Advances in Clinical Medicine
Vol. 13  No. 01 ( 2023 ), Article ID: 60903 , 8 pages
10.12677/ACM.2023.131139

PD-1/PD-L1抑制剂治疗错配修复蛋白缺失/微卫星高度不稳定型结直肠癌的研究现状与进展

王一橙,李洋*

重庆医科大学第二附属医院胃肠肛肠外科,重庆

收稿日期:2022年12月28日;录用日期:2023年1月21日;发布日期:2023年1月31日

摘要

结直肠癌(colorectal cancer, CRC)是常见恶性肿瘤之一,近年来以程序性死亡受体1 (programmed cell death-1, PD-1)/程序性死亡受体配体1 (programmed cell death ligand-1, PD-L1)抑制剂为代表的免疫治疗药物应用于结直肠癌的治疗中,但对该种治疗有积极反应的患者为DNA错配修复蛋白缺失(dMMR)微卫星高度不稳定(MSI-H)患者,相关临床试验已在该类患者中取得了一定成功,但仍有部分患者出现耐药情况,导致疾病进展。本文将对PD-1/PD-L1抑制剂治疗dMMR/MSI-H结直肠癌及耐药研究现状及进展进行综述。

关键词

结直肠癌,错配修复蛋白缺失/微卫星高度不稳定,PD-1/PD-L1抑制剂,耐药

Research Status and Progress of PD-1/PD-L1 Inhibitors in the Treatment of Mismatch Repair Deficient/Microsatellite Instability-High Colorectal Cancer

Yicheng Wang, Yang Li*

Department of Gastrointestinal and Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Dec. 28th, 2022; accepted: Jan. 21st, 2023; published: Jan. 31st, 2023

ABSTRACT

Colorectal cancer (CRC) is one of the common malignant tumors. In recent years, immunotherapeutic drugs represented by programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) inhibitors have been applied to the treatment of colorectal cancer. However, the patients who have a positive response to this therapy mainly are those with mismatch repair deficient (dMMR) and microsatellite instability-high (MSI-H). Related clinical trials have achieved certain success in such patients, but drug resistance occurs in some patients and leads to disease progress. This article reviews the current status and progress of PD-1/PD-L1 inhibitors in the treatment of dMMR/MSI-H colorectal cancer and drug resistance.

Keywords:Colorectal Cancer, Mismatch Repair Deficient/Microsatellite Instability-High, PD-1/PD-L1 Inhibitors, Drug Resistance

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

结直肠癌(colorectal cancer, CRC)是全球第三大常见恶性肿瘤,也是第二大癌症相关死亡原因 [1]。CRC 治疗主要以手术为主,放化疗为辅的综合治疗,但约25%的CRC患者在诊断时已处于晚期 [2],而在早期患者中,约25%~50%的CRC患者会发生转移,即使在肿瘤切除和系统治疗后,患者的5年生存率仍较低,预后较差 [3]。目前化疗、靶向治疗为患者带来的益处已处于一个平台期,基于免疫检查点抑制剂的免疫疗法逐渐开展起来,但对于CRC,主要获益的为dMMR/MSI-H患者,本文就PD-1/PD-L1抑制剂应用在dMMR/MSI-H CRC治疗中的试验进展以及耐药情况作一综述。

2. PD-1/PD-L1与dMMR/MSI-H、pMMR/MSI-L

PD-1主要表达于活化的T细胞、B细胞、NK细胞等多种免疫细胞上,在肿瘤微环境中,PD-1也表达在肿瘤浸润性淋巴细胞(TIL)中,并参与宿主抗肿瘤免疫反应的调节 [4],其配体PD-L1主要表达于肿瘤细胞以及抗原提呈细胞 [5]。肿瘤细胞表达的PD-L1与T细胞表达的PD-1相结合,抑制T细胞增殖以及分泌细胞因子(如肿瘤坏死因子-α、干扰素-γ),失去杀伤肿瘤细胞的能力,改变肿瘤免疫微环境从而形成免疫逃逸 [6]。而PD-1/PD-L1抑制剂通过阻断PD-1和PD-L1结合,使耗竭T细胞重新恢复活性,从而发挥免疫杀伤作用。

