Advances in Clinical Medicine
Vol. 10  No. 04 ( 2020 ), Article ID: 35176 , 7 pages
10.12677/ACM.2020.104087

Correlation between Erythropoietin and Tumor Necrosis Factor Alpha in Children with Malignant Tumor Anemia

Junnan Hao1, Wufeng Xu1, Min Wei1, Lingzhen Wang1, Qianwen Xu2, Lirong Sun1*

1Department of Hematology Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao Shandong

2Department of Pediatrics, Qingdao Branch of Qilu Hospital, Qingdao Shandong

Received: Apr. 1st, 2020; accepted: Apr. 15th, 2020; published: Apr. 22nd, 2020

ABSTRACT

Objective: This article aims to investigate the levels of erythropoietin (EPO) and tumor necrosis factor (TNF)-α in children with tumor-associated anemia (CRA), and to investigate the relationship between them and their correlation with hemoglobin (Hb) levels. Method: Patients (n = 108) with CRA or non-neoplastic hematological anemia and healthy control are selected. The chemiluminescence method was used to detect the serum level of EPO and TNF-α. The correlation between EPO and Hb, TNF-α and Hb, EPO and TNF-α is analyzed. Results: The levels of serum EPO and TNF-α in children with CRA were significantly higher than those in patients with non-anemia and healthy control (p < 0.05). But there was no significant difference compared with non-neoplastic hematological children (p > 0.05). Furthermore, the expected inverse linear relation between serum EPO and Hb levels was found in CRA, and so did the relation between serum TNF-α and Hb levels (r = −0.41, −0.48, p < 0.05). But there was no correlation between TNF-α and EPO or O/P (r = −0.16, −0.24, p > 0.05). Conclusion: The feedback hyperplasia of endogenous EPO to anemia in children’s CRA is sufficient. TNF-α is involved in CRA as a negative regulator, but its mechanism of causing anemia is not related to the inhibition of EPO production.

Keywords:Tumor-Associated Anemia, Erythropoietin, Tumor Necrosis Factor-Alpha, Children

肿瘤相关性贫血儿童促红细胞生成素和肿瘤坏死因子α相关性研究

郝俊楠1,徐武凤1,魏敏1,王玲珍1,许倩文2,孙立荣1*

1青岛大学附属医院血液儿科,山东 青岛

2齐鲁医院青岛分院儿科,山东 青岛

收稿日期:2020年4月1日;录用日期:2020年4月15日;发布日期:2020年4月22日

摘 要

目的:本文旨在检测肿瘤相关性贫血(Cancer-Related Anemia, CRA)儿童促红细胞生成素(EPO)和肿瘤坏死因子(TNF)-α水平,以探讨两者及分别与血红蛋白(Hemoglobin, Hb)水平的相关性。方法:对恶性肿瘤(包括肿瘤贫血42例和肿瘤非贫血33例)及非肿瘤性贫血18例、健康查体儿童15组例采用化学发光法测定血清中EPO、TNF-α水平,分析EPO与Hb、TNF-α与Hb及EPO与TNF-α的相关性。结果:肿瘤贫血患儿血清EPO、TNF-α水平明显高于肿瘤非贫血及健康患儿(p < 0.05),肿瘤贫血患儿血清EPO与非肿瘤贫血比较差异无统计学意义(p > 0.05);肿瘤贫血组患儿血清EPO、TNF-α与Hb均呈负相关关系(r = −0.41、−0.48,p均<0.05),TNF-α与EPO及O/P相关性均无统计学意义(r = −0.16、−0.24,p均>0.05)。结论:儿童CRA中内源性EPO对贫血的反馈性增生是充分的,TNF-α作为负向调控因子参与CRA,但其引起贫血的机制与抑制EPO产生无关。

