Advances in Clinical Medicine
Vol. 13  No. 12 ( 2023 ), Article ID: 77877 , 8 pages
10.12677/ACM.2023.13122756

酰胺质子转移加权成像对肿瘤的研究进展

向绪洋1,李孝忠2*,林慧婷1

1甘肃中医药大学第一临床医学院,甘肃 兰州

2甘肃中医药大学附属医院医学影像中心核磁室,甘肃 兰州

收稿日期:2023年11月21日;录用日期:2023年12月14日;发布日期:2023年12月25日

摘要

酰胺质子转移加权成像(Amide Proton Transfer Weighted, APTw)是一致化学交换饱和技术(Chemical Exchange Saturation Transfer, CEST)的亚型,它是一种新型的分子磁共振成像技术。该技术主要基于细胞蛋白和组织中内源性多肽生成图像对比度,间接反映细胞的代谢及生理病理变化。目前APTw成像已经在多种肿瘤成像方面表现出良好的发展前景,特别在脑肿瘤和肿瘤治疗方面的应用显示出较大的优势。本文旨在描述APTw成像的基本原理及APTw成像在肿瘤中的研究现状、缺陷及前景。

关键词

酰胺质子转移,化学交换饱和转移,肿瘤,磁共振成像

Research Progress on Tumor by Weighted Imaging of Amide Proton Transfer

Xuyang Xiang1, Xiaozhong Li2*, Huiting Lin1

1First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou Gansu

2Department of Magnetic Resonance Imaging, Medical Imaging Center, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou Gansu

Received: Nov. 21st, 2023; accepted: Dec. 14th, 2023; published: Dec. 25th, 2023

ABSTRACT

Amide proton transfer weighted imaging (APTw) is a subtype of chemical exchange saturation transfer (CEST) and a novel molecular magnetic resonance imaging technique. This technology is mainly based on the contrast of images generated by endogenous peptides in cell proteins and tissues, indirectly reflecting the metabolic and physiological pathological changes of cells. At present, APTw imaging has shown good development prospects in the imaging of various tumors, especially in the application of brain tumor and tumor treatment. This article aims to describe the basic principles of APTw imaging and the current research status, shortcomings, and prospects of APTw imaging in tumors.

Keywords:Amide Proton Transfer, Chemical Exchange Saturation Transfer, Tumor, Magnetic Resonance Imaging

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

磁共振成像技术在我国已经发展了数十年,在临床上许多方面都展现了科技的先进性,是一种高度通用的成像技术。目前磁共振成像是诊断疾病、指导治疗和评估疗效的关键方式。在众多机构的数据表明,APTw技术为肿瘤的诊断中增加了重要价值,如肿瘤的检测于分级 [1] - [6] ,治疗效果于肿瘤复发的评估 [7] [8] [9] ,于肿瘤进展和生存相关的预后 [10] [11] 和基因标志物的鉴别 [12] [13] [14] ,已经得到了临床的广泛关注和认可 [6] 。APTw主要基于细胞蛋白和组织中内源性多肽生成图像对比度,间接反映细胞的代谢及生理病理变化,为临床诊断和治疗提供帮助 [15] [16] [17] [18] [19] 。

2. APTw成像技术原理

APTw属于CEST成像的一种亚型,其技术原理也和CEST大致相同,但也有自己的技术特点。CEST增强灵敏度的原理是低浓度溶质分子通过射频(RF)使特定的可交换质子饱和来标记 [20] 。溶质质子具有不同于水的共振频率,但是由于溶质浓度很低(μM至mM范围),单次饱和度转移不足以对水质子产生任何影响(100M范围),因此在常规MR成像中是看不见的。鉴于水池相对于饱和溶质质子池来说更大,每个交换发生时,饱和的溶质质子都会被非饱和水质子所取代,然后再次被饱和。这种饱和传输可以将饱和能量转移到自由水中,降低水的磁化强度和信号。在饱和脉冲的持续作用下,饱和传输会在扫描区域不断积累水的饱和。这种放大机制使得间接观察低浓度溶质成为可能,从而获得关于受检测目标物质含量和环境信息的数据。该技术最初应用于健康成人的膀胱尿素显像 [21] ,并且目前常用的可交换质子的体内代谢产物包括酰胺键(-NH)、胺键(-NH2)、羟基(-OH)等 [22] 。由于酰胺质子在体内游离蛋白质和多肽中广泛存在,因此基于CEST的APTw成像可以成为一种有效的无创分子检测工具 [23] 。