错配修复(mismatch repair, MMR)在维持DNA保真度方面起着关键作用 [7]。通过免疫组化染色对MMR蛋白MLH1、MSH2、MSH6或PMS2进行定量,结直肠癌可分为错配修复完整缺陷(mismatch-repair-deficient, dMMR)或错配修复完整(mismatch-repair-proficient, pMMR) CRC [2]。MMR状态的变化可能导致微卫星长度的变化,称为微卫星不稳定性(microsatellite instability, MSI),这可以通过聚合酶链式反应(polymerase chain reaction, PCR)或下一代测序准确地检测到。一般而言,一般而言,dMMR相当于微卫星高度不稳定(microsatellite instability-high, MSI-H),pMMR相当于微卫星低度不稳定MSI-L (microsatellite instability-low, MSI-L)或微卫星稳定(microsatellite stability, MSS)。

相关研究表明,dMMR/MSI-H肿瘤细胞较pMMR/MSI-L细胞有更多的肿瘤浸润淋巴细胞(tumor infiltrating lymphocyte, TIL)和PD-L1阳性细胞 [8],TIL的密度增加可能有助于dMMR/MSI-H CRCs对抗PD-1/PD-L1单抗治疗的改善 [9],但PD-1/PD-L1的表达表现出对TIL的抑制作用。使用抗PD-1单抗可阻断肿瘤细胞和TIL上PD-1的表达,解除这种抑制,恢复其功能 [10] [11],而且进一步激活其他类型的免疫细胞,最终增强dMMR/MSI-H结直肠癌患者的宿主抗肿瘤免疫应答。pMMR/MSI-L结直肠癌患者比dMMR/MSI-H结直肠癌患者有更多的叉头样转录因子3 (transcription factor forkhead box P3, Foxp3)阳性调节性T细胞(Regulatory cells, Tregs) [12],Tregs可能会抑制干扰素-γ的分泌和CD8阳性T细胞的细胞毒作用 [13],抑制结直肠癌患者对免疫检查点阻断(抗PD-1单抗)的反应。dMMR/MSI-H CRC患者由于MMR缺陷导致的移码突变而具有较高的肿瘤突变负荷(tumor mutation burden, TMB)。DNA序列的这些主要变化导致新抗原的形成,使MSI-H/dMMR CRC比MSS CRC更具免疫原性,但pMMR/MSI-L肿瘤对免疫治疗反应相对较差的机制复杂,本文不详细阐述。而约15%的结直肠癌患者存在dMMR/MSI-H,越来越多的证据表明,MSI-H-dMMR肿瘤对传统化疗的反应较差 [14] [15],故基于免疫检查点抑制剂的免疫疗法越来越多地用于该类肿瘤治疗中。

3. PD-1/PD-L1抑制剂的应用

3.1. 应用在辅助治疗中

帕博利珠单抗(Pembrolizumab)是一种抗PD-1 IgG4的单抗,纳武利尤单抗(nivolumab)是一种完全人IgG4 PD-1单克隆抗体,两者于2017年被FDA批准为治疗氟嘧啶、奥沙利铂和伊立替康治疗后失败的dMMR/MSI-H的CRC患者,II期试验KEYNOTE-016 [16] 使用了帕博利珠单抗治疗难治性dMMR/pMMR的mCRC患者。dMMR组的总有效率和疾病控制率(disease control rate, DCR)分别为50%和89%,而pMMR组分别为0%和16%。

II期KEYNOTE-164试验 [17] 对比了帕博利珠单抗治疗既往接受2种及以上标准治疗方案(队列A)或≥1种及以上治疗方案(队列B)的dMMR/MSI-H的mCRC患者的疗效,主要观察终点为客观缓解率(objective response rate, ORR),队列A和队列B的中位随访时间分别为31.2个月和24.2个月,ORR分别为33%和33%,中位总生存期(overall)为31.4个月和未达到。队列A中10例(16%)和队列B中8例(13%)发生了3~4级治疗相关不良事件(treatment-related adverse events, TRAE)。

III期试验KEYNOTE-177 [18] 对比了以氟尿嘧啶为基础的化疗(FOLFOX方案/FOLFIRI方案 ± 贝伐珠单抗(bevacizumab)/西妥昔单抗(cetuximab))与帕博利珠单抗一线治疗dMMR/MSI-H mCRC患者的疗效,经过32.4个月的中位随访后,与化疗±贝伐珠单抗/西妥昔单抗组相比,帕博利珠单抗组的ORR为43.8% (vs 33.1%),中位缓解持续时间(duration of response, DOR)未达到(vs 10.6个月)。在最终分析中(中位随访时间44.5个月),帕博利珠单抗组的总生存期(overall survival, OS)虽未证实有明显优势,但其中位无进展生存期(progression-free survival, PFS)明显长于化疗组(16.5个月vs 8.2个月),与之前保持一致,且患者发生3级或以上TRAE的比例相对更低(22% vs 66%) [19]。基于以上数据,FDA于2020年批准了帕博利珠单抗用于dMMR/MSI-H mCRC的一线治疗。