关键词 :肿瘤相关性贫血,促红细胞生成素,肿瘤坏死因子肿瘤α,儿童

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

不论肿瘤患者有无接受治疗,贫血都是常见的,被命名为肿瘤相关性贫血(CRA)。目前最大的调查研究之一,欧洲癌症贫血调查(ECAS) [1] 中发现,15,367名接受化疗的患者中有39%在随后6个月被发现贫血(Hb < 10.0 g/dL)。CRA的发病机理很复杂,通常很难识别,在大多数情况下是多因素的,并且与非CRA患者相比,有CRA病史的患者有可能会导致更加严重程度的贫血 [2]。

CRA患者中有一部分没有明确病因,这种情况下的贫血多归为慢性病贫血(ACD) [3]。潜在机制目前尚未完全清楚,但认为涉及肿瘤坏死因子(TNF)-α、白介素(IL)-1等炎性细胞因子 [4]。这些细胞因子可能抑制内源性EPO生成,损害造血过程中铁利用并减少红细胞前体的增殖 [5]。这种慢性炎症状态还会引起机体营养和代谢的变化,如体重减轻、低白蛋白血症、活性氧(ROS)增加等 [6]。这些因素交互作用,也使机体产生对EPO的抵抗。因此,分析所有导致CRA的因素至关重要,尤其在开始可能加剧贫血的任何治疗之前。

本研究旨在明确儿童CRA血清EPO水平变化,有无EPO绝对或相对缺乏,以及EPO与TNF-α水平的相关性,明确有无以TNF-α为代表的炎症细胞因子的增高导致机体对EPO抵抗和钝化,分析CRA的发病机制。

2. 对象与方法

2.1. 对象

收集2018年05月至2019年12月青岛大学附属医院医院血液儿科收治患儿为研究对象。恶性肿瘤组:75例,原发疾病为急性淋巴细胞白血病(ALL)、急性髓细胞白血病(AML)、淋巴瘤、肾母细胞瘤、神经母细胞瘤等,均符合相关疾病诊断标准,其中贫血组42(男26女16)例,年龄1~14 (7.2 ± 4.8)岁;未贫血组33 (男17女16)例,年龄1~13 (5.3 ± 2.7)岁;非肿瘤性贫血组:18 (男8女10)例,年龄1~15 (6.5 ± 4.2)岁,原发疾病为缺铁性贫血(IDA)、巨幼细胞性贫血等有非肿瘤性血液病;健康对照组:15 (男8女7)例,年龄1~10 (4.2 ± 3.8)岁,因健康查体于门诊就诊,无贫血且既往无慢性疾病及血液病史。以上所有患儿肾功能都正常。贫血的定义:6~59个月:<11.0 g/dL;5~11岁:<11.5 g/dL;12~16岁:<12.0 g/dL [7]。排除标准为:1) 病例资料极度不完整者;2) 伴有明显低氧血症;3) 有溶血及急、慢性失血,有贫血家族史;4) 合并其他慢性炎症性疾病如支气管哮喘、类风湿关节炎、炎症性肠病等;5) 目前有铁剂、维生素B12或叶酸治疗;6) 2周内有放化疗史,3月内有输血、ESAs及铁剂治疗史,近半年有手术史。分析EPO时采用的对照组:非肿瘤性贫血组18例(研究表明IDA患者EPO的反应增生能力正常)、健康对照组15例;分析TNF-α时对照组:健康对照组15例。本研究通过青岛大学附属医院医学伦理委员会批准。

2.2. 方法

2.2.1. 标本采集与处理

抽取晨醒后患儿外周静脉血3~4 ml放置于添加了分离胶–促凝剂的试管中混匀,4℃,3000 r/min离心5 min,取上层血清置于−80℃冰箱中冷冻保存。

2.2.2. 血清EPO、TNF-α检测

采用化学发光免疫分析法检测样本血清EPO、TNF-α浓度,试剂盒均购于德国Siemens公司。

2.2.3. 血清EPO分析

取血清EPO的对数log10EPO (lgEPO)进行数值转换,对Hb和EPO有相关性的组别进行Hb与lgEPO的简单线性回归分析,得到回归方程(lgEPO = 截距 + 斜率*Hb)。应用回归方程计算相应Hb水平下lgEPO预计值,并计算实测lgEPO/预计lgEPO(简写:O/P)。贫血患者的O/P < 0.80被视为EPO生成减弱 [8],正常对照为1.01 ± 0.11 [9]。

