Advances in Clinical Medicine
Vol. 13  No. 06 ( 2023 ), Article ID: 67368 , 8 pages
10.12677/ACM.2023.1361356

光动力疗法在HPV感染生殖系统相关疾病的研究现况

吉云云,魏芳

山西医科大学第二医院妇产科,山西 太原

收稿日期:2023年5月16日;录用日期:2023年6月13日;发布日期:2023年6月20日

摘要

人乳头瘤病毒(Human Papilloma Virus, HPV)是众多女性疾病的主要致病因素。虽然HPV疫苗已经得到广泛推广,但与HPV感染相关的生殖系统相关疾病,包括宫颈或外阴癌、癌前病变、各种生殖器疣等发病率仍居高不下,给广大女性的健康带来巨大威胁。常规的治疗方法往往因为潜在的副作用及耐药性在临床应用上受限。目前各种基于光的技术如光控离子通道、光活化等已经被熟练应用于临床治疗。近年来,利用光、光敏剂及氧气共同发挥作用的光动力疗法以无创性、高效性的优势获得研究者们的密切关注。本文旨在回顾光动力疗法在HPV感染生殖系统相关疾病中的现代研究和临床应用,提高妇科医生对光动力疗法重要性的认识。

关键词

人乳头瘤病毒,光动力疗法,宫颈恶性肿瘤,纳米材料,超级球

Current Status of Photodynamic Therapy in HPV Infection of Reproductive System Related Diseases

Yunyun Ji, Fang Wei

Obstetrics and Gynecology Department, Second Hospital of Shanxi Medical University, Taiyuan Shanxi

Received: May 16th, 2023; accepted: Jun. 13th, 2023; published: Jun. 20th, 2023

ABSTRACT

Human Papilloma Virus (HPV) is the main pathogenic factor of many female diseases. Although HPV vaccine has been widely promoted, the incidence of reproductive system diseases related to HPV infection, including cervical or vulvar cancer, precancerous lesions, and various genital warts, remains high, posing a great threat to the health of women. Conventional treatments are often limited in clinical use because of potential side effects and drug resistance. At present, various light-based technologies such as light-controlled ion channels and photoactivation have been skillfully applied in clinical treatment. In recent years, photodynamic therapy, which uses light, photosensitizer and oxygen together, has been paid close attention by researchers for its advantages of non-invasive and high efficiency. The purpose of this paper is to review the modern research and clinical application of photodynamic therapy in HPV infection related diseases of the reproductive system, and to raise the awareness of the importance of photodynamic therapy among gynecologists.

Keywords:Human Papilloma Virus, Photodynamic Therapy, Cervical Malignancy, Nanomaterials, Super Ball

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

人乳头瘤病毒(Human Papilloma Virus, HPV)持续感染是妇科恶性肿瘤的主要致病原因,尤其是对于宫颈恶性肿瘤。据统计,2020年全球有604,000例宫颈癌新增病例和342,000死亡病例 [1] ,晚期宫颈癌患者的5年生存率极低 [2] 。2015年,北美五个州的CIN2及以上的发病率为62% [3] 。生殖器疣的患病率在世界范围内约为0.13%~5% [4] 。对于高级别宫颈上皮内瘤变,手术治疗可见成效,但往往会对育龄期女性带来不良妊娠结局,如流产、早产、低出生体重儿等 [5] 。对于尖锐湿疣,局部治疗剂或激光、冷冻治疗可见疗效,但复发率较高 [6] 。对于晚期宫颈癌,放化疗是主要治疗方式,但负面效应难以避免。光动力疗法使光敏剂在光照作用下被激活后,利用活性氧的产生,对病变部位进行破坏,在有效保留生育功能的同时,充分发挥其对病变组织的非侵入性、高选择性,有望成为HPV相关疾病治疗的有效替代方案。

2. 光动力疗法(PDT)