伊匹单抗(ipilimumab)是一种抗细胞毒T淋巴细胞相关抗原4 (cytotoxic T lymphocyte antigen 4, CTLA-4)抗体,与活化T细胞上的CTLA-4结合,在癌症免疫周期的初始阶段防止淋巴结中的T细胞失活,同时还与调节性T细胞上的CTLA-4结合,并通过肿瘤组织中的ADCC作用消除它们 [20]。II期试验CheckMate142 [21] 设置了3个队列,其中有2队列对比了纳武利尤单抗 ± 小剂量伊匹单抗二线治疗dMMR/MSI-H复发或局部CRC患者的疗效。在纳武利尤单抗单药治疗梯队中,74名患者中的客观缓解率(objective response rate, ORR)为31.1%,68.9%的患者在12周后疾病得到控制。经过4年(中位随访时间50.9个月)的随访后,在联合小剂量伊匹单抗治疗梯队中,患者的ORR为65%,而DCR为12周或更长时间为81%。完全缓解率为13%。52%的患者观察到部分缓解;中位持续有效时间未达到,32%的患者观察到3-4级TRAE。在评估纳武利尤单抗 ± 小剂量伊匹单抗一线治疗之前未接受治疗的mCRC的队列中,经过29.0个月的中位随访后。ORR和DCR分别为69%和84%,完全缓解率为13%。中位DOR未达到,22%的患者发生3-4级TRAE。此外研究免疫检查点抑制剂治疗dMMR/MSI-H CRC的试验如COMMIT [22] (NCT02997228)、SAMCO (NCT03186326) [23] 正在进行。

3.2. 应用在新辅助治疗中

对早期黑色素瘤、肺癌和膀胱癌的研究表明,新辅助免疫治疗具有较好的病理反应 [24] [25] [26]。故新辅助免疫治疗同样可予以应用在CRC患者中,已有一些试验观察到了较好的反应。NICE (NCT03026140)试验 [27] 探究了纳武利尤单抗 + 伊匹单抗新辅助治疗对I~III期结肠癌患者的疗效,其中包括21个dMMR肿瘤和20个pMMR肿瘤(1例有dMMR、pMMR两种成分),结果显示,20例接受手术治疗的dMMR患者均有病理缓解,19例达到了主要病理缓解(major pathological responses, MPRs),12例达到了病理完全反应(pathological complete response, pCR)12例,而在15例pMMR患者术后仅有4例有病理反应,其中3例为MPRs,1例为部分缓解(partial response, PR)。

特瑞普利单抗(toripalimab)是一种靶向PD-1的选择性人源化单克隆抗体,环氧化酶-2 (Cyclooxygenase-2, COX-2)可能通过促进肿瘤血管生成、抑制肿瘤细胞凋亡等机制参与CRC的发生,II期NCT0392633试验 [28] 评估了特瑞普利单抗单独/联用COX-2抑制剂塞来昔布(celecoxib)用于新辅助治疗T3~T4期或任何T型淋巴结阳性的dMMR/MSI-H的CRC患者的疗效,主要终点是病理完全缓解的患者比例。34名患者被随机分为特瑞普利单抗加塞来昔布组(n = 17)或特瑞普利单抗单独治疗组,所有患者均进行R0切除术(>1 mm切除边缘)。经过14.9个月的中位随访期,特瑞普利单抗加塞来昔布组有15例(88%)和特瑞普利单抗单药治疗组有11例(65%)出现病理完全缓解。所有患者在总的围手术期持续时间为6个月的时间内继续接受辅助特瑞普利单抗治疗,在数据截止时均存活且无复发。在新辅助治疗期间,34例患者中仅有1例(联合塞来昔布组)在出现3级或更高的TRAE,在辅助治疗阶段,34例患者中只有1例(特瑞普利单抗单药治疗组)出现3级或更高的TRAE,安全性良好。该研究为PD-1抑制剂在新辅助联合用药治疗dMMR/MSI-H CRC提高pCR方面提供了新的思路。

II期临床试验NCT04165772 [29] 中,II~III期dMMR/MSI-H直肠腺癌患者进行了持续6个月的新辅助免疫治疗,免疫制剂为人源性抗PD-1单克隆抗体多塔利单抗(dostarimab),该治疗之后将进行标准的放化疗和手术。主要终点是多塔利单抗治疗后12个月的持续临床完全反应,或在有或无化疗的情况下完成多塔利单抗治疗后的病理完全反应,以及对有或无放疗的新辅助多塔利治疗的总体反应。目前共有12名患者完成了多塔利单抗治疗(尚未接受放化疗及手术治疗),进行了至少6个月的随访,均有临床完全缓解(磁共振成像、内镜评估、直肠指检或活检均无肿瘤证据)。运用新辅助免疫治疗达到临床完全缓解的患者是否可免除手术治疗,需更多大样本的研究和长期随访进行评估,ATOMIC (NCT02912559) [30] 等试验正在进行。

