Material Sciences
Vol. 09  No. 04 ( 2019 ), Article ID: 29931 , 9 pages
10.12677/MS.2019.94051

Preparation and Properties of Iron Phosphide Composites as Anode Materials for Lithium Ion Batteries

Chunxia Kuang1,2, Yunyun Zhai2, Bingbing Liu1,2, Xiaoya Wang1,2, Xiangwei Wang2, Haiqing Liu2*

1School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou Jiangxi

2College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing Zhejiang

Received: Apr. 7th, 2019; accepted: Apr. 19th, 2019; published: Apr. 26th, 2019

ABSTRACT

The development of new lithium-ion battery anode materials with high specific capacitance and remarkable cycle stability is one of the key points in exploration of new energy materials. In this work, phytic acid was used as the phosphorus and carbon source, and the precursor containing phytic acid and cobalt was simply synthesized by precipitation method, and FePx/C was further synthesized by high temperature annealing. At the same time, the raw material was doped with graphene to synthesize FePx/C@C material, which was used as a high performance LIB anode material. The morphology and chemical composition of the composites were characterized by XRD, SEM, TEM, Raman, and XPS. In addition, the electrochemical properties of the prepared composites were analyzed by electrochemical methods, including cyclic voltammetry (CV) and constant current charge and discharge tests (GCD). The results showed that FePx/C and FePx/C@C composites have an initial specific capacity of 637 and 818.3 mAh∙g−1 at a current density of 100 mA∙g−1. After 40 cycles at the same current density, the specific capacities were 192.2 and 253.8 mAh∙g−1, respectively. After cycling 200 cycles at the same current density, the capacity of 169.5 and 190.9 mAh∙g−1 remained, the decay rate from 40 to 200 cycles being 88.2% and 75.3%, indicating excellent electrochemical performance for rapid lithium ion insertion/extraction cycles. The phosphorus-doped carbon material improves electrical conductivity and reduces the volume change of FePx during charge-discharge to maintain structural integrity. Based on these advantages, FePx/C and FePx/C@C composites exhibit high specific capacitance and remarkable cycle performance as LIB anode materials, and have promising commercial application prospects.

Keywords:Iron Phosphide, Phytic Acid, Lithium Ion Battery, Lithium Battery Anode Material

磷化铁复合材料的制备及其作为锂离子电池负极材料性能研究

邝春霞1,2,翟云云2,刘冰冰1,2,王晓雅1,2,王香卫2,刘海清2*

1江西理工大学冶金与化工学院,江西 赣州

2嘉兴学院生物化学与工程学院,浙江 嘉兴

收稿日期:2019年4月7日;录用日期:2019年4月19日;发布日期:2019年4月26日

摘 要

开发高比电容和良好的循环稳定性的新型锂离子电池负极材料是开发新能源材料重点之一。在本工作中,使用植酸作为磷和碳源,利用沉淀法简单合成含有植酸和钴的前驱体,进一步高温退火合成FePx/C。同时,在原材料中掺杂石墨烯合成FePx/C@C材料,用作高性能的LIB负极材料。采用XRD、SEM、TEM、Raman和XPS等表征了复合材料的形貌结构及化学组成。此外,还通过电化学方法,包括循环伏安法(CV)、恒电流充放电测试(GCD)对制备的复合材料进行电化学性能分析,结果分析显示,FePx/C和FePx/C@C复合材料在100 mA∙g−1的电流密度下初始比容量可以达到637和818.3 mAh∙g−1。在相同电流密度下循环40次后,比容量分别为192.2和253.8 mAh∙g−1;随后进行200次循环后,剩余169.5和190.9 mAh∙g−1的比容量,从40圈到200圈的衰减率分别为88.2%和75.3%,这表明了锂离子的快速嵌入和脱嵌的优良电化学性能。磷掺杂的碳材料改善了导电性并减轻了在充电–放电过程中FePx的体积变化,保持了结构完整性。基于这些优点,FePx/C@C和FePx/C复合材料作为LIB负极材料展现出高比电容和良好的循环性能,具有良好的商业应用前景。