2.1. 概念及原理

光动力疗法(Photodynamic therapy, PDT)是指在光敏剂(photosensitizers, PS)被光照射激活后,产生活性氧来发挥其对病变细胞和组织的杀伤作用的一种治疗方法 [7] 。光敏剂、光源和组织氧是光动力疗法中的三要素。光敏剂分子被相应波长的光照射后,由于电子在迁跃过程中处于自旋不配对状态,使其由单线态转变为激发三重态,并与底物(病变组织)交换氢或电子,生成活性氧(reactive oxygen species, ROS),从而引发级联反应导致氧化应激,导致病变细胞的破坏 [8] 。在这个过程中,发生一系列事件,包括免疫系统的激活、炎性因子的释放、凝血途径的级联式激活(肿瘤血管闭塞) [9] ,最终导致细胞死亡。与传统治疗方法相比,PDT具有创伤小、毒性小、选择性大、应用范围广、耐药性小等优点,被广泛用于实体瘤、癌前病变、皮肤和粘膜病变等。

2.2. 光敏剂(PS)的种类

1) 第一代光敏剂:代表物为血卟啉衍生物(HpD)、光光蛋白。第一代光敏剂在妇科疾病的应用研究甚少,其主要用于治疗头颈部的早期浅表肿瘤及癌前病变 [10] 。Mang等 [11] 利用光光蛋白对25例口腔鳞状细胞癌及异型增生的患者进行PDT治疗,发现其中96%患者完全缓解,证明了第一代光敏剂对于浅表恶性肿瘤的有效性。但是第一代光敏剂存在光穿透深度不足、光传递不准确等问题,且光敏剂在组织的长期积累,引起光照射部位肿胀、疼痛等副作用,限制了第一代光敏剂的应用。

2) 第二代光敏剂:主要有5-氨基乙酰丙酸、细菌氯,酞菁,姜黄素和亚甲苯蓝衍生物等。Hodgkinson等 [12] 将磺化锌酞菁碱(ZnPcS)作为光敏剂,发现ZnPcS大量聚集在宫颈癌细胞系HeLa细胞的细胞质和核周中,对其中85%的宫颈癌细胞系HeLa细胞表现出细胞毒性,磺化锌酞菁碱(ZnPcS)-光动力疗法(PDT)对宫颈癌细胞系HeLa细胞有抑制作用。Ying等 [13] 用5-氨基乙酰丙酸(ALA)-光动力疗法(PDT)对1903名尖锐湿疣患者进行局部治疗,与没有进行ALA-PDT的尖锐湿疣患者相比复发率低;Zhang等 [14] 对30例外阴硬化性苔藓的患者进行ALA-PDT治疗,其中27例缓解,得出了ALA治疗外阴硬化性苔藓的有效性的结论。目前ALA已被广泛用于临床治疗,但ALA-PDT会带来局部皮肤红肿、疼痛、糜烂等不良反应 [15] ,另外ALA有高度的亲水性,难以在病变部位高效积累,这些不足之处极大地限制了其在临床中的有效推广。

3) 第三代光敏剂:第三代PS是在第二代的基础上,通过增加能提高光敏剂溶解度的载体而开发出来的新一代光敏剂。常见的载体包括脂质体、胶体束及纳米颗粒等,能增加PS在病变组织中的递送,保证PS在病变组织中的选择性积累,从而减少在有效剂量下的毒副作用。Zhang [16] 等发现承载有卟啉的纳米颗粒可以用于卵巢癌的光动力治疗,利用纳米技术提高光敏剂的运输效率并降低其对周围正常组织的毒副作用,且极大弥补了因光敏剂溶解度差而影响光动力疗效的缺点。Temizel等 [17] 将脂质体作为载体递送卟啉,发现与单独应用卟啉相比,在脂质体的参与下诱导了大量宫颈癌细胞系HeLa细胞凋亡。然而目前新型光敏剂的研究还处于细胞阶段,对于临床疾病的疗效还有待进一步考究。