4. PD-1/PD-L1抑制剂的耐药现状

尽管以PD-1/PD-L1为代表的免疫抑制剂具有较高的应答率和持久的临床益处,然而只有约30%~50%的dMMR/MSI-H癌症患者对免疫检查点抑制剂阻断有反应,另有10%~28%的患者仍主要对免疫治疗无效 [31] [32]。

4.1. 遗传相关原因

免疫检查点抑制剂耐药的机制之一与抗原呈递的失活相关,MHC I类分子在识别和呈现外来抗原以及癌细胞产生的新抗原方面起着至关重要的作用,β-2微球蛋白(β2 microglobulin, B2M)是MHC I类抗原呈递的重要组成部分,有研究通过对接受免疫检查点抑制剂治疗的转移性黑色素瘤患者的肿瘤活检发现,无应答者的B2M杂合性缺失富集了三倍 [33]。大约20%的MSI mCRC中报告了B2M突变(相比之下,MSS结直肠癌中为1%),可能代表免疫逃逸机制 [34]。有对接收帕博利珠单抗治疗进展的dMMR/MSI-H CRC患者的肿瘤和相关免疫微环境的基因组、转录和免疫组化表征进行分析,结果证实了B2M蛋白表达的完全丧失,此外还显示患者癌症中存在高度自然杀伤(natural killer, NK)细胞和M2巨噬细胞浸润。但也有报道 [35] 即使有B2M突变MSI mCRC患者对免疫检查点抑制剂产生较好的应答,表明对抗PD-1的反应与B2M蛋白的表达状态无关。

Janus激酶(Janus kinases, JAKs)是非受体酪氨酸激酶家族的成员,在促进肿瘤生长和调节免疫应答中发挥关键作用 [36]。癌症和肿瘤基因图谱(cancer genome atlas, TCGA)的数据表明,MSI肿瘤(子宫内膜癌、结直肠癌、胃癌和前列腺癌)在JAK1中具有复发性移码突变,这些肿瘤显示干扰素应答信号的表达减少 [37]。一项对MSI-H/dMMR CRC患者的突变谱研究表明,JAK1的纯合缺失可能与抗PD-1治疗的耐药性有关 [38]。但也有对接受纳武利尤单抗和伊匹单抗治疗的MSI-H/dMMRCRC患者的回顾性研究发现JAK1功能缺失突变患者,临床反应似乎并不会受到影响 [39]。

WNT/β-catenin通路的改变在癌症发生过程中较常见,在人类乳腺癌和肺癌细胞中,Wnt途径的抑制导致NK细胞配体的下调,有利于逃避免疫监测 [40]。Wnt途径对免疫逃避的作用可能是通过调节如CD47类可进行“自我标记”的分子发挥的 [41],这类分子在肿瘤细胞中过表达,通过与巨噬细胞等免疫细胞的信号调节蛋白结合进而抑制其吞噬活性 [42]。有证据表明Wnt通路抑制剂能有效降低癌细胞对化疗药物的耐药性 [43],但在dMMR/MSI-H肿瘤中仍需进行更多的研究。

4.2. 非遗传相关原因

调节性T细胞(regulatory T cell, Treg)通常起着维持自身耐受和避免免疫反应过度损伤机体的重要作用,肿瘤免疫逃逸和免疫治疗失败的一个重要因素为肿瘤表达自身抗原进而Treg引起的免疫耐受 [44]。Foxp3被认为是调节性T细胞(regulatory T cell, Treg)的标志性分子,在乳腺癌 [45]、胰腺癌 [46] 等肿瘤中,高比例的Foxp3 + Treg常与不良的临床预后存在相关性。有研究发现中,dMMR CRC患者Foxp3 + Treg 高表达,与淋巴结无转移和无肿瘤血管生成存在相关性 [47] [48]。

