogenesis, and mediation of immune response, and summarize the rules of their roles in different body responses, which will further provide new ideas for the diagnosis and treatment of clinical diseases.

Keywords:Erythropoietin-Producing Hepatocellular, Immune-Inflammatory Response, Angiogenesis, Damage Repair, Neurodevelopment

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. Eph受体结构与分类

Eph受体家族作为酪氨酸激酶受体家族中的一员,是机体生长发育和维持组织生理功能的关键介质 [1] 。1987年,Hirai等人 [2] 用病毒癌基因v-fps的酪氨酸激酶区序列为探针,发现在产生人促红细胞生成素肝细胞癌细胞中呈现高表达的基因片段,将其命名为Eph,这是人类首次发现的Eph家族受体。其Ephrin配体是调节细胞间通讯的膜锚定分子,Eph受体通过与邻近细胞表面的Ephrin配体蛋白相互作用触发Eph受体激酶依赖性信号转导发挥其生物学作用 [3] 。

Eph受体是一种I型跨膜蛋白,其胞外结构域包括N端含有免疫球蛋白样基序的球状配体结合结构域(Glb)、富含半胱氨酸的结构域和两个III型纤维连接蛋白重复序列,是与配体结合的关键结构域,其空间构型决定了受体与配体的结合特性及亚族特异性。其胞内区包括酪氨酸激酶活性结构域、SAM结构域以及C端的PDZ结构域结合序列 [4] [5] 。

Eph受体根据其同源性及与配体结合特性的不同,可以分为Eph A受体和Eph B受体 [6] 。目前已知有14种受体在人体内表达:9种Eph A受体(Eph A1~A8和Eph A10)和5种Eph B受体(Eph B1~B4和Eph B6)。Eph受体的配体称为Ephrin,根据胞外配体结合域内的序列差异分为EphrinA和Ephri nB,包括6个糖基磷脂酰肌醇(GPI)连接的Ephrin A配体(A1~A6)和3个单通道跨膜连接的Ephrin B配体(B1~B3) [7] [8] 。

2. Eph家族受体与机体生理病理

2.1. 介导免疫炎症反应

免疫系统是机体抵抗外界病原体入侵的重要防线。正常免疫状态下,病原体入侵时,机体可以通过免疫激活,促进模式识别受体直接识别和结合病原体相关分子模式,分泌各种炎症因子,募集免疫细胞至炎症部位,进而使免疫细胞活化、迁移、粘附和增殖,迅速调动固有和适应性免疫应答来发挥强有力的免疫功能。

Eph受体是免疫系统中的重要角色,在调节免疫细胞的发育、转运和激活过程中发挥着多重作用 [9] 。Eph受体广泛表达于单核细胞、巨噬细胞、树突状细胞、T淋巴细胞和B淋巴细胞等多种免疫细胞中 [10] [11] 。例如,Eph可以促进B细胞的活化 [12] ,参与单核细胞转化的多个步骤,包括趋化、粘附和迁移 [13] [14] 。这些提示Eph受体具有免疫调节特性。

在炎症早期,Eph A2受体和Ephrin B2在内皮细胞和上皮细胞中过表达,导致细胞表面粘附分子表达和细胞内细胞骨架重组,导致细胞排斥和内皮细胞和上皮屏障的破坏。炎症后期,白细胞和内皮细胞上Eph A1、Eph A3、Eph B3和Eph B4的表达减少,从而促进了白细胞与内皮细胞的粘附 [15] 。

Eph在胸腺中广泛表达,胸腺组织和T淋巴细胞在胸腺微环境中的运输和成熟受Eph/Ephrin信号转导通路调节,Eph/Ephrin信号传导之间的平衡对T淋巴细胞的发育起着非常重要的作用 [16] 。在胸腺器官培养中,干扰Eph/Ephrin与Eph或Ephrin FC融合蛋白的相互作用会影响胸腺细胞的存活和成熟,Eph A-Fc融合蛋白阻断Eph/Ephrin信号转导会降低胸腺细胞CD4+、CD8+的数量 [11] [17] [18] 。Eph A和Ephrin A蛋白通过调节整合素来调节粘附,Eph A和Ephrin A蛋白之间的激活平衡决定了T淋巴细胞与其他细胞相互作用的强度和周期,对T淋巴细胞的功能有着显著的影响 [19] 。另外,Eph B/Ephrin B信号传导还会在T淋巴细胞激活过程中提供负反馈:Ephrin B1和Ephrin B2在低浓度时共刺激T淋巴细胞,而在高浓度时共同抑制T淋巴细胞活化 [10] 。