2.2.4. 统计学分析

计量资料的统计描述采用均数 ± 标准差进行表示。多组间比较先经方差分析后采用SNK-q检验,不满足方差齐性假设是应用校正的Welch方差分析后采用Games-Howell检验。计量资料之间相关关系的研究采用Pearson相关分析。p < 0.05表示差异有统计学意义。应用SPSS24.0对数据进行统计分析。

3. 结果

3.1. 不同组别血清EPO水平变化

各组间血清EPO水平差异有统计学意义(F = 13.25, p < 0.05)。肿瘤贫血组血清EPO水平[(341.73 ± 314.00) IU/L]明显高于肿瘤非贫血组EPO水平[(86.00 ± 14.62) IU/L]及健康对照组EPO水平[(32.78 ± 45.12) IU/L] (p均<0.05),但与非肿瘤贫血组[(235.26 ± 312.23) IU/L]比较差异无统计学意义。详见表1

3.2. 不同组别血清EPO水平与Hb的相关性分析

肿瘤贫血组血清EPO与Hb呈负相关关系(r = −0.41, p < 0.01);肿瘤非贫血组EPO与Hb相关性无统计学意义(r = −0.26, p > 0.05);非肿瘤贫血组EPO与 Hb相关性无统计学意义(r = −0.21, p > 0.05);健康对照组EPO与 Hb相关性无统计学意义(r = −0.14, p > 0.05)。

Table 1. Serum EPO and TNF-α levels in different groups ( χ ¯ ± s )

表1. 不同组别血清EPO、TNF-α水平( χ ¯ ± s )

注:与健康对照组、肿瘤非贫血组比较,*p < 0.05。

建立肿瘤品贫血组lgEPO与Hb的回归方程:lgEPO = 3.85 − 0.02Hb (R2 = 0.62, p < 0.05) (见图1),lgEPO O/P 0.95 ± 0.28,有19.05% (8/42) O/P < 0.8。

Figure 1. lgEPO and Hb linear regression lines (black lines) in tumor anemia group and 90% forecast period (grey line) (R2 = 0.62, p < 0.05)

图1. 肿瘤贫血组lgEPO与Hb的线性回归线(黑色线)和90%预测期间(灰色线) (R2 = 0.62, p < 0.05)

3.3. 不同组别血清TNF-α水平变化

各组间血清TNF-α水平差异有统计学意义(F = 9.16, p < 0.05)。肿瘤贫血组血清TNF-α水平[(11.64 ± 9.19) pg/mL]明显高于肿瘤非贫血组TNF-α水平[(4.22 ± 2.52) pg/mL]及健康对照组TNF-α水平[(3.16 ± 0.75) pg/ml] (p均<0.05) (血清TNF-α正常参考范围:0~8.10 pg/mL)。

3.4. 不同组别血清TNF-α水平与Hb的相关性分析

肿瘤贫血组血清TNF-α与Hb呈负相关关系(r = −0.48, p < 0.05);肿瘤非贫血组血清TNF-α与Hb相关性无统计学意义(r = −0.25, p > 0.05);健康对照组血清TNF-α与Hb相关性无统计学意义(r = −0.19, p > 0.05)。

3.5. 不同组别血清TNF-α水平与EPO的相关性分析

肿瘤贫血组血清TNF-α与EPO及O/P相关性均无统计学意义(r = −0.16, p > 0.05; r = −0.24, p > 0.05);肿瘤非贫血组血清TNF-α与EPO相关性均无统计学意义(r = −0.23, p > 0.05);健康对照组血清TNF-α与EPO相关性均无统计学意义(r = −0.21, p > 0.05)。