关键词 :磷化铁,植酸,锂离子电池,锂电负极材料

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

在日益严重的能源短缺和环境污染问题的背景下,为了满足电动汽车(EV)、规模化能量存储系统(ESS)和便携式电子设备快速增长的需求,迫切需要开发高功率密度的电化学存储系统。锂离子电池(LIB)由于其长循环寿命、高工作电压、高能量密度、高倍率性能和环境友好性而成为研究者们长期探究的对象。在锂电池中,负极材料承担着至关重要的角色。从历史上来说,锂电的安全问题得以解决正是因为碳负极的出现,这才使锂电池有机会走进千家万户,成为实用的日常必需品 [1] [2] [3] 。不同的电极材料,例如,多种碳材料、混合金属氧化物和导电聚合物等,已被广泛用作LIB电极材料。然而,由于这些材料的离子和电子传输路径太长而不能达到所需的效果。比如天然石墨(理论容量为372 mAh∙g−1),虽具有良好的结构性和低嵌入电位,但循环保持性能不理想 [4] [5] [6] [7] 。因此,开发高能量密度、长循环寿命、高倍率性能的新型电极材料势在必行。

目前,石墨烯的广泛研究引起了人们对其他二维(2D)材料的关注,特别是金属氧化物纳米材料,由于其独特的组成和结构被广泛的用于多种方面的研究。其中,金属磷化物在许多领域都表现出了优异的性能,如催化、传感器、超级电容器、太阳能电池和LIBs [8] [9] [10] [11] [12] 。过渡金属磷化物(TMP)是一种重要的锂电池负极材料,它们与金属氧化物、硫化物和氟化物相比具有很大的优势,因为它们具有较高的理论容量和较低的电势转换反应平台 [13] [14] [15] 。此外,磷化物与锂发生电化学反应,生成锂超离子导体Li3P (环境温度下电导率 > 1 × 10−4 S cm−1),而过渡金属氧化物形成弱离子导电绝缘体Li2O (电导率 > 5 × 10−8 S cm−1) [16] 。因此,它们提供了分散金属纳米颗粒的基质,并显示出良好的反应活性。与其他过渡金属磷化物(如Co、Ni和Cu)相比,Fe磷化物具有明显的优势,并且价格便宜。另外,磷资源的选择也是一个重要的问题。到目前为止,白磷 [17] 、红磷 [18] 、三辛基膦 [19] 和次磷酸钠 [9] 已被用于合成TMP,但这些磷资源有毒且易燃。因此,改善电子传导性和选择安全的磷资源是实现高效转化反应过程的关键方面。植酸(PA) [6] [20] [21] [22] 被认为是植物组织中磷的主要储存形式,是一种天然有机磷源,已被用于制造各种具有新颖形态和性质的无机材料,并且是合成LIB电极最具有潜力的原材料之一。

在本文中,使用PA作为磷和碳源,利用沉淀法简单合成含有植酸和钴的前驱体,进一步高温退火合成FePx/C。同时,在原材料中掺杂石墨烯合成FePx/C@C材料,用作高性能的LIB负极材料。磷掺杂的碳材料改善了导电性并减轻了在充电–放电过程中FePx的体积变化,保持了结构完整性。基于这些优点,FePx/C和FePx/C@C复合材料作为LIB负极材料展现出高比电容和良好的循环性能,具有良好的应用前景。

2. 实验部分

本实验所用到的试剂包括:植酸(质量分数70%)、FeCl3、氨水、尿素、石墨纸(厚度为2 mm)、聚乙烯吡咯烷酮(PVP,分子量1300000)、N-甲基吡咯烷酮(NMP)、炭黑和聚偏氟乙烯(PVDF)等均购于Sigma及Aldrich。所有实验均使用去离子水,药品均未经进一步纯化。

2.1. 材料的制备

称取1.0 g植酸溶于10 mL水中,用浓氨水调pH为6作为A溶液。称取0.944 g FeCl3和1 g尿素溶于5 mL去离子水中作为B溶液。将B溶液缓慢的逐滴滴加到A溶液中,产生白色沉淀,用去离子水离心清洗收集这些沉淀。烘干后得到的白色粉末置于刚玉舟内放入管式炉,在N2气氛下高温煅烧3小时,升温速率为5℃/min,得到的黑灰色粉末即为FePx/C材料。为了对比,以石墨纸为原料,采用电解剥离法剥离石墨层,进而通过高能超声波分散、离心分离的方法制备了石墨烯片。在B溶液中加入作为碳源的石墨烯片,石墨烯和FeCl3质量比为1:10,其他条件相同制备掺石墨烯的FePx/C@C复合材料。