β转化生长因子(Transforming Growth Factor beta, TGF-β)类细胞因子家族的成员具有控制细胞周期、血管生成以及控制炎症等多种功能 [49]。TGF-β可以通过上调Foxp3基因的表达,诱导幼稚CD4+辅助T (thelpercells, Th)细胞转化为Treg细胞 [50],TGF-β也可能参与维持Foxp3 + Treg细胞的免疫抑制功能。TGF-β在免疫检查点抑制剂治疗的MSI-H/dMMR患者中的确切作用尚不清楚,需要进一步研究。此外,巨噬细胞 [51]、髓细胞衍生抑制细胞 [52] 及细胞因子 [53] 等众多因素也影响着肿瘤免疫抑制微环境,机制复杂。

5. 小结与展望

随着研究的不断开展,PD-1/PD-L1抑制剂在dMMR/MSI-H CRC的辅助及新辅助治疗中均已取得了一定的成效,改善了CRC患者的预后。免疫治疗过程中同样会出现耐药性问题,但机制相对复杂,需更加深入的研究。希望PD-1/PD-L1抑制剂在dMMR/MSI-H CRC未来治疗得到个体化,从而给患者带来最大的生存获益。

文章引用

王一橙,李 洋. PD-1/PD-L1抑制剂治疗错配修复蛋白缺失/微卫星高度不稳定型结直肠癌的研究现状与进展
Research Status and Progress of PD-1/PD-L1 Inhibitors in the Treatment of Mismatch Repair Deficient/Microsatellite Instability-High Colorectal Cancer[J]. 临床医学进展, 2023, 13(01): 978-985. https://doi.org/10.12677/ACM.2023.131139

参考文献

  1. 1. Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mor-tality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  2. 2. Ganesh, K., Stadler, Z.K., Cercek, A., et al. (2019) Immunotherapy in Col-orectal Cancer: Rationale, Challenges and Potential. Nature Reviews Gastroenterology & Hepatology, 16, 361-375. https://doi.org/10.1038/s41575-019-0126-x

  3. 3. Siegel, R.L., Miller, K.D., Goding Sauer, A., et al. (2020) Colo-rectal Cancer Statistics, 2020. CA: A Cancer Journal for Clinicians, 70, 145-164. https://doi.org/10.3322/caac.21601

  4. 4. Postow, M.A., Callahan, M.K. and Wolchok, J.D. (2015) Immune Check-point Blockade in Cancer Therapy. Journal of Clinical Oncology, 33, 1974-1982. https://doi.org/10.1200/JCO.2014.59.4358

  5. 5. Mcdermott, D.F. and Atkins, M.B. (2013) PD-1 as a Potential Target in Cancer Therapy. Cancer Medicine, 2, 662-73. https://doi.org/10.1002/cam4.106

  6. 6. Sharpe, A.H. and Pauken, K.E. (2018) The Diverse Functions of the PD1 Inhibitory Pathway. Nature Reviews Immunology, 18,153-167. https://doi.org/10.1038/nri.2017.108

  7. 7. Li, G.M. (2008) Mechanisms and Functions of DNA Mismatch Repair. Cell Research, 18, 85-98. https://doi.org/10.1038/cr.2007.115

  8. 8. Liu, S., Kong, P., Wang, X., et al. (2019) Tumor Microenvironment Clas-sification Based on T-Cell Infiltration and PD-L1 in Patients with Mismatch Repair-Proficient and -Deficient Colorectal Cancer. Oncology Letters, 17, 2335-2343. https://doi.org/10.3892/ol.2018.9826

  9. 9. Bauer, K., Michel, S., Reuschenbach, M., et al. (2011) Dendritic Cell and Macrophage Infiltration in Microsatellite-Unstable and Microsatellite-Stable Colorectal Cancer. Familial Cancer, 10, 557-565. https://doi.org/10.1007/s10689-011-9449-7

  10. 10. Rizvi, N.A., Hellmann, M.D., Snyder, A., et al. (2015) Cancer Immunology. Mutational Landscape Determines Sensitivity to PD-1 Blockade in Non-Small Cell Lung Cancer. Science, 348, 124-128. https://doi.org/10.1126/science.aaa1348

  11. 11. Gatalica, Z., Snyder, C., Maney, T., et al. (2014) Programmed Cell Death 1 (PD-1) and Its Ligand (PD-L1) in Common Cancers and Their Correlation with Molecular Cancer Type. Cancer Epidemiology, Biomarkers & Prevention, 23, 2965-2970. https://doi.org/10.1158/1055-9965.EPI-14-0654

  12. 12. Le Gouvello, S., Bastuji-Garin, S., Aloulou, N., et al. (2008) High Prevalence of Foxp3 and IL17 in MMR-Proficient Colo-rectal Carcinomas. Gut, 57, 772-779. https://doi.org/10.1136/gut.2007.123794