APTw磁共振成像是周进元教授 [24] 等人在2003年提出的一种基于化学交换饱和转移的分子磁共振成像的方法,用于检测体内蛋白质含量和PH值,进而达到诊断疾病的一种新型的成像技术。APTw成像的基础是CEST双池(溶质池和溶液池)交换模型,在APTw成像中,通过预先使用特定频率的偏振射频脉冲来选择饱和移动蛋白质骨架中可交换的氨基质子(溶质池)。被饱和的可交换质子通过化学交换转移到水分子(溶液池),导致水分子的饱和度不断增加,从而引起水信号的逐渐下降。通过监测质子的转移速率,我们可以得到氨基质子的浓度信息 [24] 。通过记录自由水在不同饱和频率脉冲下的信号,可以得到Z谱图像。通过计算在±3.5 ppm处的非对称磁化转移率(MTRasym),可以反映APTw的信号强度。MTRasym (3.5 ppm)的计算公式为MTR (+3.5 ppm) − MTR (−3.5 ppm) = APTR + MT R asym (3.5 ppm) [25] 。其中,Ssat (±3.5 ppm)代表在±3.5 ppm处的饱和脉冲下的水信号强度,S0代表没有施加饱和脉冲时的水信号强度, MT R asym (3.5 ppm)代表除了蛋白质酰胺质子转移率(APTR)之外,在低饱和率下的其他贡献部分 [26] 。 MT R asym 来源于脂肪族氨基酸、半固态池及脂肪族、烯类、芳香族等组织内酰胺质子产生的磁化传递效应 [27] 。当组织环境中的PH值较低时,酰胺质子电负性增大,交换的速率加快,组织环境中饱和自由水的信号越高,MTRasym值就越高,APT效应越显著 [28] 。因此利用Z谱可以计算出特定频率下的非对称磁化转移率MTRasym (3.5 ppm),去反映APT信号强度。

3. APTw在肿瘤的研究进展

周进元 [29] 教授在动物肿瘤模型的试验中发现在肿瘤区域APT呈现高信号。3年后第一次用于人类的APT数据证实相对于正常实质和肿瘤水肿区,高级别的肿瘤APT呈现高信号 [30] 。由此,APTw成像能够提供诊断价值信息且不需要外源性对比剂。

3.1. 胶质瘤

胶质瘤是成人最常见的脑肿瘤,不同级别的胶质瘤的组织病理学改变不一样,其治疗和预后也差别极大。区分胶质瘤分级的金标准为有创性的病理活检,并且存在进一步转移的风险,因此磁共振无创的重要性就突显出来。近年来,因为APTw成像能够观察到内源性分子的变化,所以APTw成像能否对胶质瘤进行准确分型、分级得到了广泛的关注。研究结果显示,Togao [31] 等人发现APTw成像在非强化胶质瘤中,高级别胶质瘤(HGG)的APTw信号强度(2.70% ± 0.58%)明显高于低级别胶质瘤(LGG)的APTw信号强度(1.87% ± 0.49%),并且两者之间存在统计学差异(P = 0.0001)。Choi [32] 等人的研究发现随着胶质瘤分级的增高,APT信号强度也增加,且II级(0.84% ± 0.60%)、III级(1.55% ± 0.87%)、IV级(2.53% ± 0.70%)脑胶质瘤分级之间有统计学差异(P < 0.001),这些结果与Su [33] 和Song [34] 等人的研究结果基本一致。出现这个现象主要归因于脑肿瘤中有较高的内源性游离蛋白及多肽浓度,随着胶质瘤的分级的增加,内源性游离蛋白及多肽也随着增加,所以APT信号强度增加。此外,Chen [35] 等人研究发现APT信号强度和Ki-67成正相关。一般来说Ki-67抗原能够反映肿瘤细胞的增殖速度和侵袭能力,对胶质瘤预后意义重大 [36] 。Park [37] 等研究表明APTw成像也能够区分复发性肿瘤和治疗引起的变化,是一种有效的生物标志物成像。Jiang、Chen、Onishi [38] [39] [40] 等人的最新研究也是赞同这个观点的。但是由于APTw成像空间分辨率较低,需要3D-T1W1或者T1W1增强扫描结合才能更好的评估肿瘤疗效。最近有研究发现异柠檬酸脱氢酶基因(IDH)野生型胶质瘤的APT信号比IDH突变型胶质瘤的APT信号显著增高 [15] [41] ,这意味着APTw成像有助于术前评估脑胶质瘤IDH的突变状态,能够提供胶质瘤基因型诊断方面的价值。

