Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62636 , 5 pages
10.12677/ACM.2023.133545

HMGB1和NF-κB在癌症中的研究进展

潘志昂,成红军,白兆兆,白鹏伟,达明绪

甘肃省人民医院肿瘤外科,甘肃 兰州

收稿日期:2023年2月15日;录用日期:2023年3月10日;发布日期:2023年3月17日

摘要

癌症已成为影响人类健康的重大威胁,癌症患者逐年上升,这也刺激着癌症的研究越发深入。近些年的研究说明癌症与炎症的关系是毋庸置疑的,然而验证的促癌机制仍是众说纷纭。本文从促炎因子高迁移率族蛋白1出发,论述其与经典炎症因子NF-κB共同作用下与癌症的进展、治疗及预后的关系。

关键词

胃癌,HMGB1,NF-κB,信号通路

Research Progress of HMGB1 and NF-κB in Cancer

Zhiang Pan, Hongjun Cheng, Zhaozhao Bai, Pengwei Bai, Mingxu Da

Surgical Oncology Department, Gansu Provincial People’s Hospital, Lanzhou Gansu

Received: Feb. 15th, 2023; accepted: Mar. 10th, 2023; published: Mar. 17th, 2023

ABSTRACT

Cancer has become a major threat to human health, and the number of cancer patients is increasing year by year, which also stimulates the further research of cancer. Recent studies have shown that the relationship between cancer and inflammation is beyond doubt, but the proven mechanisms that promote cancer remain controversial. Based on the high mobility group protein 1 of proinflammatory factor, the relationship between proinflammatory factor NF-κB and cancer progression, treatment and prognosis was discussed in this paper.

Keywords:Gastric Cancer, HMGB1, NF-κB, Signaling Pathway

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

胃癌,常见的消化道恶性肿瘤之一,2020年全球新发病例显示,全年新发胃癌病例近109万,新增死亡病例超77万,发病率和死亡率分别位于全球第五和第四。我国作为胃癌大国,2020全年胃癌新发约48万人,死亡约37万 [1] 。胃癌的治疗是以手术为主的综合治疗,且胃癌的预后与诊治时机密切相关,约有90%早期胃癌患者可通过内镜下或手术切除将生存率延长至5年以上,而进展期胃癌即使经过治疗后5年生存率也不足30% [2] ,尽管化疗和放疗等其他治疗上有所发展,但众多的胃癌患者仍然面临着预后差、5年生存率低的情况。研究表明胃癌的复发与转移与其预后密不可分 [3] [4] 。胃癌的机制是一个多基因参与和多阶段的复杂过程 [5] ,因此,针对胃癌转移机制的研究一直是一个重点。

2. HMGB1和NF-κB的分子结构和生理作用

高迁移率族蛋白1 (High Mobility Group Box 1, HMGB1)是一种染色体结合蛋白,同时也是一种损伤相关的模式分子。1973年,Ernest Johns及其同事Graham Goodwin和Clive Sanders首次通过0.35 M NaCl萃取从小牛胸腺染色质中分离出两组蛋白质 [6] [7] ,依据其在聚丙烯酰胺凝胶电泳体系中快速迁移速率,分别命名为高迁移率族和低迁移率族。其中高迁移率族即为HMG蛋白,通过凝胶进一步的分离HMG蛋白可知至少含有两种蛋白,即HMG-1和HMG-2,其中HMG-1在2001年由HMG染色体蛋白命名委员会将其更名为HMGB1 [8] 。HMGB1由216个氨基酸残基构成,形成2个N端结构域和1个C端酸性结构域(186~215 aa),N端分别由HMG A盒(9~79 aa)和HMG B盒(95~163 aa)组成。据报道,HMGB1的促炎活性区域主要定位于B盒,而A盒具有抗炎的作用,可作为HMGB1拮抗剂 [9] 。HMGB1在炎症反应中的作用 [10] 主要可以分为以下几点:① 刺激细胞迁移,促进免疫细胞定位损伤部位;② 促进固有免疫细胞对细菌及其产物的识别;③ 激活固有免疫细胞,产生促炎因子、细胞因子等加重炎症反应;④ 抑制中性粒细胞凋亡,使凋亡的中性粒细胞累积随后再次释放细胞因子。