综上所述,Eph受体家族对免疫器官的发育、机体免疫功能的调节起着十分重要的作用。

2.2. 损伤修复

组织损伤及修复是一个有序的过程,包括诱导以下过程:急性炎症过程;细胞再生;实质和结缔组织细胞的迁移和增殖;组织重塑 [20] 。组织损伤后,立即出现急性炎症反应。炎症的特点是炎症细胞向感染或组织损伤部位移动。

Eph家族成员通过信号调节对组织损伤进行适当的修复,启动炎症反应,加速伤口愈合。Eph最初被发现在鱼类、两栖动物、啮齿动物和人类的视神经、脊髓和大脑损伤后重新表达 [21] ,在损伤(特别是创伤愈合)过程中发挥重要作用,是促进生理性创伤修复的重要信号分子 [15] [22] [23] 。在脂多糖诱导的肺损伤中,Eph A2-Ephrin A1表达上调。Eph A2激活的阻断会导致信号通路受阻、炎症细胞的招募和细胞因子的产生减少。Eph A2拮抗可抑制磷酸肌醇3-激酶-Akt通路,Eph A2拮抗降低NF-κB的表达和细胞因子的产生,从而减轻炎症反应。EPhrin A1能够刺激MCP-1和CXCL1等促炎因子分泌,从而完成损伤修复 [24] 。

Nihal Kaplan等人 [25] 的体外划伤创面愈合试验发现,Eph在皮肤损伤后表达增加,促进皮肤修复。Eph A2敲除会导致手术后真皮内胶原密度增加,造成疤痕形态的损伤和改变 [26] 。Ephrin B1的敲除使皮肤损伤后粘附蛋白持续减少和上皮细胞松动丢失。

上述诸多研究足以证实Eph家族受体在机体组织遭受损伤后通过多种方式参与组织损伤的修复,在促进损伤修复愈合过程中发挥着重要作用。

2.3. 血管

血管生成,即从现有的血管系统中形成新的血管,是一个涉及多种分子信号组合的多步骤过程:这些因素包括刺激内皮细胞增殖、迁移,以及血管周围细胞的招募和细胞外基质重塑 [11] 。

Eph受体通过Ephrin配体介导血管生成的关键步骤,包括近端细胞–细胞接触、细胞与细胞外基质的粘附和细胞迁移 [27] 。Eph在炎症中对血管通透性的调节也具有重要的作用,例如,Eph A1、Eph A2、Eph A5、Eph A6以及在少量Eph A3和Eph A4,Ephrin A1、Ephrin A2和Ephrin A5都被发现在肺血管系统中有所表达,其中Ephrin A1配体对Eph A2受体的激活对改变体内肺血管通透性起主要作用 [9] [28] [29] 。Eph A1在炎症晚期的淋巴细胞和血管内皮细胞中表达降低,引起淋巴细胞和内皮细胞之间的黏附性提高,导致淋巴细胞外渗和组织迁移。

在血管发育过程中,Eph/Ephrin信号转导通路系统通过调节内皮细胞及其支持壁细胞(包括周细胞和血管平滑肌细胞)来控制血管的生长、重塑和稳定。Eph受体或Ephrin配体敲除会导致的心脏和血管缺陷 [30] [31] [32] [33] 。在内皮细胞中,Eph A2、Ephrin A1与血管内皮生长因子(VEGF)相互作用来实现对血管生成和血管通透性的调控。还有Eph B4/Ephrin B2等其他Eph家族成员,也在成人心血管系统中发挥关键作用 [34] 。血管平滑肌细胞中表达的Eph B6和Ephrin B1可以通过收缩、舒张血管促进血压调节 [35] 。