  13. 13. Yoshid, A.K., Okamoto, M., Sasaki, J., et al. (2020) Anti-PD-1 Antibody Decreases Tumour-Infiltrating Regulatory T Cells. BMC Cancer, 20, Article No. 25. https://doi.org/10.1186/s12885-019-6499-y

  14. 14. Innocenti, F., Ou, F.S., Qu, X., et al. (2019) Mutational Analysis of Patients with Colorectal Cancer in CALGB/SWOG 80405 Identifies New Roles of Microsatellite Instability and Tumor Mutational Burden for Patient Outcome. Journal of Clinical Oncology, 37, 1217-1227. https://doi.org/10.1200/JCO.18.01798

  15. 15. Tougeron, D., Sueur, B., Zaanan, A., et al. (2020) Prognosis and Chemosensitivity of Deficient MMR Phenotype in Patients with Metastatic Colorectal Cancer: An AGEO Retrospective Multicenter Study. International Journal of Cancer, 147, 285-296. https://doi.org/10.1002/ijc.32879

  16. 16. Le, D.T., Uram, J.N., Wang, H., et al. (2016) Programmed Death-1 Blockade in Mismatch Repair Deficient Colorectal Can-cer. Journal of Clinical Oncology, 34, Article 103. https://doi.org/10.1200/JCO.2016.34.15_suppl.103

  17. 17. Le, D.T., Kim, T.W., Van Cutsem, E., et al. (2020) Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. Journal of Clinical Oncology, 38, 11-19. https://doi.org/10.1200/JCO.19.02107

  18. 18. André, T., Shiu, K.K., Kim, T.W., et al. (2020) Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. The New England Journal of Medicine, 383, 2207-2218. https://doi.org/10.1056/NEJMoa2017699

  19. 19. Diaz Jr., L.A., Shiu, K.-K., Kim, T.-W., et al. (2022) Pembrolizumab versus Chemotherapy for Microsatellite Instability-High or Mismatch Repair-Deficient Metastatic Colorectal Cancer (KEYNOTE-177): Final Analysis of a Randomised, Open-Label, Phase 3 Study. The Lan-cet Oncology, 23, 659-670. https://doi.org/10.1016/S1470-2045(22)00197-8

  20. 20. Rotte, A. (2019) Combination of CTLA-4 and PD-1 Block-ers for Treatment of Cancer. Journal of Experimental & Clinical Cancer Research, 38, Article 255. https://doi.org/10.1186/s13046-019-1259-z

  21. 21. Overman, M.J., Mcdermott, R., Leach, J.L., et al. (2017) Nivolumab in Patients with Metastatic DNA Mismatch Repair-Deficient or Microsatellite Instability-High Colorectal Cancer (CheckMate 142): An Open-Label, Multicentre, Phase 2 Study. The Lancet Oncology, 18, 1182-1191. https://doi.org/10.1016/S1470-2045(17)30422-9

  22. 22. Lima, C.M.S.P.R., Yothers, G., Jacobs, S.A., et al. (2020) A Randomized Phase III Study of mFOLFOX6/Bevacizumab Combination Chemotherapy with or without Atezolizumab or Atezolizumab Monotherapy in the First-Line Treatment Of Patients (pts) with Deficient DNA Mismatch Repair (dMMR) Metastatic Colorectal Cancer (mCRC): Colorectal Cancer Metastatic dMMR Immuno-Therapy (COMMIT) Study (NRG-GI004/SWOG-S1610). Journal of Clinical Oncology, 38, TPS260. https://doi.org/10.1200/JCO.2020.38.4_suppl.TPS260

  23. 23. Taïeb, J., André, T., El Hajbi, F., et al. (2021) Avelumab versus Standard Second Line Treatment Chemotherapy in Metastatic Colorectal Cancer Patients with Mi-crosatellite Instability: The SAMCO-PRODIGE 54 Randomised Phase II trial. Digestive and Liver Disease, 53, 318-323. https://doi.org/10.1016/j.dld.2020.11.031

  24. 24. Blank, C.U., Rozeman, E.A., Fanchi, L.F., et al. (2018) Neoadjuvant versus Adjuvant Ipilimumab plus Nivolumab in Macroscopic Stage III Melanoma. Nature Medicine, 24, 1655-1661. https://doi.org/10.1038/s41591-018-0198-0

  25. 25. Powles, T., Kockx, M., Rodriguez-Vida, A., et al. (2019) Clinical Efficacy and Biomarker Analysis of Neoadjuvant Atezolizumab in Operable Urothelial Carcinoma in the ABACUS Trial. Nature Medicine, 25, 1706-1714. https://doi.org/10.1038/s41591-019-0628-7