2.3. 光源

不同的光敏剂有着其各自的最佳的波长和光强度。针对不同深度的病变组织,必须选择合适的光源才能发挥出PDT的最大作用。日光多用于2毫米深度病变的治疗。临床上,红光和蓝光均可用于痤疮的治疗。红光可穿透5毫米以上的组织深度,多在波长600 nm的范围内起作用 [18] 。蓝光因其组织穿透力很小,且波长在400 nm范围内,常常用于鲍恩病、浅表基底细胞癌的治疗。绿光的波长在500 nm范围内,相比红光短,对于光化学角化病、外阴硬化苔藓 [19] [20] ,绿光与红光的疗效相同,引起的皮肤痛感较小,更适用于上述疾病的治疗。近红外光通常在波长700~1200 nm的范围内起作用,在新型纳米颗粒的作用下,近红外光可以发挥更强的组织穿透能力,精确的药物释放以及对正常组织的最小损伤的优势 [21] 。

3. PDT与HPV感染相关疾病

3.1. 生殖器疣

HPV 6型和11型是90%生殖器疣的主要致病因素。生殖器疣是全球最常见的性传播疾病。目前治疗生殖器疣的方法很多,如冷冻疗法、手术或烧蚀性激光治疗等,尽管接受上述治疗方法,HPV感染仍会持续存在。Kechichian等 [22] 发现接受光动力疗法的尿道尖锐湿疣患者的复发率低于接受激光治疗患者复发率,另外在后期随访中,该疾病清除率高于接受激光治疗的患者的清除率。Hu等 [23] 让潜伏或亚临床生殖器HPV感染的患者接受ALA-PDT,发现经过三个周期治疗后HPV病毒载量显著降低。

3.2. 宫颈上皮内瘤变

宫颈上皮内瘤变(CIN)主要是由高危型HPV感染导致的宫颈癌癌前病变,包括轻、中、重度不典型增生 [24] 。其中一部分患者最终进展为宫颈癌,因此及时干预宫颈上皮内瘤变对于宫颈癌的预防是必要的。治疗CIN和宫颈HPV感染的方法通常是侵入性的,包括激光、冷冻、锥切等,常常会引起子宫颈功能不全、子宫内膜异位症、胎膜早破等不良事件。

相比于上述治疗方法,PDT可以达到相同的效果。MC等 [25] 发现PDT在有效治疗HPV感染的同时又满足育龄期女性的生育要求。他们对59例宫颈上皮内瘤变患者进行PDT治疗,其中大部分患者完全缓解且HPV检出率下降,在25例有生育需求的女性中18例获得妊娠。Wu等 [26] 发现ALA-PDT可以抑制HPV16宫颈上皮细胞的增殖。W等 [27] 认为ALA-PDT可有效治疗无宫颈病变的HPV感染,其中以HPV16、18阳性患者最为显著,且整个治疗过程中并没有带来不良反应。目前ALA-PDT是宫颈上皮内瘤变有效且安全的治疗方案,期待早日在临床中得到推广。

3.3. HPV相关恶性肿瘤

3.3.1. 宫颈恶性肿瘤

Guo等 [28] 提出ALA-PDT通过激活miR-143和抑制Bcl-2/Bax信号通路,减少宫颈癌细胞系HeLa细胞的增殖,从而表现出对宫颈癌的抑制作用。Li等 [29] 利用ALA-PDT能触发内质网的应激的特性,诱导宫颈癌细胞系HeLa细胞大量凋亡来发挥杀伤作用。Hodgkinson等 [11] 将磺化锌酞菁碱(ZnPcS)作为光敏剂,对宫颈癌细胞株HeLa细胞进行光动力治疗,发现宫颈癌细胞的活力和增殖均降低。锌PcS具有作为抗宫颈癌的药物潜力,且作为PDT的良好光敏剂,拥有在病变部位高聚集和亲脂性的优势,如果将锌PcS和超氧化物歧化酶(SOD1) siRNA整合到新型纳米颗粒,将多个新型纳米颗粒组装成光活性超级球(orthogonal photoactivable-superballs, opsb),光动力疗法在宫颈癌的治疗效率将会大大提高。