2.4. 肿瘤

Eph受体在肿瘤中异常表达,可以通过双向信号和与其他信号系统的相互作用显著影响恶性肿瘤 [36] [37] 。Eph的表达可以在癌症进展过程中由于染色体扩增或丢失、致癌信号通路、启动子甲基化和microRNAs的转录调控而增加或减少 [38] [39] 。

Eph A2和Eph B4是肿瘤中最广泛过表达的Eph受体,下调它们的表达通常会抑制致瘤性,支持其在恶性肿瘤中的作用。肿瘤细胞中Eph受体的高表达往往与低酪氨酸磷酸化相关,这表明Eph的致癌活性与Eph正向信号抑制恶性肿瘤有关 [36] 。迄今为止发现的许多癌症中Eph过表达影响其与Ephrin结合力或激酶活性 [40] [41] 。Eph受体还有促进机体耐药的作用。例如,肿瘤异种移植研究表明,在乳腺癌中,Eph A2可促进对抗他莫西芬和人表皮生长因子受体2 (HER-2)靶向治疗的耐药性,而Ephrin B2可促进对胶质母细胞瘤抗VEGF治疗的耐药性。细胞培养研究表明Ephrin B3在肺癌细胞对电离辐射的耐药性中起作用 [42] [43] [44] 。

随着Eph受体家族在肿瘤中作用机制研究的不断深入,人们对于Eph家族受体有了更充分的认识,能够对肿瘤更及时的进行诊断,从而制定更加精准的诊疗方案。

2.5. 神经系统

神经元形成复杂的网络,电信号通过突触的特殊连接从轴突传输到树突过程。突触前末端释放的神经递质响应电信号,激活突触后离子通道受体,在突触后神经元中启动新的电信号和化学信号。神经过程的网络是嵌套在周围的胶质细胞,调节许多性质的神经元,包括他们的形成突触的能力。Eph受体在神经系统中的活性已被广泛研究。它们通过引导轴突到适当的目标和调节突触连接的形成,在神经元连接的建立中发挥着重要作用。Eph/Ephrin信号传导通路对神经元之间、神经元和神经胶质细胞之间的信号交流起着重要作用 [45] 。

Eph受体神经系统发育过程中高度表达,调节细胞间的短距离通信、细胞群的空间组织、组织模式、轴突引导和突触连接的形成 [46] [47] 。Eph受体能够神经发生和神经元迁移:调节神经管闭合、自我更新和分化、扩散、粘附,还有神经祖细胞凋亡 [48] [49] [50] [51] 。轴突引导:Eph-Ephrin信号转导通路能够调节轴突生长锥,驱动生长锥内肌动蛋白动力学的区域差异,导致局部生长锥转动,从而发挥轴突引导功能。突触形成:Eph/Ephrin信号转导通路对于树突分枝模式和突触位置具有调节作用。在神经肌肉系统中,突触的形成涉及高度活跃的突触后树突状丝状伪足与到达的轴突在“细胞握手”中相互作用。这一过程依赖于Eph B受体上调丝状伪足的活性 [52] [53] 。Eph A7通过Src激酶和mTOR (哺乳动物雷帕霉素靶蛋白)调节因子Tsc-1 (结节性硬化-1)来控制突触的前体——树突状轴和棘的空间结构。Eph A7过表达导致树突分支减少,同理,Eph A7缺失导致树突分支增加,突触功能增强 [54] 。

许多Eph受体在创伤或缺血性神经系统损伤后上调,并对轴突发育和其他修复过程产生调节作用 [55] 。研究表明,在啮齿动物脊髓损伤模型中,药理抑制Eph A4-Ephrin结合或Eph A4基因敲除会影响神经功能的恢复进程 [55] 。此外,在缺乏轴突生长抑制剂Nogo-A的小鼠中,上调Eph A4及其配体Ephrin A3可限制受损脊髓轴突的再生能力 [56] 。这些抗再生作用不仅依赖于神经元Eph A4与Ephrin A3/Ephrin B3相互作用抑制轴突生长,还依赖Eph A4促进反应性胶质细胞增生 [57] 。Hoecke等人 [58] 在Eph A4敲除小鼠实验中发现,Eph A4缺陷小鼠的再神经支配能力较正常小鼠强,提示Eph A4能够抑制运动神经轴切后的肌肉再神经支配。因此,抑制Eph A4等受体,可能有助于促进受损神经系统的再生和功能恢复。