核因子κB (nuclear factor kappa-B, NF-κB)由Rel同源家族的二聚体蛋白组成 [11] ,参与了炎症反应、细胞凋亡、生长和增殖、细胞间通讯等诸多功能,是一种功能全面的炎症因子 [12] 。其中p65是NF-κB家族中重要的成员之一,相对分子量65 KD,组成的P50/P65异源二聚体是最常见的NF-κB/Rel复合体,其含量常常最高,并几乎存在于体内所有细胞中 [11] 。NF-κB自David Baltimore在B细胞肿瘤提取物中被发现以来,众多的研究逐渐的充实了NF-κB的生理作用。NF-κB是NF-κB/Rel蛋白家族成员之一,目前在哺乳动物中已发现有5种NF-κB/Rel蛋白,包括p50 (又称为NF-κB1,由前体蛋白p105产生)、p52 (又称为NF-κB2,由前体蛋白p100产生)、RelA (p65),RelB和c-Rel。每一个NF-κB/Rel蛋白家族成员的N端都含有Rel同源结构域,包括核定位信号序列、二聚化区域、DNA结合区和IκB结合位点。p65,RelB和Rel的C端含有转录激活域,其中富含丝氨酸、酸性氨基酸和疏水性氨基酸,能直接作用于转录元件并激活转录过程。除了p52和p50外,这些蛋白两两结合成具有NF-κB活性的不同转录因子复合物,其中p65/p50是存在最广泛且是目前研究最多的二聚体复合物 [13] 。

3. HMGB1和NF-κB与肿瘤

HMGB1有强大的促炎作用,是器官损伤的关键介质之一 [14] 和炎症控制的靶点 [15] 。HMGB1参与包括癌症在内的某些生理和病理过程,有研究发现其在前列腺癌和卵巢癌中差异表达 [16] [17] 。HMGB1在不同分化水平的恶性肿瘤中均有表达 [18] ,在淋巴瘤 [19] 和头颈部鳞状细胞癌中表达上调 [20] ,并有助于头颈部鳞状细胞癌的恶性进展 [21] 。另有研究指出HMGB1与结直肠癌进展和不良预后相关 [22] 。

NF-κB的激活途径主要包含经典途径和旁路途径 [23] [24] 。NF-κB二聚体由两个信号通路激活 [25] 。其中经典的通路被多种刺激激活,如白细胞介素-1β (IL-1β)、肿瘤坏死因子(TNF)及细菌等 [26] 。研究指出,NF-κB因子与脓毒血症 [27] 、克罗恩病 [28] 、溃疡性结肠炎 [29] 等炎症过程有关。同时,NF-κB及其信号通路中的大部分激活因子被认为在肿瘤的发生发展中有重要作用 [30] 。我国一项包含187例卵巢上皮性癌和221例健康志愿者的研究中发现,NF-κB基因与卵巢上皮性癌症的易感性相关 [31] 。Zhao的研究指出NF-κB信号通路抑制结直肠癌的细胞生长的作用 [32] 。Arisawa的研究指出在一项包含479例胃癌和880例对照的研究中发现,NF-κB与胃癌易感性有关 [33] 。Zhang等人的研究发现胃癌中的NF-κB受到C12orf59和CDH11的双向调节,进一步阐述了NF-κB介导的胃癌发生发展信号通路 [34] 。

4. HMGB/NF-κB信号通路与肿瘤

HMGB1作为警报蛋白触发机体的固有防御,NF-κB作为炎症通路修复机体损伤,二者介导的HMGB1/NF-κB信号通路参与了体内多种恶性肿瘤的发生和发展。Xu等发现骨髓间充质来源外泌体可抑制HMGB1/NF-κB信号通路的激活进而降低烟雾性肺损伤的程度 [35] 。Wang等的研究证实骨肉瘤EMT过程中HMGB1/NF-κB信号通路起关键作用,厚朴碱可抑制其活性并增加骨肉瘤对顺铂化疗的敏感性 [36] 。另有研究提示,HMGB1/NF-κB信号通路参与了前列腺癌 [37] 、肝细胞肝癌的EMT过程 [38] 及线粒体DNA损伤修复 [39] 。