4. 讨论

贫血,其表现是外周血RBC数减少或Hb浓度降低,是影响肿瘤患者预后的独立危险因素 [10]。恶性肿瘤患儿贫血严重程度可能与多种变量相关联,包括患儿的年龄、疾病的程度、性质和持续治疗的时间等。还有学者提出特定方面的营养缺乏、骨髓的肿瘤浸润及并发感染等因素也参与了贫血的发病过程 [11]。这些因素对于贫血是单独还是协同发挥作用目前尚不清楚。

EPO是一种调控红细胞生成的糖蛋白。据文献报道,肾功能正常的贫血患者EPO合成机制尚完整,血清EPO水平增高,其贫血机制与EPO水平无关 [12]。将单纯IDA患者做正常参照,成人CRA患者的EPO水平相对于前者是低的,说明CRA患者的EPO对贫血的反应是钝化的 [13]。故在本研究中,纳入包括IDA患者在内的其他非肿瘤性贫血病例。与EPO水平正常的健康对照组相比,CRA患者和非肿瘤性贫血患者EPO均是明显升高的,但两者比较无差异,不存在EPO的钝化,与Corazza等 [14] 的研究结果相似。但非肿瘤性贫血病例除5例IDA外,还有其他类型的贫血,其贫血对EPO的反应是否一致有待进一步研究。

有研究表明ALL贫血患儿血清EPO水平和Hb水平之间存在反比关系,并且可以通过反馈方式调节Hb水平 [15]。本研究中在肿瘤贫血组中发现了这种反比关系,并对EPO和Hb进行线性回归分析得到O/P,超过80%的病例O/P > 0.8,再次证明患儿EPO对贫血反应无钝化 [16]。本研究纳入对象均为肾功能正常者,其中有原发部位在肾脏的肿瘤如肾母细胞瘤患者5例,在贫血状态下有4例血清EPO水平是升高的,另有1例为一侧肾切除术后,其EPO无升高,O/P < 0.8,其贫血原因不能简单的归为EPO生成的缺乏,肾切除术可能与其发病相关。虽然CRA中EPO反馈性升高,但贫血无纠正。慢性炎症及营养代谢障碍对红细胞生成的抑制作用,可能与之有关。

ACD又名炎症性贫血,是由慢性感染、恶性肿瘤和自身免疫性疾病等因素引起,缓解期贫血可能是ACD的一种表现形式 [17]。这种炎症状态表现为CRP升高、体重减轻、低白蛋白血症和EPO抵抗性贫血,并涉及免疫、营养和代谢多种发病机制 [18]。炎症本身也可干扰营养状态,继而使贫血加重。炎症细胞因子如IL-1和TNF-α等,既可以抑制红系祖细胞的增殖,也钝化了血清EPO对Hb下降的正常反应,参与贫血的发生 [19]。TNF-α与炎症和肿瘤密切相关,在多种肿瘤微环境中均有表达,并被归类为肿瘤促进剂 [20]。本研究发现CRA中TNF-α与Hb两者呈负相关,说明TNF-α抑制了红细胞的生成。同时,TNF-α也可直接抑制EPO的生成 [21]。但也有研究表明EPO可通过巨噬细胞诱导一氧化氮合成酶抑制TNF-α、IL-6等炎性因子的形成 [22]。但Tsopra等 [23] 在慢性淋巴细胞白血病中的证实,贫血的发生独立于EPO生成和刺激,可能是TNF-α对红细胞生成早期红系发育的直接抑制作用导致。本研究对CRA中EPO及O/P与TNF-α进行分析,均未发现相关性,与以上研究结果一致。