2.6. 其他生物学功能

Eph受体被发现在表皮、毛囊、皮脂腺和底层真皮中表达,其影响毛囊再生和表皮伤口。Eph A2参与未分化角质形成细胞控制表皮的分化和动态平衡的过程。许多Eph受体的表达银屑病、牛皮鲜等皮肤疾病中有所改变 [59] [60] 。Ephrin A3的丢失导致雄激素性脱发 [61] 。因此,Eph/Ephrin信号转导系统可能是对抗衰老、脱发的一个新靶点。

Eph受体调节骨的稳态和重塑,在体节形成、颅面发育和肢体发育中发挥作用。在成年小鼠中,Eph-Ephrin信号转导通路通过平衡成骨的成骨细胞和骨吸收的破骨细胞控制骨稳态。研究表明,Ephrin B2逆转信号通路抑制破骨细胞分化,选择性敲除Ephrin B2可在体外更有效地形成破骨细胞 [62] 。破骨细胞前体中编码Ephrin B1基因的靶向缺失会导致破骨细胞数量和骨吸收增加导致骨体积减少 [63] 。

Eph受体能够控制葡萄糖稳态。当葡萄糖水平较低时,Eph A抑制胰腺β细胞的胰岛素分泌,而Ephrin A5在葡萄糖水平升高时促进胰岛素分泌 [46] 。Eph A受体在下丘脑葡萄糖感应区域起协助作用,促进激素的释放,以纠正低血糖 [64] 。小鼠临床研究发现,药物性抑制Eph激酶可以增强葡萄糖刺激的胰岛素分泌,提示其在糖尿病治疗中的潜在应用价值 [65] 。

3. 展望

Eph/Ephrin信号转导通路参与相同和不同细胞生物体之间的诸多生理、病理反应。同类Eph或Ephrin,绝大多数具有相似的结合亲和力,但它们在不同个体之间的作用机制和功能也有着很大的差异。目前对于Eph/Ephrin信号通路在疾病中作用的研究虽有所突破,但仍缺乏详细的解释。因此,进一步的研究Eph信号转导通路在生理、病理条件下的作用机制是必要的。这将让人们更加深入的认识Eph家族受体的生物学特性,为癌症、脊髓损伤和神经退行性等疾病的新疗法开辟可能性,为生物过程中的参与提供了丰富的治疗机会,在生理学、疾病发病机制和潜在治疗方面提供新的视角。

文章引用

董春旭,朱国强,黄 立. Eph家族受体在机体生理和病理过程中作用机制的研究进展
Research Progress on the Mechanism of Action of Eph Family Receptors in Physiological and Pathological Processes of the Body[J]. 临床医学进展, 2023, 13(12): 19352-19359. https://doi.org/10.12677/ACM.2023.13122724

参考文献

  1. 1. 刘正, 邵子玮, 袁文华, 等. Eph/ephrin信号通路与神经干细胞的增殖和分化[J] 中国组织工程研究, 2019, 23(13): 2101-2106.

  2. 2. Hirai, H., Maru, Y., Hagiwara, K., et al. (1987) A Novel Putative Tyrosine Kinase Receptor Encoded by the eph Gene. Science, 238, 1717-1720. https://doi.org/10.1126/science.2825356

  3. 3. Papadakos, S.P., Dedes, N., Gkolemi, N., Machairas, N. and Theocharis, S. (2023) The EPH/Ephrin System in Pancreatic Ductal Adenocarcino-ma (PDAC): From Pathogenesis to Treatment. International Journal of Molecular Sciences, 24, Article 3015. https://doi.org/10.3390/ijms24033015

  4. 4. Sahoo, A.R. and Buck, M. (2021) Structural and Functional Insights into the Transmembrane Domain Association of Eph Receptors. International Journal of Molecular Sciences, 22, Article 8593. https://doi.org/10.3390/ijms22168593

  5. 5. Pasquale, E.B. (2005) Eph Receptor Signalling Casts a Wide Net on Cell Behaviour. Nature Reviews Molecular Cell Biology, 6, 462-475. https://doi.org/10.1038/nrm1662