HMGB1/NF-κB信号通路在多种炎症相关的信号通路中发挥着重要作用,越来越多的研究者意识到HMGB1/NF-κB信号通路在多个癌肿的发生及发展中起关键作用,并通过相关的研究证明了这些作用,HMGB1/NF-κB信号通路有望成为治疗肿瘤的新的靶点,但仍需进一步的研究去完善和证明。

文章引用

潘志昂,成红军,白兆兆,白鹏伟,达明绪. HMGB1和NF-κB在癌症中的研究进展
Research Progress of HMGB1 and NF-κB in Cancer[J]. 临床医学进展, 2023, 13(03): 3803-3807. https://doi.org/10.12677/ACM.2023.133545

参考文献

  1. 1. Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  2. 2. Katai, H., Ishikawa, T., Akazawa, K., et al. (2018) Five-Year Survival Analysis of Surgically Resected Gastric Cancer Cases in Japan: A Retrospective Analysis of More than 100,000 Patients from the Nationwide Registry of the Japanese Gastric Cancer Association (2001-2007). Gastric Cancer, 21, 144-154. https://doi.org/10.1007/s10120-017-0716-7

  3. 3. Gill, R.S., Al-Adra, D.P., Nagendran, J., et al. (2011) Treatment of Gastric Cancer with Peritoneal Carcinomatosis by Cytoreductive Surgery and HIPEC: A Systematic Review of Sur-vival, Mortality, and Morbidity. Journal of Surgical Oncology, 104, 692-698. https://doi.org/10.1002/jso.22017

  4. 4. Zhao, L., Jiang, L., He, L., et al. (2019) Identification of a Novel Cell Cy-cle-Related Gene Signature Predicting Survival in Patients with Gastric Cancer. Journal of Cellular Physiology, 234, 6350-6360. https://doi.org/10.1002/jcp.27365

  5. 5. Karimi, P., Islami, F., Anandasabapathy, S., et al. (2014) Gastric Cancer: Descriptive Epidemiology, Risk Factors, Screening, and Prevention. Cancer Epidemiology, Biomarkers & Prevention, 23, 700-713. https://doi.org/10.1158/1055-9965.EPI-13-1057

  6. 6. Goodwin, G.H. and Johns, E. (1973) Isolation and Charac-terisation of Two Calf-Thymus Chromatin Non-Histone Proteins with High Contents of Acidic And Basic Amino Acids. European Journal of Biochemistry, 40, 215-219. https://doi.org/10.1111/j.1432-1033.1973.tb03188.x

  7. 7. Goodwin, G.H., Sanders, C. and Johns, E. (1973) A New Group of Chromatin-Associated Proteins with a High Content of Acidic and Basic Amino Acids. European Jour-nal of Biochemistry, 38, 14-19. https://doi.org/10.1111/j.1432-1033.1973.tb03026.x

  8. 8. Kang, R., Chen, R., Zhang, Q., et al. (2014) HMGB1 in Health and Disease. Molecular Aspects of Medicine, 40, 1-116. https://doi.org/10.1016/j.mam.2014.05.001

  9. 9. Yang, H., Liu, H., Zeng, Q., et al. (2019) Inhibition of HMGB1/RAGE-Mediated Endocytosis by HMGB1 Antagonist Box A, Anti-HMGB1 Antibodies, and Cholinergic Agonists Suppresses Inflammation. Molecular Medicine, 25, 13. https://doi.org/10.1186/s10020-019-0081-6

  10. 10. Hou, C., Zhao, H., Liu, L., et al. (2011) High Mobility Group Protein B1 (HMGB1) in Asthma: Comparison of Patients with Chronic Obstructive Pulmonary Disease and Healthy Controls. Molecular Medicine, 17, 807-815. https://doi.org/10.2119/molmed.2010.00173

  11. 11. Hayden, M.S. and Ghosh, S. (2008) Shared Principles in NF-κB Signaling. Cell, 132, 344-362. https://doi.org/10.1016/j.cell.2008.01.020

  12. 12. Nixon, C.C., Mavigner, M., Sampey, G.C., et al. (2020) Systemic HIV and SIV Latency Reversal via Non-Canonical NF-κB Signalling in Vivo. Nature, 578, 160-165. https://doi.org/10.1038/s41586-020-1951-3