综上所述,在儿童肿瘤贫血患儿中,EPO和TNF-α均参与贫血的发生。内源性EPO对贫血的反馈性增生是充分的,TNF-α作为负向调控因子参与贫血的机制与抑制EPO产生无关,与成人研究结果相反 [24]。有必要进行更多研究了解儿童CRA中EPO和TNF-α之间的分子调节机制,更好地了解CRA的发病机制指导预防和治疗。

文章引用

郝俊楠,徐武凤,魏 敏,王玲珍,许倩文,孙立荣. 肿瘤相关性贫血儿童促红细胞生成素和肿瘤坏死因子α相关性研究
Correlation between Erythropoietin and Tumor Necrosis Factor Alpha in Children with Malignant Tumor Anemia[J]. 临床医学进展, 2020, 10(04): 555-561. https://doi.org/10.12677/ACM.2020.104087

参考文献

  1. 1. Ludwig, H., Van Belle, S., Barrett-Lee, P., et al. (2004) The European Cancer Anaemia Survey (ECAS): A Large, Multinational, Prospective Survey Defining the Prevalence, Incidence, and Treatment of Anaemia in Cancer Patients. European Journal of Cancer, 40, 2293-2306. https://doi.org/10.1016/j.ejca.2004.06.019

  2. 2. Rodgers, G.M., Becker, P.S., Blinder, M., et al. (2012) Cancer and Chemotherapy-Induced Anemia. Journal of the National Compre-hensive Cancer Network, 10, 628-653. https://doi.org/10.6004/jnccn.2012.0064

  3. 3. Cullis, J. (2013) Anaemia of Chronic Disease. Clinical Medicine, 13, 193-196. https://doi.org/10.7861/clinmedicine.13-2-193

  4. 4. Macciò, A. and Madeddu, C. (2012) Inflammation and Ovarian Cancer. Cytokine, 58, 133-147. https://doi.org/10.1016/j.cyto.2012.01.015

  5. 5. Bode, J.G., Albrecht, U., Hussinger, D., et al. (2012) Hepatic Acute Phase Proteins—Regulation by IL-6- and IL-1-Type Cytokines Involving STAT3 and Its Crosstalk with NF-κB-Dependent Signaling. European Journal of Cell Biology, 91, 496-505. https://doi.org/10.1016/j.ejcb.2011.09.008

  6. 6. Kundu, J.K. and Surh, Y.J. (2012) Emerging Avenues Linking Inflammation and Cancer. Free Radical Biology & Medicine, 52, 2013-2037. https://doi.org/10.1016/j.freeradbiomed.2012.02.035

  7. 7. 王卫国, 孙锟, 等. 儿科学[M]. 第9版. 北京: 人民卫生出版社, 2018: 331-332.

  8. 8. Cazzola, M. (2003) Erythropoietin Therapy: Need for Rationality and Active Surveil-lance. Haematologica, 88, 601-605.

  9. 9. Manfred, N., et al. (2016) Iron Deficiency or Anemia of Inflammation: Differ-ential Diagnosis and Mechanisms of Anemia of Inflammation. Wiener Medizinische Wochenschrift, 166, 411-423. https://doi.org/10.1007/s10354-016-0505-7

  10. 10. Victor, P., Paitan, A., Cindy, L., et al. (2018) Anemia as a Prognostic Factor in Cancer Patients. La Revista Peruana de Medicina Experimental y Salud Pública, 35, 250-258. https://doi.org/10.17843/rpmesp.2018.352.3171

  11. 11. Grotto, H.Z.W. (2008) Anaemia of Cancer: An Overview of Mechanisms Involved in Its Pathogenesis. Medical Oncology, 25, 12-21. https://doi.org/10.1007/s12032-007-9000-8

  12. 12. Nayak-Rao, S. and Mccormick, B. (2013) Erythropoietin Use in CKD Patients with Cancer: To Tread with Caution? Journal of Nephrology, 26, 829-835. https://doi.org/10.5301/jn.5000316