3.2. 转移瘤

对于脑肿瘤而言,转移瘤和高级别胶质瘤之间是影像上的难点和重点,脑转移瘤、胶质瘤是常见的脑恶性肿瘤,两者的发病率在近十几年不断增加。多项研究表明 [42] [43] ,肿瘤周围水肿区的APT信号可以作为两者的鉴别,两者均为恶性肿瘤,肿瘤的生长速度快,异质性很高,瘤内的细胞密度大,血脑屏障通透性增高,蛋白质等大分子物质渗出明显,积聚在肿瘤周围形成水肿。转移瘤的瘤周水肿主要是因为毛细血管异常渗漏相关的血管源性水肿,而胶质瘤的瘤周水肿常常由肿瘤细胞的浸润引起,所以解释了胶质瘤的瘤周水肿信号会比转移瘤的瘤周水肿高。Yu [44] 等研究者发现APTw成像鉴别孤立性脑转移瘤(Solitary Brain Metastases, SBMs)和胶质母细胞瘤(Gliobastomas, GBMs)与上述结果相似,SBM组的肿瘤周围脑区(Peritumoral Brain Zone, PBZ)的各个APT信号明显低于GBM组(P < 0.001)。

3.3. 肺癌

目前临床上对肺癌的病理类型的诊断主要靠病理活检这个金标准,但侵袭性、取样误差和并发症限制了其应用。近些年,利用APTw成像直接对肺癌进行的研究也越来越多。Togao [45] 等人运用A549人肺癌细胞和Lewis鼠源性细胞进行体外研究,发现Lewis肺癌(Lewis Lung Carcinoma, LLC)的MTRasym (3.5 ppm)大于A549,而病理结果证实,LLC的细胞密度更大且增殖更活跃,为APTw成像鉴别肺癌类型提供了可靠的理论基础。Ohno [46] 等研究者首次将APTw成像用于胸部肿瘤的前瞻性临床研究,包括13例恶性胸部病变和8例良性胸部病变,结果发现恶性肿瘤的磁化非对称转移率(3.5 ppm)明显高于良性病变(P = 0.008),其他胸部恶性肿瘤明显高于肺癌(P = 0.005),肺癌中的腺癌也显著高于肺癌中的鳞状细胞癌(P = 0.02),表明APTw成像在胸部肿瘤良恶性及肺癌不同病理类型的鉴别中具有潜在的临床价值。Ohno [47] 等人的另一项研究,在82名肺结节患者中发现APTw成像与DWI联合FDG-PET/CT成像在良恶性肺结节的鉴别诊断中效能相似,并且其特异性和准确性是高于单独应用DWI诊断。这也为APTw成像在研究肺癌脑转移瘤病理类型提供了潜在研究价值。部分研究 [48] [49] [50] 证明APTw成像是具有区分复发性肿瘤和治疗效果的能力,这些结果都证明了APTw成像在肿瘤学中的潜力,为区分活动性肿瘤和放射性坏死提供了一种无创成像的生物标志物。