2.2. 材料表征

观察所有制备的样品的微观结构使用扫描电子显微镜(SEM, Hitachi S-4800)和透射电子显微镜(TEM, JEM-2100F)。TEM测试将用于所有样品溶于在无水乙醇中并滴加到覆盖有碳膜的铜网上,在环境温度下干燥后以200 kV的加速电压进行观察。X射线衍射分析(XRD, DX-2600),该衍射仪附有Cu激发α射线(λ = 0.15406 nm),在20 mA和30 kV下操作。X射线光电子能谱(XPS, ESCALAB 250, Al激发α射线)。拉曼光谱(Raman, Thermo Fischer DXR),由532 nm的激光束激发的Invia-Reflrx激光。

2.3. 电极的制备

用纽扣电池(CR2016)来评估FePx/C和FePx/C@C纳米复合材料的电化学性能。将活性材料分别与炭黑和PVDF按质量比为7:2:1的比例均匀混合,溶剂选用NMP。在磁力搅拌下搅拌2 h (根据实际情况解压延长或缩短搅拌时间)后得到均匀浆料。将所得浆料用湿膜制备器涂抹在集流体上并在真空干燥箱中干燥,从而制得电极极片。具体如下步骤:活性物质浆料采用90 μm厚度的湿膜制备器将所得混合浆料均匀涂布在铜箔上,60℃保温12 h。最后将烘干的极片用手动切片机切割成直径为12 mm的圆片,4 MPa进行压片定型,称重后扣除单纯铜箔质量得到极片上活性物质的实际质量,最后将称好质量的极片放于手套箱中保存备用。电池的装配条件:全程在氩气气氛的手套箱中操作;组装成CR2016型纽扣电池;电解液为1 mol/L LiPF6-EC:DMC (体积比1:1),隔膜是商品化隔膜;对电极为锂片。

2.4. 电化学测试

所有的锂离子电池的充放电测试均在LAND CT2001A蓝电电池测试系统完成,负极材料的充放电截止电压为0.5~3.5 V。循环伏安测试(CV)测试是在辰华电化学工作站CHI 760E上完成,条件是在室温下直接进行的,扫描速率范围是0.1~5.0 mV∙s−1,截止扫描电压范围是0.5~3.5 V。

3. 结果与讨论

3.1. FePx/C和FePx/C@C复合材料的结构表征

图1(a)和图1(b)分别为FePx/C和FePx/C@C复合材料的扫描电镜照片,可以看出FePx/C@C中同时有FePx/C和石墨烯存在。图1(c)和图1(d)分别为FePx/C@C复合材料的透镜图和高分辨透镜图,从透镜图可以看出FePx/C包裹在石墨烯的碳层中,图1(d)的高分辨图中宽度为0.285 nm的晶格间距归属于FeP4的(301)晶面;宽度为0.30 nm的晶格间距归属于Fe3P的(211)晶面。

图2(a)是FePx/C和FePx/C@C的XRD图谱,分析结果显示FePx/C与掺石墨烯后的FePx/C@C峰型结构大致相同,且这两种复合材料中包含了Fe3P相(JCPDS NO.19-0617)和FeP4相(JCPDS NO.40-1003)。图2(b)为复合材料的Raman光谱图,石墨烯的存在可以通过拉曼光谱中的D和G带的特征峰来验证,它们分别位于1345和1595 cm−1处。D峰是由石墨微晶、结构缺陷多、边缘不饱和和碳原子引起的,G峰通常用来表征石墨结构中sp2杂化键结构的完整程度。而ID/IG的比值可以用作无序和有序石墨碳程度的指标 [23] [24] [25] 。从图中可看出,掺了石墨烯的复合材料(ID/IG = 0.987)的峰强比值明显要比FePx/C(ID/IG = 1.059)低,这表明掺石墨烯的FePx/C@C复合材料具有更高石墨化程度,这有利于提高导电性。

Figure 1. SEM of FePx/C (a) and FePx/C@C (b), respectively; (c) TEM of FePx/C@C; (d) HRTEM of FePx/C@C