  13. 13. Blindar, V., Zubrikhina, G., Davydova, T., et al. (2019) Development of Strategic Approaches to Modern Diagnosis of Anemic Syndrome in Patients with Breast Cancer. Kliniceskaja Laboratornaja Diagnostika, 64, 210-215. https://doi.org/10.18821/0869-2084-2019-64-4-210-215

  14. 14. Corazza, F., Beguin, Y., Bergmann, P., et al. (1998) Anemia in Children with Cancer Is Associated with Decreased Erythropoietic Activity and Not with Inadequate Erythropoietin Production. Blood, 92, 1793-1798. https://doi.org/10.1182/blood.V92.5.1793

  15. 15. Steele, M.G. and Narendran, A. (2012) Mechanisms of Defective Erythropoiesis and Anemia in Pediatric Acute Lymphoblastic Leukemia (ALL). Annals of Hematology, 91, 1513-1518. https://doi.org/10.1007/s00277-012-1475-5

  16. 16. Tisi, M.C., Bozzoli, V., Giachelia, M., et al. (2014) Anemia in Diffuse Large B-Cell Non-Hodgkin Lymphoma: The Role of Interleukin-6, Hepcidin and Erythropoietin. Leukemia & Lymphoma, 55, 270-275. https://doi.org/10.3109/10428194.2013.802314

  17. 17. Demarmels Biasiutti, F. (2010) Anemia of Chronic Disorder: Pathogenesis, Clinical Presentation and Treatment. Therapeutische Umschau Revue Thérapeutique, 67, 225-228. https://doi.org/10.1024/0040-5930/a000041

  18. 18. Maccio, A., Madeddu, C., Gramignano, G., et al. (2015) The Role of Inflammation, Iron, and Nutritional Status in Cancer-Related Anemia: Results of a Large, Prospective, Observational Study. Haematologica, 100, 124-132. https://doi.org/10.3324/haematol.2014.112813

  19. 19. Buck, I., Morceau, F., Grigorakaki, C., et al. (2009) Linking Anemia to Inflammation and Cancer: The Crucial Role of TNFα. Biochemical Pharmacology, 77, 1572-1579. https://doi.org/10.1016/j.bcp.2008.12.018

  20. 20. Atretkhany, K.N., Gogoleva, V.S. and Drutskaya, M.S. (2020) Distinct Modes of TNF Signaling through Its Two Receptors in Health and Disease. Journal of Leukocyte Biology, 1-13. https://doi.org/10.1002/JLB.2MR0120-510R

  21. 21. Ek, T., Mellander, L. and Abrahamsson, J. (2005) Interferon γ and Tumour Necrosis Factor α in Relation to Anaemia and Prognosis in Childhood Cancer. Acta Paediatrica, 94, 435-437. https://doi.org/10.1111/j.1651-2227.2005.tb01914.x

  22. 22. Nairz, M., Sonnweber, T., Schroll, A., et al. (2012) The Pleiotropic Effects of Erythropoietin in Infection and Inflammation. Microbes & Infection, 14, 238-246. https://doi.org/10.1016/j.micinf.2011.10.005

  23. 23. Tsopra, O.A., Ziros, P.G., Lagadinou, E.D., et al. (2009) Dis-ease-Related Anemia in Chronic Lymphocytic Leukemia Is Not Due to Intrinsic Defects of Erythroid Precursors: A Pos-sible Pathogenetic Role for Tumor Necrosis Factor-Alpha. Acta Haematologica, 121, 187-195. https://doi.org/10.1159/000220331

  24. 24. 刘东芳, 张成侠, 冯志刚, 等. 铁调素、IFN-γ、TNF-α等负调控因子对肿瘤性贫血患者红系增生的影响[J]. 医学临床研究, 2015(10): 1940-1942.

  25. NOTES

    *通讯作者。

期刊菜单