3.4. 直肠癌

MRI是直肠癌诊断、疗效评估和随访的重要检查。近年来,APTw成像联合其他MRI序列有望成为一种全新的多模态成像方式应用于直肠癌的诊疗中。Nishi [51] 等人发现中分化的直肠腺癌APT信号(2.85% ± 1.51%)高于高分化的直肠腺癌(1.24% ± 0.57%),并且低分化腺癌的APT信号与肿瘤分级显著相关(P = 0.019)。Chen和Li [52] [53] 的研究也发现APT信号与直肠癌WHO分级成正相关。同时Li也发现APT信号在进展期的肿瘤和有淋巴转移的肿瘤中明显增加,P53阳性组和KI-67高增殖组APT信号显著升高,因此APTw成像适合直肠腺癌,并且Wei [54] 等人发现T2WI联合APT可以准确预测直肠腺癌患者的淋巴结转移,这为APTw成像评估直肠腺癌转移提供诊断价值。在治疗方面,Nishie [55] 等的研究表明治疗前APT成像可以预测晚期直肠癌(LARC)患者对新辅助化疗(NAC)的反应。Chen等评估了APTw成像联合DWI预测LARC患者对NAC的疗效,结果显示NAC后所有的直肠癌患者APT信号降低,肿瘤体积缩小,癌胚抗原水平下降,这可能是因为化疗导致的细胞增殖减慢或停止,减少了肿瘤细胞和蛋白质合成。所以APTw成像可以非侵入性的定量评估直肠癌的化疗效果,为直肠癌个体化治疗提供预后价值。

3.5. 乳腺癌

乳腺癌在女性的癌症死亡率中位居榜首 [56] 。对文献的调查显示,APT研究涉及乳腺癌主要集中在两个临床方面,第一个方面是乳腺癌良恶性比较以及恶性程度的比较,其次是评估疗效反应。文洁 [57] 等人的研究发现乳腺癌平均APT信号强度与乳腺良性病变平均APT信号强度差异无统计学意义(P = 0.917)。Meng [58] 等人的结果显示乳腺癌恶性肿瘤APT信号强度显著低于良性病变,Liu [59] 等人发现恶性乳腺癌的APT信号要显著高于乳腺良性病变。这可能与研究的样本量、病理类型多样化有关。所以APT在评估乳腺癌良恶性之间的价值仍未确定。在恶性程度的比较方面,文洁和Liu的研究结果却相似,III级病变的APT信号要显著高于II级和I级,且APT信号强度与ki-67显著相关,这说明侵润程度越高的乳腺癌肿瘤其肿瘤细胞增殖越活跃,肿瘤细胞聚集区的蛋白质和多肽含量也就越多,APT信号强度也就越高。为了评估对NAC的反应,Krikken等人测试了APT对NAC早期反应的能力,发现APT在评估NAC早期阶段的效果是可行的。Zhang [60] 等人发现APTw成像能够检测治疗效果,但是对于三阴性乳腺癌的患者,病理缓解并没有得到完全的区分。

4. 局限性

和其他MRI序列相同,APTw成像容易产生一些混淆的信号,这可能会造成结果的误导。从技术的角度来说,B0的不均匀性是APTw成像的中一个关键问题,虽然大部分可以通过水的共振频率重新排列并去除,但有时大脑周围和颅骨会发现一些低信号或者高信号,不应将其于APTw效果混淆。APT成像还依赖于体内的pH值及蛋白质浓度 [61] 。有研究表明,交换速率会随着pH值的变化而变化,因次APT信号减低可以被pH值降低所解释 [62] 。然而,pH值并不认为是恶性肿瘤中APT信号的主要来源。对于肿瘤这中很难探测到其微小pH值改变的疾病中,APT信号强度的高低近似取决于细胞内蛋白质的含量。除了上述的PH值影响以外,还有其他因素也可以增加APT信号的强度如囊肿和空腔病变、颅内出血和脑组织水肿等 [63] [64] [65] 。因此,在解释APT成像结果时,应将这些因素认为可能的影响因素。

APTw成像可能成为在肿瘤术前分级、预测、鉴别以及治疗相关的方面的生物影像标志物,这使我们从分子学角度对肿瘤的进行研究,去了解肿瘤的分子学特征,对肿瘤分子学理解的增加也将推动新型免疫疗法和靶向疗法的持续发展,这些疗法和靶向疗法在血液肿瘤屏障之外具有更高的生物利用度,并推动放射治疗和微创手术技术的进步,使患者的预后在未来肯定会得到改善。

作者利益冲突声明

全体作者均声明无利益冲突。

作者贡献声明

向绪洋起草和撰写稿件,获取、分析或解释本研究的数据/文献;李孝忠对稿件重要内容进行了修改;林慧婷获取、分析或解释本研究的数据/文献。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。