  13. 13. Barnabei, L., Laplantine, E., Mbongo, W., et al. (2021) NF-κB: At the Borders of Autoimmunity and Inflammation. Frontiers in Immunology, 12, Article ID: 716469. https://doi.org/10.3389/fimmu.2021.716469

  14. 14. Asavarut, P., Zhao, H., Gu, J., et al. (2013) The Role of HMGB1 in Inflammation-Mediated Organ Injury. Acta Anaesthesiologica Taiwanica, 51, 28-33. https://doi.org/10.1016/j.aat.2013.03.007

  15. 15. Nogueira-Machado, J.A. and de Oliveira Volpe, C.M. (2012) HMGB-1 as a Target for Inflammation Controlling. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 6, 201-209. https://doi.org/10.2174/187221412802481784

  16. 16. Teiten, M.-H., Gaigneaux, A., Chateauvieux, S., et al. (2012) Identification of Differentially Expressed Proteins in Curcumin-Treated Prostate Cancer Cell Lines. Omics, 16, 289-300. https://doi.org/10.1089/omi.2011.0136

  17. 17. Chen, J., Xi, B., Zhao, Y., et al. (2012) High-Mobility Group Protein B1 (HMGB1) Is a Novel Biomarker for Human Ovarian Cancer. Elsevier, Amsterdam. https://doi.org/10.1016/j.ygyno.2012.03.051

  18. 18. Kostova, N., Zlateva, S., Ugrinova, I., et al. (2010) The Expres-sion of HMGB1 Protein and Its Receptor RAGE in Human Malignant Tumors. Molecular and Cellular Biochemistry, 337, 251-258. https://doi.org/10.1007/s11010-009-0305-0

  19. 19. Sterenczak, K.A., Joetzke, A.E., Willenbrock, S., et al. (2010) High-Mobility Group B1 (HMGB1) and Receptor for Advanced Glycation End-Products (RAGE) Expression in Canine Lymphoma. Anticancer Research, 30, 5043-5048.

  20. 20. Choi, J., Lee, M.K., Oh, K.H., et al. (2011) Interaction Effect between the Receptor for Advanced Glycation end Products (RAGE) and High-Mobility Group Box-1 (HMGB-1) for the Migration of a Squamous Cell Carcinoma Cell Line. Tumori, 97, 196-202. https://doi.org/10.1177/030089161109700211

  21. 21. Liu, Y., Xie, C., Zhang, X., et al. (2010) Elevated Expression of HMGB1 in Squamous-Cell Carcinoma of the Head and Neck and Its Clinical Significance. European Journal of Can-cer, 46, 3007-3015. https://doi.org/10.1016/j.ejca.2010.07.016

  22. 22. Yao, X., Zhao, G., Yang, H., et al. (2010) Overexpression of High-Mobility Group Box 1 Correlates with Tumor Progression and Poor Prognosis in Human Colorectal Carcinoma. Journal of Cancer Research and Clinical Oncology, 136, 677-684. https://doi.org/10.1007/s00432-009-0706-1

  23. 23. Bonizzi, G. and Karin, M. (2004) The Two NF-κB Activation Pathways and Their Role in Innate and Adaptive Immunity. Trends in Immunology, 25, 280-288. https://doi.org/10.1016/j.it.2004.03.008

  24. 24. Luo, J.-L., Kamata, H. and Karin, M. (2005) IKK/NF-κB Signaling: Balancing Life and Death—A New Approach to Cancer Therapy. Journal of Clinical Investigation, 115, 2625-2632. https://doi.org/10.1172/JCI26322

  25. 25. Yu, H., Lin, L., Zhang, Z., et al. (2020) Targeting NF-κB Pathway for the Therapy of Diseases: Mechanism and Clinical Study. Signal Transduction and Targeted Therapy, 5, 209. https://doi.org/10.1038/s41392-020-00312-6

  26. 26. Song, K. and Li, S. (2021) The Role of Ubiquitination in NF-κB Signaling during Virus Infection. Viruses, 13, 145. https://doi.org/10.3390/v13020145

  27. 27. Adamzik, M., Schäfer, S., Frey, U.H., et al. (2013) The NFKB1 Promoter Polymorphism (−94ins/delATTG) Alters Nuclear Translocation of NF-κB1 in Monocytes after Lipopolysaccharide Stimulation and Is Associated with Increased Mortality in Sepsis. Anesthesiology, 118, 123-133. https://doi.org/10.1097/ALN.0b013e318277a652