3.3.2. 外阴恶性肿瘤

手术治疗是外阴肿瘤的标准治疗方法,但是有15%~61%的复发率 [30] 。光动力疗法可以避免复发后再次手术造成的损伤,目前尚未用于外阴肿瘤的临床治疗。Magnano等 [31] 发现一位外阴佩吉特病患者接受甲基–氨基乙酰丙酸光动力治疗(Methyl-aminolevulinic acid photodynamic therapy)后,病灶被完全清除。Kang等 [32] 对两名鲍恩氏病患者使用ALA-PDT,发现两名患者均得到了临床上的改善。DI等 [33] 也证实了光动力疗法对外阴派吉特病的疗效性,与外用咪喹莫特及手术治疗疗效相似。目前光动力疗法用于外阴肿瘤的临床治疗研究较少,PDT可能是外阴肿瘤一种有效的治疗选择。

4. 如何增强光动力疗效

4.1. 提高光敏剂的溶解度

新型的纳米材料(聚合物纳米颗粒、脂质体、胶束)不但可以提高PS在水中的溶解度使其更易于细胞所摄取,还能将更多的光敏剂靶向递送到病变部位得到有效聚集,减少对周围组织的副作用。Lakshmi等 [34] 将钌(II)-姜黄素配合物加载到脂质体上,合成钌(II)-姜黄素脂质体纳米颗粒(RCLNPs),利用脂质体的内吞作用,在克服姜黄素差的水溶性的同时,通过诱导大量活性氧的产生,对宫颈癌HeLa细胞表现出显著的细胞毒性。5-氨基乙酰丙酸作为光动力疗法中治疗皮肤病最常用的光敏剂,但是具有高度亲水性,极大的限制其穿透皮肤的能力,Lin等 [35] 将1,2-二棕榈酰基-sn-甘油-3-磷酸胆碱(DPPC)脂质体作为5-ALA的载体,发现在黑色素瘤异种移植模型中,5-ALA/DPPC除外正常组织,仅在病变组织中高度积聚,提高了光动力疗法的疗效。

4.2. 增加光敏剂的靶向性

由于大多数肿瘤细胞表面存在大量低密度脂蛋白(LDL)受体,C等 [36] 将AIE光敏剂(TPA-DPPy)封装到低密度脂蛋白载体上,与肿瘤细胞表面LDL受体结合后,发现TPA-DPPy对LDLR过表达的A549肺癌细胞有很强的光毒性。目前还未在妇科疾病上探讨及研究。另外转位蛋白(TSPO)作为一种肿瘤生物标志物,常见于神经胶质细胞瘤、乳腺癌等,Zhang等 [37] 发现新型的TSPO靶向光敏剂IR700DX-6T可以诱导TSPO阳性乳腺癌细胞靶向性凋亡,转位蛋白靶向光敏剂(TSPO-PSs)的开发对于转位蛋白高表达的肿瘤治疗或许会有更大的潜力。

4.3. 提高细胞膜通透性

电穿孔(EP)是一种由电脉冲诱导的细胞膜解封的技术,可以跨越细胞屏障,增强细胞膜的通透性实现药物的更高效运输,将光动力疗法(PDT)和电化学疗法(ECT)相结合可以增加光动力疗效。W等 [38] 发现电穿孔技术可增强光动力治疗中姜黄素对黑色素瘤细胞的细胞毒作用。Kulbacka等 [39] 利用氯蛋白e6对黑色素瘤患者进行光动力治疗,当加入毫秒电脉冲后,诱导黑色素瘤细胞更好地摄取氯蛋白e6,他们发现光动力疗法(PDT)和电化学疗法(ECT)比单一的疗效更好。但目前电穿孔技术还未应用于妇科疾病的光动力疗法。

4.4. 充足的活性氧

1) 增加活性氧的产生

由于大多数光敏剂高的亲水性,PDT的疗效会有所减弱;然而一旦出现缺氧情况,肿瘤微环境ROS的生成就会不足,PDT的治疗效果也会受到影响,Y等 [40] 将低剂量卡铂与光动力疗法 (ccPDT)联合后,利用卡铂介导的OH∙的协同作用,宫颈癌HeLa细胞中的活性氧的产生会显著增强,并诱导大量宫颈癌细胞坏死和凋亡,两者联合作用会有显著的光动力疗效。Ha等 [41] 发挥能产生ROS的冷大气血浆(CAP)的血浆疗法与聚合物纳米颗粒的光动力疗法(PDT)协同作用,保证了充分活性氧的产生,有效地抑制了宫颈癌细胞CaSki细胞的生长。