  6. 6. De Boer, E.C.W., van Gils, J.M. and van Gils, M.J. (2020) Ephrin-Eph Signaling Usage by a Variety of Viruses. Pharma-cological Research, 159, Article ID: 105038. https://doi.org/10.1016/j.phrs.2020.105038

  7. 7. Xiao, T., Xiao, Y., Wang, W., et al. (2020) Targeting EphA2 in Cancer. Journal of Hematology & Oncology, 13, Article No. 114. https://doi.org/10.1186/s13045-020-00944-9

  8. 8. Liang, L.Y., Patel, O., Janes, P.W., Murphy, J.M. and Lucet, I.S. (2019) Eph Receptor Signalling: From Catalytic to Non-Catalytic Functions. Oncogene, 38, 6567-6584. https://doi.org/10.1038/s41388-019-0931-2

  9. 9. Shiuan, E. and Chen, J. (2016) Eph Receptor Tyrosine Kinases in Tumor Immunity. Cancer Research, 76, 6452-6457. https://doi.org/10.1158/0008-5472.CAN-16-1521

  10. 10. Darling, T.K. and Lamb, T.J. (2019) Emerging Roles for Eph Receptors and Ephrin Ligands in Immunity. Frontiers in Immunology, 10, Article 1473. https://doi.org/10.3389/fimmu.2019.01473

  11. 11. Janes, P.W., Vail, M.E., Ernst, M. and Scott, A.M. (2021) Eph Receptors in the Immunosuppressive Tumor Microenvironment. Cancer Research, 81, 801-805. https://doi.org/10.1158/0008-5472.CAN-20-3047

  12. 12. Alonso, C.L., Trinidad, E.M., de Garcillan, B., et al. (2009) Expression Profile of Eph Receptors and Ephrin Ligands in Healthy Human B Lymphocytes and Chronic Lymphocytic Leukemia B-Cells. Leukemia Research, 33, 395-406. https://doi.org/10.1016/j.leukres.2008.08.010

  13. 13. Jellinghaus, S., Poitz, D.M., Ende, G., et al. (2013) Ephrin-A1/EphA4-Mediated Adhesion of Monocytes to Endothelial Cells. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1833, 2201-2211. https://doi.org/10.1016/j.bbamcr.2013.05.017

  14. 14. Pfaff, D., Héroult, M., Riedel, M., et al. (2008) Involvement of Endothelial Ephrin-B2 in Adhesion and Transmigration of EphB-Receptor-Expressing Monocytes. Journal of Cell Sci-ence, 121, 3842-3850. https://doi.org/10.1242/jcs.030627

  15. 15. Ivanov, A.I. and Romanovsky, A.A. (2006) Puta-tive Dual Role of Ephrin-Eph Receptor Interactions in Inflammation. IUBMB Life, 58, 389-394. https://doi.org/10.1080/15216540600756004

  16. 16. Muñoz, J.J., Cejalvo, T., Alonso-Colmenar, L.M., et al. (2011) Eph/Ephrin-Mediated Interactions in the Thymus. Neuroimmunomodulation, 18, 271-280. https://doi.org/10.1159/000329490

  17. 17. Alfaro, D., García-Ceca, J.J., Cejalvo, T., et al. (2007) EphrinB1-EphB Signaling Regulates Thymocyte-Epithelium Interactions Involved in Functional T Cell Development. European Journal of Immunology, 37, 2596-2605. https://doi.org/10.1002/eji.200737097

  18. 18. Muñoz, J.J., Alfaro, D., García-Ceca, J., et al. (2006) Thymic Altera-tions in EphA4-Deficient Mice. The Journal of Immunology, 177, 804-813. https://doi.org/10.4049/jimmunol.177.2.804

  19. 19. Sharfe, N., Nikolic, M., Cimpeon, L., et al. (2008) EphA and Ephrin-A Proteins Regulate Integrin-Mediated T Lymphocyte Interactions. Molecular Immunology, 45, 1208-1220. https://doi.org/10.1016/j.molimm.2007.09.019

  20. 20. Diegelmann, R.F. and Evans, M.C. (2004) Wound Healing: An Overview of Acute, Fibrotic and Delayed Healing. Frontiers in Bioscience, 9, 283-289. https://doi.org/10.2741/1184