  28. 28. Yang, Y., Wang, J., Yang, Q., et al. (2014) Shikonin Inhib-its the Lipopolysaccharide-Induced Release of HMGB1 in RAW264.7 Cells via IFN and NF-κB Signaling Pathways. International Immunopharmacology, 19, 81-87. https://doi.org/10.1016/j.intimp.2014.01.003

  29. 29. Bank, S., Skytt, A.P., Burisch, J., et al. (2014) Polymorphisms in the Inflammatory Pathway Genes TLR2, TLR4, TLR9, LY96, NFKBIA, NFKB1, TNFA, TNFRSF1A, IL6R, IL10, IL23R, PTPN22, and PPARG Are Associated with Susceptibility of Inflammatory Bowel Disease in a Danish Cohort. PLOS ONE, 9, e98815. https://doi.org/10.1371/journal.pone.0098815

  30. 30. Perkins, N. (2012) The Diverse and Complex Roles of NF-κB Subunits in Cancer. Nature Reviews Cancer, 12, 121-132. https://doi.org/10.1038/nrc3204

  31. 31. 张惠湘, 李鲲, 钟慧军. NFKB1基因启动子区插入/缺失多态性与卵巢上皮性癌的相关性[J]. 宁夏医科大学学报, 2013, 35(3): 296-298.

  32. 32. Zhao, X., Li, L., Yuan, S., et al. (2021) SPIB Acts as a Tumor Suppressor by Activating the NF-κB and JNK Signaling Pathways through MAP4K1 in Colorectal Cancer Cells. Cell Signaling, 88, Article ID: 110148. https://doi.org/10.1016/j.cellsig.2021.110148

  33. 33. Arisawa, T., Tahara, T., Shiroeda, H., et al. (2013) Functional Promoter Polymorphisms of NFKB1 Influence Susceptibility to the Diffuse Type of Gastric Cancer. Oncology Reports, 30, 3013-3019. https://doi.org/10.3892/or.2013.2768

  34. 34. Liu, J.-Y., Jiang, L., He, T., et al. (2019) NETO2 Pro-motes Invasion and Metastasis of Gastric Cancer Cells via Activation of PI3K/Akt/NF-κB/Snail Axis and Predicts Out-come of the Patients. Cell Death & Disease, 10, Article No. 162. https://doi.org/10.1038/s41419-019-1388-5

  35. 35. Xu, B., Gan, C.-X., Chen, S.-S., et al. (2020) BMSC-Derived Exosomes Alleviate Smoke Inhalation Lung Injury through Blockade of the HMGB1/NF-κB Pathway. Life Sciences, 257, Article ID: 118042. https://doi.org/10.1016/j.lfs.2020.118042

  36. 36. Wang, Y., Shang, G., Wang, W., et al. (2020) Magnoflorine Inhibits the Malignant Phenotypes and Increases Cisplatin Sensitivity of Osteosarcoma Cells via Regulating miR-410-3p/HMGB1/NF-κB Pathway. Life Sciences, 256, Article ID: 117967. https://doi.org/10.1016/j.lfs.2020.117967

  37. 37. Zhou, J., Chen, X., Gilvary, D.L., et al. (2015) HMGB1 Induction of Clusterin Creates a Chemoresistant Niche in Human Prostate Tumor Cells. Scientific Reports, 5, Article No. 15085. https://doi.org/10.1038/srep15085

  38. 38. Zhang, J., Shao, S., Han, D., et al. (2018) High Mobility Group Box 1 Promotes the Epithelial-to-Mesenchymal Transition in Prostate Cancer PC3 Cells via the RAGE/NF-κB Signaling Path-way. International Journal of Oncology, 53, 659-671. https://doi.org/10.3892/ijo.2018.4420

  39. 39. Liu, Y., Yan, W., Tohme, S., et al. (2015) Hypoxia Induced HMGB1 and Mitochondrial DNA Interactions Mediate Tumor Growth in Hepatocellular Carcinoma through Toll-Like Receptor 9. Journal of Hepatology, 63, 114-121. https://doi.org/10.1016/j.jhep.2015.02.009

期刊菜单