文章引用

向绪洋,李孝忠,林慧婷. 酰胺质子转移加权成像对肿瘤的研究进展
Research Progress on Tumor by Weighted Imaging of Amide Proton Transfer[J]. 临床医学进展, 2023, 13(12): 19575-19582. https://doi.org/10.12677/ACM.2023.13122756

参考文献

  1. 1. Schön, S., Cabello, J., Liesche-Starnecker, F., et al. (2020) Imaging Glioma Biology: Spatial Comparison of Amino Acid PET, Amide Proton Transfer, and Perfusion-Weighted MRI in Newly Diagnosed Gliomas. European Journal of Nuclear Medicine and Molecular Imaging, 47, 1468-1475. https://doi.org/10.1007/s00259-019-04677-x

  2. 2. Durmo, F., Rydhög, A., Testud, F., et al. (2020) Assessment of Amide Proton Transfer Weighted (APTw) MRI for Pre- Surgical Prediction of Final Diagnosis in Gliomas. PLOS ONE, 15, e0244003. https://doi.org/10.1371/journal.pone.0244003

  3. 3. Sun, H., Xin, J., Zhou, J., et al. (2018) Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET. Molecular Imaging and Biology, 20, 473-481. https://doi.org/10.1007/s11307-017-1136-0

  4. 4. Qin, X., Mu, R., Zheng, W., et al. (2023) Comparison and Com-bination of Amide Proton Transfer Magnetic Resonance Imaging and the Apparent Diffusion Coefficient in Differentiat-ing the Grades of Prostate Cancer. Quantitative Imaging in Medicine and Surgery, 13, 812-824. https://doi.org/10.21037/qims-22-721

  5. 5. Kamitani, T., Sagiyama, K., Yamasaki, Y., et al. (2023) Amide Proton Transfer (APT) Imaging of Breast Cancers and Its Correlation with Biological Status. Clinical Imaging, 96, 38-43. https://doi.org/10.1016/j.clinimag.2023.02.002

  6. 6. Wang, H.J., Cai, Q., Huang, Y.P., et al. (2022) Amide Proton Transfer-Weighted MRI in Predicting Histologic Grade of Bladder Cancer. Radiology, 305, 127-134. https://doi.org/10.1148/radiol.211804

  7. 7. Friismose, A.I., Markovic, L., Nguyen, N., et al. (2022) Amide Proton Transfer-Weighted MRI in the Clinical Setting— Correlation with Dynamic Susceptibility Contrast Perfusion in the Post-Treatment Imaging of Adult Glioma Patients at 3T. Radiography (London, England: 1995), 28, 95-101. https://doi.org/10.1016/j.radi.2021.08.006

  8. 8. Park, J.E., Kim, H.S., Park, S.Y., et al. (2020) Identification of Early Response to Anti-Angiogenic Therapy in Recurrent Glioblastoma: Amide Proton Transfer-Weighted and Perfu-sion-Weighted MRI Compared with Diffusion-Weighted MRI. Radiology, 295, 397-406. https://doi.org/10.1148/radiol.2020191376

  9. 9. Liu, J., Li, C., Chen, Y., et al. (2020) Diagnostic Performance of Multiparametric MRI in the Evaluation of Treatment Response in Glioma Patients at 3T. Journal of Magnetic Resonance Imaging: JMRI, 51, 1154-1161. https://doi.org/10.1002/jmri.26900

  10. 10. Tang, P.L.Y., Méndez Romero, A., Jaspers, J.P.M., et al. (2022) The Po-tential of Advanced MR Techniques for Precision Radiotherapy of Glioblastoma. Magma, 35, 127-143. https://doi.org/10.1007/s10334-021-00997-y

  11. 11. Liu, Z., Zou, L., Yang, Q., et al. (2022) Baseline Amide Proton Transfer Imaging at 3T Fails to Predict Early Response to Induction Chemotherapy in Nasopharyngeal Carcinoma. Fron-tiers in Oncology, 12, Article ID: 822756. https://doi.org/10.3389/fonc.2022.822756

  12. 12. Xu, Z., Ke, C., Liu, J., et al. (2021) Diagnostic Performance be-tween MR Amide Proton Transfer (APT) and Diffusion Kurtosis Imaging (DKI) in Glioma Grading and IDH Mutation Status Prediction at 3 T. European Journal of Radiology, 134, Article ID: 109466. https://doi.org/10.1016/j.ejrad.2020.109466