  21. 21. Coulthard, M.G., Morgan, M., Woodruff, T.M., et al. (2012) Eph/Ephrin Sig-naling in Injury and Inflammation. The American Journal of Pathology, 181, 1493-1503. https://doi.org/10.1016/j.ajpath.2012.06.043

  22. 22. Fabes, J., Anderson, P., Brennan, C. and Bolsover, S. (2007) Regeneration-Enhancing Effects of EphA4 Blocking Peptide Following Corticospinal Tract Injury in Adult Rat Spinal Cord. European Journal of Neuroscience, 26, 2496-2505. https://doi.org/10.1111/j.1460-9568.2007.05859.x

  23. 23. Carmichael, S.T. (2003) Gene Expression Changes after Focal Stroke, Traumatic Brain and Spinal Cord Injuries. Current Opinion in Neurology, 16, 699-704. https://doi.org/10.1097/00019052-200312000-00009

  24. 24. Hong, J.Y., et al. (2015) EphA2 Receptor Signaling Mediates Inflammatory Responses in Lipopolysaccharide-Induced Lung Injury. Tuberculosis and Respiratory Diseases, 78, 218-226. https://doi.org/10.4046/trd.2015.78.3.218

  25. 25. Kaplan, N., et al. (2012) EphA2/Ephrin-A1 Signaling Complexes Restrict Corneal Epithelial Cell Migration. Investigative Ophthalmology & Visual Science, 53, 936-945. https://doi.org/10.1167/iovs.11-8685

  26. 26. Wijeratne, D., et al. (2019) Ephrin-A2 Affects Wound Healing and Scar-ring in a Murine Model of Excisional Injury. Burns, 45, 682-690. https://doi.org/10.1016/j.burns.2018.10.002

  27. 27. Cheng, N., Brantley, D.M. and Chen, J. (2002) The Ephrins and Eph Receptors in Angiogenesis. Cytokine & Growth Factor Reviews, 13, 75-85. https://doi.org/10.1016/S1359-6101(01)00031-4

  28. 28. Larson, J., Schomberg, S., Schroeder, W., and Carpenter, T.C. (2008) Endothelial EphA Receptor Stimulation Increases Lung Vascular Permeability. American Journal of Physi-ology-Lung Cellular and Molecular Physiology, 295, L431-L439. https://doi.org/10.1152/ajplung.90256.2008

  29. 29. Cercone, M.A., Schroeder, W., Schomberg, S., et al. (2009) EphA2 Receptor Mediates Increased Vascular Permeability in Lung Injury due to Viral Infection and Hypoxia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 297, L856-L863. https://doi.org/10.1152/ajplung.00118.2009

  30. 30. Kuijper, S., Turner, C.J. and Adams, R.H. (2007) Regulation of Angiogenesis by Eph-Ephrin Interactions. Trends in Cardiovascular Medicine, 17, 145-151. https://doi.org/10.1016/j.tcm.2007.03.003

  31. 31. Stephen, L.J., Fawkes, A.L., Verhoeve, A., Lemke, G. and Brown, A. (2007) A Critical Role for the EphA3 Receptor Tyrosine Kinase in Heart Development. Developmental Biology, 302, 66-79. https://doi.org/10.1016/j.ydbio.2006.08.058

  32. 32. Frieden, L.A., et al. (2010) Regulation of Heart Valve Morpho-genesis by Eph Receptor Ligand, Ephrin-A1. Developmental Dynamics, 239, 3226-3234. https://doi.org/10.1002/dvdy.22458

  33. 33. Salvucci, O. and Tosato, G. (2012) Essential Roles of EphB Receptors and EphrinB Ligands in Endothelial Cell Function and Angiogenesis. Advances in Cancer Research, 114, 21-57. https://doi.org/10.1016/B978-0-12-386503-8.00002-8

  34. 34. Barquilla, A. and Pasquale, E.B. (2015) Eph Receptors and Ephrins: Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 55, 465-487. https://doi.org/10.1146/annurev-pharmtox-011112-140226