2) 减少活性氧的消耗

Zhang等 [42] 利用超氧化物歧化酶-1被敲低后可以增加光敏剂对活性氧的敏感性这一原理,将光敏剂酞菁锌(ZnPc)和超氧化物歧化酶1 (SOD1) siRNA整合到新型纳米材料中,组装成可光活性超级球(opsb),并将其静脉注射进小鼠体内,发现主要在肝脏及脾脏中积累,并最终被血液清除,且具有良好的生物相容性。但其疗效还未在宫颈癌的相关模型中得到验证。

5. 小结与展望

近年来,光动力疗法及新型光敏剂的开发得到广泛关注及研究。本文主要对光动力疗法的要素、对HPV感染生殖系统相关疾病治疗的有效性及如何进一步增强其疗效进行详细阐述。基于新型光敏剂的光动力疗法在抑制肿瘤细胞上表现出较强的优势,但目前仍处于细胞实验阶段,如何将其安全高效地应用于妇科肿瘤的临床治疗,还应深入对光动力疗法及新型光敏剂的探索。新型纳米颗粒能够增加光敏剂的溶解度及靶向性;提高药物运输效率的电穿孔技术;超级球利用小干扰RNA保障了肿瘤微环境的活性氧;这些均提高了光动力疗效,日后在妇科肿瘤上得到实践验证后,光动力疗法有望成为未来妇科肿瘤的有效治疗选择。

文章引用

吉云云,魏 芳. 光动力疗法在HPV感染生殖系统相关疾病的研究现况
Current Status of Photodynamic Therapy in HPV Infection of Reproductive System Related Diseases[J]. 临床医学进展, 2023, 13(06): 9690-9697. https://doi.org/10.12677/ACM.2023.1361356

参考文献

  1. 1. Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  2. 2. Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., et al. (2013) Cancer Incidence and Mortality Patterns in Europe: Estimates for 40 Countries in 2012. European Journal of Cancer (Oxford, England: 1990), 49, 1374-1403. https://doi.org/10.1016/j.ejca.2012.12.027

  3. 3. Gargano, J.W., Park, I.U., Griffin, M.R., et al. (2019) Trends in High-Grade Cervical Lesions and Cervical Cancer Screening in 5 States, 2008-2015. Clinical Infectious Diseases: An Of-ficial Publication of the Infectious Diseases Society of America, 68, 1282-1291. https://doi.org/10.1093/cid/ciy707

  4. 4. Patel, H., Wagner, M., Singhal, P., et al. (2013) Systematic Review of the Incidence and Prevalence of Genital Warts. BMC Infectious Diseases, 13, Article No. 39. https://doi.org/10.1186/1471-2334-13-39

  5. 5. Trimble, C.L., Morrow, M.P., Kraynyak, K.A., et al. (2015) Safety, Efficacy, and Immunogenicity of VGX-3100, a Therapeutic Synthetic DNA Vaccine Targeting Human Papillomavirus 16 and 18 E6 and E7 Proteins for Cervical Intraepithelial Neoplasia 2/3: A Randomised, Double-Blind, Placebo-Controlled Phase 2b Trial. The Lancet (London, England), 386, 2078-2088. https://doi.org/10.1016/S0140-6736(15)00239-1

  6. 6. Yuan, J., Ni, G., Wang, T., et al. (2018) Genital Warts Treatment: Beyond Imiquimod. Human Vaccines & Immunotherapeutics, 14, 1815-1819. https://doi.org/10.1080/21645515.2018.1445947

  7. 7. Shi, X., Zhang, C.Y., Gao, J., et al. (2019) Recent Advances in Photodynamic Therapy for Cancer and Infectious Diseases. Wiley Interdisciplinary Reviews Nanomedicine and Nano-biotechnology, 11, e1560. https://doi.org/10.1002/wnan.1560