  13. 13. Zhuo, Z., Qu, L., Zhang, P., et al. (2021) Prediction of H3K27M-Mutant Brainstem Glioma by Amide Proton Transfer- Weighted Imaging and Its Derived Radiomics. Europe-an Journal of Nuclear Medicine and Molecular Imaging, 48, 4426-4436. https://doi.org/10.1007/s00259-021-05455-4

  14. 14. Mancini, L., Casagranda, S., Gautier, G., et al. (2022) CEST MRI Provides Amide/Amine Surrogate Biomarkers for Treatment-Naïve Glioma Sub-Typing. European Journal of Nu-clear Medicine and Molecular Imaging, 49, 2377-2391. https://doi.org/10.1007/s00259-022-05676-1

  15. 15. Zhang, H.W. and Lin, F. (2023) Research Progress on Amide Proton Transfer Imaging in Preoperative and Postoperative Glioma Assessment. Current Medical Imaging, 19, 971-976. https://doi.org/10.2174/1573405619666230126124039

  16. 16. Ma, C., Tian, S., Song, Q., et al. (2023) Amide Proton Transfer-Weighted Imaging Combined with Intravoxel Incoherent Motion for Evaluating Microsatellite Instability in En-dometrial Cancer. Journal of Magnetic Resonance Imaging: JMRI, 57, 493-505. https://doi.org/10.1002/jmri.28287

  17. 17. Sheth, V.R. (2023) Editorial for “Amide Proton Transfer-Weighted Imag-ing Combined with Intravoxel Incoherent Motion for Evaluating Microsatellite Instability in Endometrial Cancer”. Jour-nal of Magnetic Resonance Imaging: JMRI, 57, 506-507. https://doi.org/10.1002/jmri.28302

  18. 18. Wu, M., Jiang, T., Guo, M., et al. (2023) Amide Proton Transfer-Weighted Imaging and Derived Radiomics in the Classification of Adult-Type Diffuse Gliomas. European Radiology. https://doi.org/10.1007/s00330-023-10343-6

  19. 19. Yang, L., Wang, L., Tan, Y., et al. (2023) Amide Proton Transfer-Weighted MRI Combined with Serum Prostate-Specific Antigen Levels for Differentiating Malignant Prostate Lesions from Benign Prostate Lesions: A Retrospective Cohort Study. Cancer Imaging: The Official Publication of the International Cancer Imaging Society, 23, Article No. 3. https://doi.org/10.1186/s40644-022-00515-w

  20. 20. Zhang, Y., Zu, T., Liu, R., et al. (2023) Acquisition Sequences and Reconstruction Methods for Fast Chemical Exchange Saturation Transfer Imaging. NMR in Biomedicine, 36, e4699. https://doi.org/10.1002/nbm.4699

  21. 21. Dagher, A.P., Aletras, A., Choyke, P., et al. (2000) Imaging of Urea Using Chemical Exchange-Dependent Saturation Transfer at 1.5T. Journal of Magnetic Resonance Imaging: JMRI, 12, 745-748. https://doi.org/10.1002/1522-2586(200011)12:5<745::AID-JMRI12>3.0.CO;2-H

  22. 22. Ward, K.M., Aletras, A.H. and Balaban, R.S. (2000) A New Class of Contrast Agents for MRI Based on Proton Chemical Exchange Dependent Saturation Transfer (CEST). Journal of Magnetic Resonance (San Diego, Calif: 1997), 143, 79-87. https://doi.org/10.1006/jmre.1999.1956

  23. 23. 魏平, 李传亭. 酰胺质子转移成像在脑疾病中的研究进展[J]. 医学影像学杂志, 2020, 30(3): 496-499.