图1. (a),(b)分别为FePx/C和FePx/C@C复合材料SEM图;(c) FePx/C@C的TEM图;(d) FePx/C@C 的HRTEM图

Figure 2. The XRD (a) and (b) Raman of FePx/C and FePx/C@C, respectively

图2. (a),(b)分别为FePx/C和FePx/C@C复合材料,(a) XRD图和(b) Raman图

进一步采用X射线光电子能谱(图3)测试来探究FePx/C和FePx/C@C复合材料的表面化学组成。图3(a) XPS宽谱图中,在两个样品中都检测到Fe、P、C和O,证实了这四种元素的存在。O来自磷掺杂的碳中残留的含磷酸盐的官能团和由于空气接触而导致的表面氧化。FePx/C和FePx/C@C的Fe 2p、P 2p及C 1s的高分辨XPS图谱分别在图3(b)~(d)中,从图中可看出这两种样品的峰位几乎重合,说明样品中的化学组成基本相同,但峰强度各有不同,说明在两种样品中Fe、P和C的含量有差异。在高分辨率Fe 2p光谱中(图3(b)),可以观察到以结合能为711.3和724.5 eV为中心的两个峰分别对应于FePx中的Fe3+ 2p3/2和Fe3+ 2p1/2。同时,714.5 eV的卫星峰值与铁氧化物中Fe3+ [26] [27] [28] 的表征一致,因此证明了Fe的部分氧化作用。同时,图3(c)中的P 2p高分辨光谱129.9和131.7 eV的特征峰分别归属于P-Fe和P-C键。P-C键由FePx/C@C复合材料中的碳的磷化产生。C 1s的分峰拟合图谱如图3(d)所示,284.6 eV的主峰与石墨碳有关,这确保了FePx/C@C的具有良好导电性。此外,还有一个峰值在285.8 eV归属于C = O键,这可能是由于材料在制备的过程中被部分氧化所致。

Figure 3. The XPS for FePx/C and FePx/C@C. (a) XPS spectra; and (b) Fe 2p; (c) P 2p; and (d) C 1s

图3. FePx/C和FePx/C@C复合材料的XPS图,(a) XPS宽谱;(b) Fe 2p拟合图;(c) P 2p拟合图;(d) C 1s 拟合图

3.2. FePx/C和FePx/C@C复合材料的电化学性能

Figure 4. (a) Galvanostatic charge-discharge profiles for the selected cycle of FePx/C@C; (b) The first three cycle for CV of at FePx/C@C; and (c) Cycling performance of FePx/C and FePx/C@C at current density of 100 mA∙g−1

图4. (a) 为FePx/C@C复合材料的锂电恒电流充放电图;(b) 为FePx/C@C锂电池前三个循环的CV图;(c) 为FePx/C和FePx/C@C在电流密度为100 mA∙g−1循环性能图

Figure 5. (a) Galvanostatic charge-discharge profiles for the selected cycle of FePx/C; (b) Rate performance of FePx/C@C and FePx/C composite at different current densities

图5. (a) 为FePx/C@C锂电前三个循环的CV图;(b) FePx/C和FePx/C@C复合材料的锂电不同倍率下的比电容性能图

下面通过各种电化学测量测试了FePx/C和FePx/C@C的锂离子存储性能。首先图4(a)为复合材料通过恒电流充放电测试(GCD)来评估,电流密度为100 mA∙g−1,电压范围为0.5~3.5 V (vs. Li+/Li)。在第一圈充放电循环中,FePx/C@C的曲线在0.5~0.6 V区域时显示出放电电压平台,对应于FePx/C@C与锂的两相反应,得到Fe纳米颗粒和Li3P [16] [29] [30] 。在2.25~2.5 V区域观察到第一个充电电压平台,这可归因于Fe氧化成FePx [12] [30] 。第一圈循环的放电和充电比容量分别为818.3和535.8 mAh∙g−1,库仑效率为65.5%。第二、第三圈的恒电流放电曲线几乎重叠,证明了整个电池的可逆性。图4(b)中前三圈的循环伏安图同样可以得到相同的结论。图4(c)所示为两种材料循环至200圈的循环比电容及其效率图,从图中可看出200圈循环后两种材料均有较好的循环稳定性。

在随后的循环中,充电和放电曲线表现出很好的循环稳定性,库仑效率保持在98%左右,在100圈循环后,放电比电容可以维持在228 mAh∙g−1左右。在200圈循环后,FePx/C和FePx/C@C的比电容分别为169.5和190.9 mAh∙g−1