  8. 8. Kwiatkowski, S., Knap, B., Przystupski, D., et al. (2018) Photodynamic Therapy—Mechanisms, Photosensitizers and Combinations. Biomedicine & Pharmacotherapy, 106, 1098-1107. https://doi.org/10.1016/j.biopha.2018.07.049

  9. 9. Nowak-Stepniowska, A., Pergoł, P. and Padzik-Graczyk, A. (2013) Photodynamic Method of Cancer Diagnosis and Therapy—Mechanisms and Applications. Postepy Biochemii, 59, 53-63.

  10. 10. Maitra, D., Bragazzi Cunha, J., Elenbaas, J.S., et al. (2019) Porphyrin-Induced Protein Oxidation and Ag-gregation as a Mechanism of Porphyria-Associated Cell Injury. Cellular and Molecular Gastroenterology and Hepatol-ogy, 8, 535-548. https://doi.org/10.1016/j.jcmgh.2019.06.006

  11. 11. Ikeda, H., Tobita, T., Ohba, S., et al. (2013) Treatment Outcome of Photofrin-Based Photodynamic Therapy for T1 and T2 Oral Squamous Cell Carcinoma and Dysplasia. Photodiagno-sis and Photodynamic Therapy, 10, 229-235. https://doi.org/10.1016/j.pdpdt.2013.01.006

  12. 12. Hodgkinson, N., Kruger, C.A., Mokwena, M., et al. (2017) Cer-vical Cancer Cells (HeLa) Response to Photodynamic Therapy Using a Zinc Phthalocyanine Photosensitizer. Journal of Photochemistry and Photobiology B, Biology, 177, 32-38. https://doi.org/10.1016/j.jphotobiol.2017.10.004

  13. 13. Ying, Z., Li, X. and Dang, H. (2013) 5-Aminolevulinic Ac-id-Based Photodynamic Therapy for the Treatment of Condylomata Acuminata in Chinese Patients: A Meta-Analysis. Photodermatology, Photoimmunology & Photomedicine, 29, 149-159. https://doi.org/10.1111/phpp.12043

  14. 14. Zhang, F., Li, D., Shi, L., et al. (2021) Efficacy of 5-Aminolevulinic Acid (ALA)-Photodynamic Therapy (PDT) in Refractory Vulvar Lichen Sclerosus: Preliminary Results. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 27, e927406. https://doi.org/10.12659/MSM.927406

  15. 15. Su, Y., Zhang, Y., Tong, Y., et al. (2022) Effect and Rational Applica-tion of Topical Photodynamic Therapy (PDT) with 5-Aminolevulinic Acid (5-ALA) for Treatment of Cervical Intraepi-thelial Neoplasia with Vaginal Intraepithelial Neoplasia. Photodiagnosis and Photodynamic Therapy, 37, Article ID: 102634. https://doi.org/10.1016/j.pdpdt.2021.102634

  16. 16. Liu, R., Gao, Y., Liu, N., et al. (2021) Nanoparticles Loading Porphyrin Sensitizers in Improvement of Photodynamic Therapy for Ovarian Cancer. Photodiagnosis and Photodynamic Therapy, 33, Article ID: 102156. https://doi.org/10.1016/j.pdpdt.2020.102156

  17. 17. Temizel, E., Sagir, T., Ayan, E., et al. (2014) Delivery of Lipo-philic Porphyrin by Liposome Vehicles: Preparation and Photodynamic Therapy Activity against Cancer Cell Lines. Photodiagnosis and Photodynamic Therapy, 11, 537-545. https://doi.org/10.1016/j.pdpdt.2014.07.006

  18. 18. Deng, K., Li, C., Huang, S., et al. (2017) Recent Progress in Near Infrared Light Triggered Photodynamic Therapy. Small (Weinheim an der Bergstrasse, Germany), 13, Article ID: 1702299. https://doi.org/10.1002/smll.201702299