  24. 24. Zhou, J., Payen, J.F., Wilson, D.A., et al. (2003) Using the Amide Proton Signals of Intracellular Proteins and Peptides to Detect pH Effects in MRI. Nature Medicine, 9, 1085-1090. https://doi.org/10.1038/nm907

  25. 25. Zhou, J., Zaiss, M., Knutsson, L., et al. (2022) Review and Consensus Rec-ommendations on Clinical APT-Weighted Imaging Approaches at 3T: Application to Brain Tumors. Magnetic Resonance in Medicine, 88, 546-574. https://doi.org/10.1002/mrm.29241

  26. 26. Kamimura, K., Nakajo, M., Yoneyama, T., et al. (2019) Amide Proton Transfer Imaging of Tumors: Theory, Clinical Applications, Pitfalls, and Future Directions. Japanese Journal of Radiol-ogy, 37, 109-116. https://doi.org/10.1007/s11604-018-0787-3

  27. 27. Kim, M., Gillen, J., Landman, B.A., et al. (2009) Water Saturation Shift Referencing (WASSR) for Chemical Exchange Saturation Transfer (CEST) Experiments. Magnetic Resonance in Medicine, 61, 1441-1450. https://doi.org/10.1002/mrm.21873

  28. 28. Sakata, A., Okada, T., Yamamoto, A., et al. (2015) Grading Glial Tumors with Amide Proton Transfer MR Imaging: Different Analytical Approaches. Journal of Neuro-Oncology, 122, 339-348. https://doi.org/10.1007/s11060-014-1715-8

  29. 29. Zhou, J., Lal, B., Wilson, D.A., et al. (2003) Amide Proton Transfer (APT) Contrast for Imaging of Brain Tumors. Magnetic Resonance in Medicine, 50, 1120-1126. https://doi.org/10.1002/mrm.10651

  30. 30. Jones, C.K., Schlosser, M.J., Van Zijl, P.C., et al. (2006) Amide Proton Transfer Imaging of Human Brain Tumors at 3T. Magnetic Resonance in Medicine, 56, 585-592. https://doi.org/10.1002/mrm.20989

  31. 31. Togao, O., Hiwatashi, A., Yamashita, K., et al. (2017) Grading Diffuse Gliomas without Intense Contrast Enhancement by Amide Proton Transfer MR Imaging: Comparisons with Diffusion- and Perfusion-Weighted Imaging. European Radiology, 27, 578-588. https://doi.org/10.1007/s00330-016-4328-0

  32. 32. Choi, Y.S., Ahn, S.S., Lee, S.K., et al. (2017) Amide Proton Transfer Imaging to Discriminate between Low- and High-Grade Gliomas: Added Value to Apparent Diffusion Coeffi-cient and Relative Cerebral Blood Volume. European Radiology, 27, 3181-3189. https://doi.org/10.1007/s00330-017-4732-0

  33. 33. Su, C., Jiang, J., Liu, C., et al. (2021) Comparison of Amide Pro-ton Transfer Imaging and Magnetization Transfer Imaging in Revealing Glioma Grades and Proliferative Activities: A Histogram Analysis. Neuroradiology, 63, 685-693. https://doi.org/10.1007/s00234-020-02547-0

  34. 34. Song, Q., Zhang, C., Chen, X., et al. (2020) Comparing Amide Proton Transfer Imaging with Dynamic Susceptibility Contrast-Enhanced Perfusion in Predicting Histological Grades of Gliomas: A Meta-Analysis. Acta Radiologica (Stockholm, Sweden: 1987), 61, 549-557. https://doi.org/10.1177/0284185119871667

  35. 35. Chen, Y., Li, X., Song, Y., et al. (2019) The Diagnostic Efficacy of Amide Proton Transfer Imaging in Grading Gliomas and Predicting Tumor Proliferation. Neuroreport, 30, 139-144. https://doi.org/10.1097/WNR.0000000000001174

  36. 36. Surov, A., Meyer, H.J., Wienke, A. (2017) Associations between Apparent Diffusion Coefficient (ADC) and KI 67 in Different Tumors: A Meta-Analysis. Part 1: ADC (Mean). Oncotarget, 8, 75434-75444. https://doi.org/10.18632/oncotarget.20406

  37. 37. Park, Y.W., Ahn, S.S., Kim, E.H., et al. (2021) Differentiation of Recurrent Diffuse Glioma from Treatment-Induced Change Using Amide Proton Transfer Imaging: Incremental Value to Diffusion and Perfusion Parameters. Neuroradiology, 63, 363-372. https://doi.org/10.1007/s00234-020-02542-5