  35. 35. Wu, Z.H., et al. (2012) Possible Role of Efnb1 Protein, a Ligand of Eph Receptor Tyrosine Kinases, in Modulating Blood Pressure. Journal of Biological Chemistry, 287, 15557-15569. https://doi.org/10.1074/jbc.M112.340869

  36. 36. Pasquale, E.B. (2010) Eph Receptors and Ephrins in Cancer: Bidirectional Signalling and beyond. Nature Reviews Cancer, 10, 165-180. https://doi.org/10.1038/nrc2806

  37. 37. Miao, H. and Wang, B.C. (2012) EphA Receptor Signaling—Complexity and Emerging Themes. Seminars in Cell & Developmental Biology, 23, 16-25. https://doi.org/10.1016/j.semcdb.2011.10.013

  38. 38. Nishimura, M., et al. (2013) Therapeutic Synergy between mi-croRNA and siRNA in Ovarian Cancer Treatment. Cancer Discovery, 3, 1302-1315. https://doi.org/10.1158/2159-8290.CD-13-0159

  39. 39. Arvanitis, D.N. and Davy, A. (2012) Regulation and Misreg-ulation of Eph/Ephrin Expression. Cell Adhesion & Migration, 6, 131-137. https://doi.org/10.4161/cam.19690

  40. 40. Lisabeth, E.M., Fernandez, C. and Pasquale, E.B. (2012) Cancer Somatic Mutations Disrupt Functions of the EphA3 Receptor Tyrosine Kinase through Multiple Mechanisms. Biochemistry, 51, 1464-1475. https://doi.org/10.1021/bi2014079

  41. 41. Zhuang, G.L., et al. (2012) Effects of Cancer-Associated EPHA3 Muta-tions on Lung Cancer. Journal of the National Cancer Institute, 104, 1183-1198. https://doi.org/10.1093/jnci/djs297

  42. 42. Gökmen-Polar, Y., et al. (2011) Dual Targeting of EphA2 and ER Restores Tamoxifen Sensitivity in ER/EphA2-Positive Breast Cancer. Breast Cancer Research and Treatment, 127, 375-384. https://doi.org/10.1007/s10549-010-1004-y

  43. 43. Zhuang, G.L., et al. (2010) Elevation of Receptor Tyrosine Kinase EphA2 Mediates Resistance to Trastuzumab Therapy. Cancer Research, 70, 299-308. https://doi.org/10.1158/0008-5472.CAN-09-1845

  44. 44. Li, J.L., et al. (2011) DLL4-Notch Signaling Mediates Tu-mor Resistance to Anti-VEGF Therapy in vivo. Cancer Research, 71, 6073-9083. https://doi.org/10.1158/0008-5472.CAN-11-1704

  45. 45. Yamaguchi, Y. and Pasquale, E.B. (2004) Eph Receptors in the Adult Brain. Current Opinion in Neurobiology, 14, 288-296. https://doi.org/10.1016/j.conb.2004.04.003

  46. 46. Pasquale, E.B. (2008) Eph-Ephrin Bidirectional Signaling in Physiology and Disease. Cell, 133, 38-52. https://doi.org/10.1016/j.cell.2008.03.011

  47. 47. Hruska, M. and Dalva, M.B. (2012) Ephrin Regulation of Synapse Formation, Function and Plasticity. Molecular and Cellular Neuroscience, 50, 35-44. https://doi.org/10.1016/j.mcn.2012.03.004

  48. 48. Holmberg, J., Clarke, D.L. and Frisén, J. (2000) Regulation of Re-pulsion versus Adhesion by Different Splice Forms of an Eph Receptor. Nature, 408, 203-206. https://doi.org/10.1038/35041577

  49. 49. Ji, Y.J., et al. (2014) EphrinB2 Affects Apical Constriction in Xenopus Embryos and Is Regulated by ADAM10 and Flotillin-1. Nature Communications, 5, Article No. 3516. https://doi.org/10.1038/ncomms4516

  50. 50. Depaepe, V., et al. (2005) Ephrin Signalling Controls Brain Size by Regulating Apoptosis of Neural Progenitors. Nature, 435, 1244-1250. https://doi.org/10.1038/nature03651