  26. 26. Forde, P.M., Chaft, J.E. and Pardoll, D.M. (2018) Neoadjuvant PD-1 Blockade in Resectable Lung Cancer. The New England Journal of Medicine, 379, e14. https://doi.org/10.1056/NEJMc1808251

  27. 27. Chalabi, M., Fanchi, L.F., Dijkstra, K.K., et al. (2020) Neoadjuvant Immunotherapy Leads to Pathological Responses in MMR-Proficient and MMR-Deficient Early-Stage Colon Cancers. Nature Medicine, 26, 566-576. https://doi.org/10.1038/s41591-020-0805-8

  28. 28. Hu, H., Kang, L., Zhang, J., et al. (2022) Neoadjuvant PD-1 Blockade with Toripalimab, with or without Celecoxib, in Mismatch Repair-Deficient or Microsatellite Instability-High, Locally Advanced, Colorectal Cancer (PICC): A Single-Centre, Parallel-Group, Non-Comparative, Randomised, Phase 2 Trial. The Lancet Gastroenterology & Hepatology, 7, 38-48. https://doi.org/10.1016/S2468-1253(21)00348-4

  29. 29. Cercek, A., Lumish, M., Sinopoli, J., et al. (2022) PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. The New England Journal of Medicine, 386, 2363-2376. https://doi.org/10.1056/NEJMoa2201445

  30. 30. Sinicrope, F.A., Ou, F.-S., Zemla, T., et al. (2019) Randomized Trial of Standard Chemotherapy Alone or Combined with Atezolizumab as Adjuvant Therapy for Patients with Stage III Colon Cancer and Deficient Mismatch Repair (ATOMIC, Alliance A021502). Journal of Clinical Oncol-ogy, 37, e15169. https://doi.org/10.1200/JCO.2019.37.15_suppl.e15169

  31. 31. Le, D.T., Uram, J.N., Wang, H., et al. (2015) PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. The New England Journal of Medicine, 372, 2509-2520. https://doi.org/10.1056/NEJMoa1500596

  32. 32. Le, D.T., Durham, J.N., Smith, K.N., et al. (2017) Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science, 357, 409-413. https://doi.org/10.1126/science.aan6733

  33. 33. Sade-Feldman, M., Jiao, Y.J., Chen, J.H., et al. (2017) Resistance to Checkpoint Blockade Therapy through Inactivation of Antigen Presentation. Nature Communications, 8, Article No. 1136. https://doi.org/10.1038/s41467-017-01062-w

  34. 34. Clendenning, M., Huang, A., Jayasekara, H., et al. (2018) So-matic Mutations of the Coding Microsatellites within the Beta-2-Microglobulin Gene in Mismatch Repair-Deficient Col-orectal Cancers and Adenomas. Familial Cancer, 17, 91-100. https://doi.org/10.1007/s10689-017-0013-y

  35. 35. Middha, S., Yaeger, R., Shia, J., et al. (2019) Majority of B2M-Mutant and -Deficient Colorectal Carcinomas Achieve Clinical Benefit from Immune Checkpoint Inhibitor Therapy and Are Microsatellite Instability-High. JCO Precision Oncology, 3, 1-14. https://doi.org/10.1200/PO.18.00321

  36. 36. Ihle, J.N. and Kerr, I.M. (1995) Jaks and STATS in Signaling by the Cytokine Receptor Superfamily. Trend in Genetics, 11, 69-74. https://doi.org/10.1016/S0168-9525(00)89000-9

  37. 37. Albacker, L.A., Wu, J., Smith, P., et al. (2017) Loss of Function JAK1 Mutations Occur at High Frequency in Cancers with Microsatellite Instability and Are Suggestive of Immune Evasion. PLOS ONE, 12, e0176181. https://doi.org/10.1371/journal.pone.0176181

  38. 38. Sveen, A., Johannessen, B., Tengs, T., et al. (2017) Multilevel Genomics of Colorectal Cancers with Microsatellite Instability-Clinical Impact of JAK1 Mutations and Consensus Mo-lecular Subtype 1. Genome Medicine, 9, Article No. 46. https://doi.org/10.1186/s13073-017-0434-0

  39. 39. Kopetz, S., Andre, T., Overman, M.J., et al. (2018) Exploratory Analysis of Janus Kinase 1 (JAK1) Loss-of-Function (LoF) Mutations in Patients with DNA Mismatch Re-pair-Deficient/Microsatellite Instability-High (dMMR/MSI-H) Metastatic Colorectal Cancer (mCRC) Treated with Nivolumab + Ipilimumab in CheckMate-142. Cancer Research, 78, Article 2603. https://doi.org/10.1158/1538-7445.AM2018-2603