作为对比,如图5(a)所示是未掺杂石墨烯的FePx/C锂电恒电流充放电–电压分布图。第一圈充放电循环中,曲线在0.75~0.55 V区域出现放电电压平台,在2.3~2.5 V区域出现充电平台,放电和充电比容量分别为637和423.8 mAh∙g−1,库仑效率为65.4%。在随后的循环中,库仑效率保持在99%左右,在100圈循环后,放电比电容可以维持在170 mAh∙g−1左右。同时,如图5(b)所示还测试了这两种复合材料在不同电流密度下的比容量。其中FePx/C@C电极在0.05、0.1、0.3、0.5、1、3和5 A∙g−1的电流密度下分别提供760、383.3、370.5、317.8、275.7、199.3和147.9 mAh∙g−1的可逆容量。在经历不同倍率的电流密度下循环后,再恢复到0.1 A∙g−1的电流密度时仍然能保持287.5 mAh∙g−1的比电容,此时容量衰减并不明显,这表明了锂离子的快速嵌入和脱嵌的优良电化学性能。

4. 总结

在本文工作中,通过直接高温退火含植酸和铁的前驱体合成了新型的FePx/C及FePx/C@C复合电极材料。采用XRD、SEM、TEM和XPS等表征了复合材料的形貌结构及化学成分组成。此外,将这两种材料作为锂电池负极组装成扣式电池,通过一系列电化学方法,包括CV、GCD等,对制备的复合材料进行电化学性能分析,这两种材料均具备高比电容及优良的循环稳定性,且FePx/C@C的性能要优于FePx/C复合材料。本工作中制备的FePx/C和FePx/C@C复合材料及其应用为锂离子电池提供了一种很有商业应用前景的负极材料,其制备途径也可以作为合成过渡金属磷化物的参考。

基金项目

这项工作得到了浙江省科技计划(编号2017C31071和2018C37075)、嘉兴市科技局计划(编号2016AY13008)及江西省研究生创新基金项目(编号YC2017-S303)的支持。

文章引用

邝春霞,翟云云,刘冰冰,王晓雅,王香卫,刘海清. 磷化铁复合材料的制备及其作为锂离子电池负极材料性能研究
Preparation and Properties of Iron Phosphide Composites as Anode Materials for Lithium Ion Batteries[J]. 材料科学, 2019, 09(04): 392-400. https://doi.org/10.12677/MS.2019.94051

参考文献

  1. 1. Yu, S., Hong Ng, V.M., Wang, F., Xiao, Z., Li, C., Kong, L.B., Que, W. and Zhou, K. (2018) Synthesis and Application of Iron-Based Nanomaterials as Anodes of Lithium-Ion Batteries and Supercapacitors. Journal of Materials Chemistry A, 6, 9332-9367. https://doi.org/10.1039/C8TA01683F

  2. 2. Shi, X., Zhou, W., Ma, D., Qian, M., Bridges, D., Ying, M. and Hu, A. (2015) Review Article Electrospinning of Nanofibers and Their Applications for Energy Devices. Journal of Nanomaterials, 16, 1-22. https://doi.org/10.1155/2015/140716

  3. 3. Liu, H., Wang, X., Kuang, C., Lei, L. and Zhai, Y. (2018) Polyvinyli-dene Fluoride/Polystyrene Hybrid Fibers with High Ionic Conductivity and Enhanced Mechanical Strength as Lithi-um-Ion Battery Separators. Journal of Solid State Electrochemistry, 22, 3579-3587. https://doi.org/10.1007/s10008-018-4068-y

  4. 4. Wu, D., Zhang, G., Deng, L., Ma, L., Xu, Z., Xin, X., Liu, R., Ping, L. and Su, Y. (2018) Perylene Diimide-Diamine/Carbon Black Composites as High Performance Lithium/Sodium Ion Battery Cathodes. Journal of Materials Chemistry A, 6, 13613-13618. https://doi.org/10.1039/C8TA03186J

  5. 5. Li, W., Zeng, L., Wu, Y. and Yu, Y. (2016) Nanostructured Electrode Materials for Lithium-Ion and Sodium-Ion Batteries via Electrospinning. Science China Materials, 59, 287-321. https://doi.org/10.1007/s40843-016-5039-6