  19. 19. Osiecka, B.J., Nockowski, P. and Szepietowski, J.C. (2018) Treatment of Actinic Keratosis with Photodynamic Therapy Using Red or Green Light: A Comparative Study. Acta Dermato-Venereologica, 98, 689-693. https://doi.org/10.2340/00015555-2931

  20. 20. Osiecka, B.J., Jurczyszyn, K., Nockowski, P., et al. (2017) Photody-namic Therapy with Green Light for the Treatment of Vulvar Lichen Sclerosus—Preliminary Results. Photodiagnosis and Photodynamic Therapy, 17, 185-187. https://doi.org/10.1016/j.pdpdt.2016.11.015

  21. 21. Saneja, A., Kumar, R., Arora, D., et al. (2018) Recent Advances in Near-Infrared Light-Responsive Nanocarriers for Cancer Therapy. Drug Discovery Today, 23, 1115-1125. https://doi.org/10.1016/j.drudis.2018.02.005

  22. 22. Kechichian, E., Helou, E., Sarkis, J., et al. (2021) The Place of 5-Aminolaevulinic Acid-Photodynamic Therapy in the Treatment Landscape of Urethral Warts: A Systematic Review. Photodiagnosis and Photodynamic Therapy, 33, Article ID: 102204. https://doi.org/10.1016/j.pdpdt.2021.102204

  23. 23. Hu, Z., Li, J., Liu, H., et al. (2018) Treatment of Latent or Sub-clinical Genital HPV Infection with 5-Aminolevulinic Acid-Based Photodynamic Therapy. Photodiagnosis and Photo-dynamic Therapy, 23, 362-364. https://doi.org/10.1016/j.pdpdt.2018.07.014

  24. 24. Wise, L.A., Willis, S.K., Perkins, R.B., et al. (2020) A Prospec-tive Study of Treatments for Cervical Intraepithelial Neoplasia and Fecundability. American Journal of Obstetrics and Gynecology, 223, 96.e1-.e15. https://doi.org/10.1016/j.ajog.2019.12.017

  25. 25. Choi, M.C., Jung, S.G., Park, H., et al. (2013) Photodynamic Therapy for Management of Cervical Intraepithelial Neoplasia II and III in Young Patients and Obstetric Outcomes. La-sers in Surgery and Medicine, 45, 564-572. https://doi.org/10.1002/lsm.22187

  26. 26. Wu, S.X., Ren, X.Y., Pan, Y.L., et al. (2017) Effects of ALA-PDT on HPV16-Immortalized Cervical Epithelial Cell. Neoplasma, 64, 175-181. https://doi.org/10.4149/neo_2017_202

  27. 27. Cang, W., Gu, L., Hong, Z., et al. (2021) Effectiveness of Photody-namic Therapy with 5-Aminolevulinic Acid on HPV Clearance in Women without Cervical Lesions. Photodiagnosis and Photodynamic Therapy, 34, Article ID: 102293. https://doi.org/10.1016/j.pdpdt.2021.102293

  28. 28. Guo, Q., Dong, B., Nan, F., et al. (2016) 5-Aminolevulinic Acid Photodynamic Therapy in Human Cervical Cancer via the Activation of microRNA-143 and Suppression of the Bcl-2/Bax Signaling Pathway. Molecular Medicine Reports, 14, 544-550. https://doi.org/10.3892/mmr.2016.5248

  29. 29. Li, Z., Teng, M., Wang, Y., et al. (2021) The Mechanism of 5-Aminolevulinic Acid Photodynamic Therapy in Promoting Endoplasmic Reticulum Stress in the Treatment of HR-HPV-Infected HeLa Cells. Photodermatology, Photoimmunology & Photomedicine, 37, 348-359. https://doi.org/10.1111/phpp.12663

  30. 30. Asel, M. and Leboeuf, N.R. (2019) Extramammary Paget’s Disease. He-matology/Oncology Clinics of North America, 33, 73-85. https://doi.org/10.1016/j.hoc.2018.09.003