  51. 51. Arvanitis, D.N., et al. (2013) Ephrin B1 Maintains Apical Adhesion of Neural Progenitors. Development, 140, 2082-2092. https://doi.org/10.1242/dev.088203

  52. 52. Feng, G., et al. (2000) Roles for Ephrins in Positionally Selective Synap-togenesis between Motor Neurons and Muscle Fibers. Neuron, 25, 295-306. https://doi.org/10.1016/S0896-6273(00)80895-8

  53. 53. Kayser, M.S., Nolt, M.J. and Dalva, M.B. (2008) EphB Re-ceptors Couple Dendritic Filopodia Motility to Synapse Formation. Neuron, 59, 56-69. https://doi.org/10.1016/j.neuron.2008.05.007

  54. 54. Clifford, M.A., et al. (2014) EphA7 Signaling Guides Cortical Dendritic Development and Spine Maturation. Proceedings of the National Academy of Sciences of the United States of America, 111, 4994-4999. https://doi.org/10.1073/pnas.1323793111

  55. 55. Du, J., Fu, C. and Sretavan, D.W. (2007) Eph/Ephrin Signaling as a Potential Therapeutic Target after Central Nervous System Injury. Current Pharmaceutical Design, 13, 2507-2518. https://doi.org/10.2174/138161207781368594

  56. 56. Kempf, A., et al. (2013) Upregulation of Axon Guidance Mol-ecules in the Adult Central Nervous System of Nogo—A Knockout Mice Restricts Neuronal Growth and Regeneration. European Journal of Neuroscience, 38, 3567-3579. https://doi.org/10.1111/ejn.12357

  57. 57. Goldshmit, Y., et al. (2011) EphA4 Blockers Promote Axonal Regeneration and Functional Recovery Following Spinal Cord Injury in Mice. PLOS ONE, 6, e24636. https://doi.org/10.1371/journal.pone.0024636

  58. 58. Van Hoecke, A., et al. (2012) EPHA4 Is a Disease Modifier of Amyotrophic Lateral Sclerosis in Animal Models and in Humans. Nature Medicine, 18, 1418-1422. https://doi.org/10.1038/nm.2901

  59. 59. Lin, S., Wang, B. and Getsios, S. (2012) Eph/Ephrin Signaling in Epidermal Differentiation and Disease. Seminars in Cell & Developmental Biology, 23, 92-101. https://doi.org/10.1016/j.semcdb.2011.10.017

  60. 60. Gordon, K., Kochkodan, J.J., Blatt, H., et al. (2013) Alteration of the EphA2/Ephrin—A Signaling Axis in Psoriatic Epidermis. Journal of Investigative Dermatology, 133, 712-722. https://doi.org/10.1038/jid.2012.391

  61. 61. Genander, M., Holmberg, J. and Frisén, J. (2010) Ephrins Negatively Regulate Cell Proliferation in the Epidermis and Hair Follicle. Stem Cells, 28, 1196-1205. https://doi.org/10.1002/stem.442

  62. 62. Zhao, C., (2006) Bidirectional Ephrinb2-EphB4 Signaling Controls Bone Homeostasis. Cell Metabolism, 4, 111-121. https://doi.org/10.1016/j.cmet.2006.05.012

  63. 63. Cheng, S.H., et al. (2012) Targeted Disruption of Ephrin B1 in Cells of Myeloid Lineage Increases Osteoclast Differentiation and Bone Resorption in Mice. PLOS ONE, 7, e32887. https://doi.org/10.1371/journal.pone.0032887

  64. 64. Szepietowska, B., Zhu, W.L., Czyzyk, J., Eid, T. and Sherwin, R.S. (2013) EphA5-EphrinA5 Interactions within the Ventromedial Hypothalamus Influence Counterregulatory Hormone Release and Local Glutamine/Glutamate Balance during Hypoglycemia. Diabetes, 62, 1282-1288. https://doi.org/10.2337/db12-0982

  65. 65. Jain, R., et al. (2013) Pharmacological Inhibition of Eph Receptors En-hances Glucose-Stimulated Insulin Secretion from Mouse and Human Pancreatic Islets. Diabetologia, 56, 1350-1355. https://doi.org/10.1007/s00125-013-2877-1

  66. NOTES

    *通讯作者。

期刊菜单