  6. 6. Li, P., Jin, Z. and Xiao, D. (2017) A Phytic Acid Etched Ni/Fe Nanostructure Based Flexible Network as a High-Performance Wearable Hybrid Energy Storage Device. Journal of Materials Chemistry A, 5, 3274-3283. https://doi.org/10.1039/C6TA10478A

  7. 7. Li, W., Li, M., Adair, K.R., Sun, X. and Yu, Y. (2017) Carbon Nano-fiber-Based Nanostructures for Lithium-Ion and Sodium-Ion Batteries. Journal of Materials Chemistry A, 5, 13882-13906. https://doi.org/10.1039/C7TA02153D

  8. 8. Wang, X., Zhai, Y., Kuang, C., Liu, H. and Li, L. (2019) Simple Synthesis of K₄Nb₆O17/C Nanosheets for High-Power Lithium-Ion Batteries with Good Stability. Materials, 12, 3579-3587. https://doi.org/10.3390/ma12020262

  9. 9. Li, Y., Li, H., Cao, K., Jin, T., Wang, X., Sun, H., Ning, J., Wang, Y. and Jiao, L. (2018) Electrospun Three Dimensional Co/CoP@nitrogen-Doped Carbon Nanofibers Network for Efficient Hydrogen Evolution. Energy Storage Materials, 12, 44-53. https://doi.org/10.1016/j.ensm.2017.11.006

  10. 10. Liu, L.G. and He, J.H. (2017) Solvent Evaporation in a Binary Solvent System for Controllable Fabrication of Porous Fibers by Electrospinning. Thermal Science, 21, 74-78. https://doi.org/10.2298/TSCI160928074L

  11. 11. Sun, Y., Hang, L., Shen, Q., Zhang, T., Li, H., Zhang, X., Lyu, X. and Li, Y. (2017) Mo Doped Ni2P Nanowire Arrays: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction with Enhanced Activity at All pH Values. Nanoscale, 9, 16674-16679. https://doi.org/10.1039/C7NR03515B

  12. 12. Veluri, P.S. and Mitra, S. (2016) Iron Phosphide (FeP) Synthesis, and Full Cell Lithium-Ion Battery Study with [Li(NiMnCo)O2] Cathode. RSC Advances, 47, 48-51. https://doi.org/10.1002/chin.201648009

  13. 13. Lu, C., Dong, C., Wu, H., Ni, D., Sun, W., Wang, Z. and Sun, K. (2018) Achieving High Capacity Hybrid-Cathode FeF3@Li2C6O6/rGO Based on Morphology Control Synthesis and Interface Engineering. Chemical Communications, 54, 3235-3238. https://doi.org/10.1039/C8CC00350E

  14. 14. Zhou, X., Sun, H., Zhou, H., Xu, Z. and Yang, J. (2017) Enhancing Cycling Performance of FeF3 Cathode by Introducing a Lightweight High Conductive Adsorbable Interlayer. Journal of Alloys and Compounds, 723, 317-326. https://doi.org/10.1016/j.jallcom.2017.06.266

  15. 15. Li, L., Peng, S., Lee, J.K.Y., Ji, D., Srinivasan, M. and Rama-krishna, S. (2017) Electrospun Hollow Nanofibers for Advanced Secondary Batteries. Nano Energy, 39, 111-139. https://doi.org/10.1016/j.nanoen.2017.06.050

  16. 16. Lin, C., Hu, R., Liu, J., Yang, L., Liu, J., Ouyang, L. and Zhu, M. (2018) A Nanorod FeP@phosphorus-Doped Carbon Composite for High-Performance Lithium-Ion Batteries. Journal of Alloys and Compounds, 763, 296-304. https://doi.org/10.1016/j.jallcom.2018.05.219

  17. 17. Yan, L., Jiang, H., Xing, Y., Ying, W., Liu, D., Xin, G., Dai, P., Li, L. and Zhao, X. (2017) Nickel Metal-Organic Framework Implanted on Graphene and Incubated to Be Ultrasmall Nickel Phosphide Nanocrystals as Highly Efficient Water Splitting Electrocatalyst. Journal of Materials Chemistry A, 6, 1682-1691. https://doi.org/10.1039/C7TA10218F