  31. 31. Magnano, M., Loi, C., Bardazzi, F., et al. (2013) Methyl-Aminolevulinic Acid Photodynamic Therapy and Topical Tretinoin in a Patient with Vulvar Extramammary Paget’s Disease. Dermatologic Therapy, 26, 170-172. https://doi.org/10.1111/j.1529-8019.2013.01546.x

  32. 32. Kang, H.K., Yun, J.H., Son, Y.M., et al. (2014) Photody-namic Therapy for Bowen’s Disease of the Vulva Area. Annals of Dermatology, 26, 241-245. https://doi.org/10.5021/ad.2014.26.2.241

  33. 33. Rioli, D.I., Samimi, M., Beneton, N., et al. (2018) Efficacy and Tol-erance of Photodynamic Therapy for Vulvar Paget’s Disease: A Multicentric Retrospective Study. European Journal of Dermatology: EJD, 28, 351-355. https://doi.org/10.1684/ejd.2018.3289

  34. 34. Lakshmi, B.A., Reddy, A.S., Sangubotla, R., et al. (2021) Rutheni-um(II)-Curcumin Liposome Nanoparticles: Synthesis, Characterization, and Their Effects against Cervical Cancer. Col-loids and Surfaces B, Biointerfaces, 204, Article ID: 111773. https://doi.org/10.1016/j.colsurfb.2021.111773

  35. 35. Lin, M.W., Huang, Y.B., Chen, C.L., et al. (2016) A Formula-tion Study of 5-Aminolevulinic Encapsulated in DPPC Liposomes in Melanoma Treatment. International Journal of Medical Sciences, 13, 483-489. https://doi.org/10.7150/ijms.15411

  36. 36. Wang, C., Zhao, X., Jiang, H., et al. (2021) Transporting Mitochondri-on-Targeting Photosensitizers into Cancer Cells by Low-Density Lipoproteins for Fluorescence-Feedback Photodynamic Therapy. Nanoscale, 13, 1195-1205. https://doi.org/10.1039/D0NR07342C

  37. 37. Zhang, S., Yang, L., Ling, X., et al. (2015) Tumor Mitochon-dria-Targeted Photodynamic Therapy with a Translocator Protein (TSPO)-Specific Photosensitizer. Acta Biomaterialia, 28, 160-170. https://doi.org/10.1016/j.actbio.2015.09.033

  38. 38. Szlasa, W., Szewczyk, A., Drąg-Zalesińska, M., et al. (2021) Mechanisms of Curcumin-Based Photodynamic Therapy and Its Effects in Combination with Electroporation: An in Vitro and Molecular Dynamics Study. Bioelectrochemistry (Amsterdam, Netherlands), 140, Article ID: 107806. https://doi.org/10.1016/j.bioelechem.2021.107806

  39. 39. Kulbacka, J., Chodaczek, G., Rossowska, J., et al. (2021) Investigating the Photodynamic Efficacy of Chlorin e6 by Millisecond Pulses in Metastatic Melanoma Cells. Bioelectro-chemistry (Amsterdam, Netherlands), 138, Article ID: 107728. https://doi.org/10.1016/j.bioelechem.2020.107728

  40. 40. Choi, Y., Chang, J.E., Jheon, S., et al. (2018) Enhanced Production of Reactive Oxygen Species in HeLa Cells under Concurrent Low-Dose Carboplatin and Photofrin® Photo-dynamic Therapy. Oncology Reports, 40, 339-345. https://doi.org/10.3892/or.2018.6415

  41. 41. Ha, J.H. and Kim, Y.J. (2021) Photodynamic and Cold Atmospheric Plasma Combination Therapy Using Polymeric Nanoparticles for the Synergistic Treatment of Cervical Cancer. Interna-tional Journal of Molecular Sciences, 22, Article No. 1172. https://doi.org/10.3390/ijms22031172

  42. 42. Zhang, Z., Jayakumar, M.K.G., Zheng, X., et al. (2019) Upconversion Superballs for Programmable Photoactivation of Therapeu-tics. Nature Communications, 10, Article No. 4586. https://doi.org/10.1038/s41467-019-12506-w

期刊菜单