  40. 40. Malladi, S., Macalinao, D.G., Jin, X., et al. (2016) Meta-static Latency and Immune Evasion through Autocrine Inhibition of WNT. Cell, 165, 45-60. https://doi.org/10.1016/j.cell.2016.02.025

  41. 41. Gowda, P., Patrick, S., Singh, A., et al. (2018) Mutant Isocitrate Dehydrogenase 1 Disrupts PKM2-β-Catenin-BRG1 Transcriptional Network-Driven CD47 Expression. Molecular and Cellular Biology, 38, e00001-000018. https://doi.org/10.1128/MCB.00001-18

  42. 42. Schürch, C.M., Forster, S., Brühl, F., et al. (2017) The “Don’t Eat Me” Signal CD47 Is a Novel Diagnostic Biomarker and Potential Therapeutic Target for Diffuse Malignant Mesothelio-ma. Oncoimmunology, 7, e1373235. https://doi.org/10.1080/2162402X.2017.1373235

  43. 43. Kukcinaviciute, E., Jonusiene, V., Sasnauskiene, A., et al. (2018) Significance of Notch and Wnt Signaling for Chemoresistance of Colorectal Cancer Cells HCT116. Journal of Cellular Biochemistry, 119, 5913-5920. https://doi.org/10.1002/jcb.26783

  44. 44. Walker, M.R., Kasprowicz, D.J., Gersuk, V.H., et al. (2003) Induction of FoxP3 and Acquisition of T Regulatory Activity by Stimulated Human CD4+CD25− T Cells. Journal of Clinical Investi-gation, 112, 1437-1443. https://doi.org/10.1172/JCI19441

  45. 45. Watanabe, M.A., Oda, J.M., Amarante, M.K., et al. (2010) Regulatory T Cells and Breast Cancer: Implications for Immunopathogenesis. Cancer and Metastasis Reviews, 29, 569-579. https://doi.org/10.1007/s10555-010-9247-y

  46. 46. Shevchenko, I., Karakhanova, S., Soltek, S., et al. (2013) Low-Dose Gemcitabine Depletes Regulatory T Cells and Improves Survival in the Orthotopic Panc02 Model of Pancre-atic Cancer. International Journal of Cancer, 133, 98-107. https://doi.org/10.1002/ijc.27990

  47. 47. Frey, D.M., Droeser, R.A., Viehl, C.T., et al. (2010) High Frequency of Tumor-Infiltrating FOXP3+ Regulatory T Cells Predicts Improved Survival in Mismatch Repair-Proficient Colorectal Cancer Patients. International Journal of Cancer, 126, 2635-2643. https://doi.org/10.1002/ijc.24989

  48. 48. Llosa, N.J., Cruise, M., Tam, A., et al. (2015) The Vigorous Immune Mi-croenvironment of Microsatellite Instable Colon Cancer Is Balanced by Multiple Counter-Inhibitory Checkpoints. Cancer Discovery, 5, 43-51. https://doi.org/10.1158/2159-8290.CD-14-0863

  49. 49. Ko, T.C., Sheng, H.M., Reisman, D., et al. (1995) Trans-forming Growth Factor-Beta 1 Inhibits Cyclin D1 Expression in Intestinal Epithelial Cells. Oncogene, 10, 177-184.

  50. 50. Chen, W., Jin, W., Hardegen, N., et al. (2003) Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-Beta Induction of Transcription Factor Foxp3. Journal of Experimental Medi-cine, 198, 1875-1886. https://doi.org/10.1084/jem.20030152

  51. 51. Mantovani, A. and Locati, M. (2013) Tu-mor-Associated Macrophages as a Paradigm of Macrophage Plasticity, Diversity, and Polarization: Lessons and Open Questions. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 1478-1483. https://doi.org/10.1161/ATVBAHA.113.300168

  52. 52. Sieminska, I. and Baran, J. (2020) Myeloid-Derived Sup-pressor Cells in Colorectal Cancer. Frontiers in Immunology, 11, Article 1526. https://doi.org/10.3389/fimmu.2020.01526

  53. 53. Boissière-Michot, F., Lazennec, G., Frugier, H., et al. (2014) Characterization of an Adaptive Immune Response in Microsatellite-Instable Colorectal Cancer. Oncoimmunology, 3, e29256. https://doi.org/10.4161/onci.29256

  54. NOTES

    *通讯作者。

期刊菜单