  18. 18. Liu, W., Chen, S., Wang, J. and Liu, H. (2015) A New, Cheap, and Productive FeP Anode Material for Sodium-Ion Batteries. Chemical Communications, 46, 4720-4720. https://doi.org/10.1039/C5CC90084K

  19. 19. Guo, X., Feng, Z., Lv, Z., Liu, Q., Zhao, L., Hao, C., Li, G. and Lei, Q. (2017) Formation of Uniform FeP Hollow Microspheres Assembled by Nanosheets for Efficient Hydrogen Evolution Reaction. Chemelectrochem, 4, 2052-2058. https://doi.org/10.1002/celc.201700366

  20. 20. Zhao, Q., Zhang, Y., Meng, Y., Wang, Y., Ou, J., Guo, Y. and Xiao, D. (2017) Phytic Acid Derived LiFePO4 beyond Theoretical Capacity as High-Energy Density Cathode for Lithium Ion Battery. Nano Energy, 34, 408-420. https://doi.org/10.1016/j.nanoen.2017.03.006

  21. 21. Zhao, Y., Zhao, S., Guo, H. and You, B. (2018) Facile Synthe-sis of Phytic acid@attapulgite Nanospheres for Enhanced Anti-Corrosion Performances of Coatings. Progress in Or-ganic Coatings, 117, 47-55. https://doi.org/10.1016/j.porgcoat.2018.01.004

  22. 22. Su, J., Liu, X., Wu, Peng, C. and Yang, J. (2012) Self-Assembled LiFePO4/C Nano/Microspheres by Using Phytic Acid as Phosphorus Source. The Journal of Physical Chemistry C, 116, 5019-5024. https://doi.org/10.1021/jp212063e

  23. 23. Chen, Z., Wu, R., Liu, Y., Ha, Y., Guo, Y., Sun, D., Liu, M. and Fang, F. (2018) Ultrafine Co Nanoparticles Encapsulated in Carbon-Nanotubes-Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction. Advanced Materials, 30, Article ID: 1802011. https://doi.org/10.1002/adma.201802011

  24. 24. Nie, R., Shi, J., Du, W., Ning, W., Hou, Z. and Xiao, F.-S. (2013) A Sandwich N-Doped Graphene/Co3O4 Hybrid: An Efficient Catalyst for Selective Oxidation of Olefins and Alcohols. Journal of Materials Chemistry A, 1, 9037. https://doi.org/10.1039/c3ta11672g

  25. 25. Jeong, B., Shin, D., Lee, J.K., Kim, D.H., Kim, Y.D. and Lee, J. (2014) The Influence of a Fibrous Carbon Envelope on the Formation of CoFe Nanoparticles for Durable Electrocatalytic Oxygen Evolution. Physical Chemistry Chemical Physics, 16, 13807-13813. https://doi.org/10.1039/C4CP00385C

  26. 26. Yamashita, T. and Hayes, P. (2008) Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials. Applied Surface Science, 254, 2441-2449. https://doi.org/10.1016/j.apsusc.2007.09.063

  27. 27. Zubir, N.A., Yacou, C., Motuzas, J., Zhang, X. and Diniz da Costa, J.C. (2014) Structural and Functional Investigation of Graphene Oxide-Fe3O4 Nanocomposites for the Hetero-geneous Fenton-Like Reaction. Scientific Reports, 4, 4594-4602. https://doi.org/10.1038/srep04594

  28. 28. Jiang, H., Chen, B., Pan, J., Li, C., Liu, C., Liang, L., Tao, Y., Wei, L., Li, H. and Wang, Y. (2017) Strongly Coupled FeP@reduced Graphene Oxide Nanocomposites with Superior Performance for Lithium-Ion Batteries. Journal of Alloys & Compounds, 728, 328-336. https://doi.org/10.1016/j.jallcom.2017.09.021

  29. 29. Boyanov, S., Bernardi, J., Gillot, F., Dupont, L., Womes, M., Tarascon, J.M., Monconduit, L. and Doublet, M.L. (2006) FeP: Another Attractive Anode for Li-Ion Battery Enlisting a Reversible Two-Step Insertion/Conversion Process. Cheminform, 37, 3531-3538. https://doi.org/10.1021/cm060433m

  30. 30. Park, I.T. and Shin, H.C. (2013) Amorphous FePy (0.1https://doi.org/10.1016/j.elecom.2013.05.005

NOTES

*通讯作者。

期刊菜单