  38. 38. Onishi, R., Sawaya, R., Tsuji, K., et al. (2022) Evaluation of Temozolomide Treatment for Glioblastoma Using Amide Proton Transfer Imaging and Diffusion MRI. Cancers, 14, Ar-ticle No. 1907. https://doi.org/10.3390/cancers14081907

  39. 39. Chen, K., Jiang, X.W., Deng, L.J., et al. (2022) Dif-ferentiation between Glioma Recurrence and Treatment Effects Using Amide Proton Transfer Imaging: A Mini-Bayesian Bivariate Meta-Analysis. Frontiers in Oncology, 12, Article ID: 852076. https://doi.org/10.3389/fonc.2022.852076

  40. 40. Jiang, S., Guo, P., Heo, H.Y., et al. (2023) Radiomics Analysis of Amide Proton Transfer-Weighted and Structural MR Images for Treatment Response Assessment in Malignant Gliomas. NMR in Biomedicine, 36, e4824. https://doi.org/10.1002/nbm.4824

  41. 41. Hou, H., Chen, W., Diao, Y., et al. (2023) 3D Amide Proton Trans-fer-Weighted Imaging for Grading Glioma and Correlating IDH Mutation Status: Added Value to 3D Pseudocontinuous Arterial Spin Labelling Perfusion. Molecular Imaging and Biology, 25, 343-352. https://doi.org/10.1007/s11307-022-01762-w

  42. 42. Chiang, I.C., Kuo, Y.T., Lu, C.Y., et al. (2004) Distinction be-tween High-Grade Gliomas and Solitary Metastases Using Peritumoral 3-T Magnetic Resonance Spectroscopy, Diffu-sion, and Perfusion Imagings. Neuroradiology, 46, 619-627. https://doi.org/10.1007/s00234-004-1246-7

  43. 43. Server, A., Kulle, B., Maehlen, J., et al. (2009) Quantitative Ap-parent Diffusion Coefficients in the Characterization of Brain Tumors and Associated Peritumoral Edema. Acta Radio-logica (Stockholm, Sweden: 1987), 50, 682-689. https://doi.org/10.1080/02841850902933123

  44. 44. Yu, H., Lou, H., Zou, T., et al. (2017) Applying Protein-Based Amide Proton Transfer MR Imaging to Distinguish Solitary Brain Metastases from Glioblastoma. European Radiology, 27, 4516-4524. https://doi.org/10.1007/s00330-017-4867-z

  45. 45. Togao, O., Kessinger, C.W., Huang, G., et al. (2013) Characteri-zation of Lung Cancer by Amide Proton Transfer (APT) Imaging: An In-Vivo Study in an Orthotopic Mouse Model. PLOS ONE, 8, e77019. https://doi.org/10.1371/journal.pone.0077019

  46. 46. Ohno, Y., Yui, M., Koyama, H., et al. (2016) Chemical Ex-change Saturation Transfer MR Imaging: Preliminary Results for Differentiation of Malignant and Benign Thoracic Le-sions. Radiology, 279, 578-589. https://doi.org/10.1148/radiol.2015151161

  47. 47. Ohno, Y., Kishida, Y., Seki, S., et al. (2018) Amide Proton Trans-fer-Weighted Imaging to Differentiate Malignant from Benign Pulmonary Lesions: Comparison with Diffusion-Weighted Imaging and FDG-PET/CT. Journal of Magnetic Resonance Imaging: JMRI, 47, 1013-1021. https://doi.org/10.1002/jmri.25832

  48. 48. Park, J.E., Kim, H.S., Park, K.J., et al. (2016) Pre- and Posttreatment Gli-oma: Comparison of Amide Proton Transfer Imaging with MR Spectroscopy for Biomarkers of Tumor Proliferation. Ra-diology, 278, 514-523. https://doi.org/10.1148/radiol.2015142979

  49. 49. Ma, B., Blakeley, J.O., Hong, X., et al. (2016) Applying Amide Proton Transfer-Weighted MRI to Distinguish Pseudoprogression from True Progression in Malignant Gliomas. Journal of Magnetic Resonance Imaging: JMRI, 44, 456-462. https://doi.org/10.1002/jmri.25159

  50. 50. Desmond, K.L., Mehrabian, H., Chavez, S., et al. (2017) Chemical Exchange Saturation Transfer for Predicting Response to Stereotactic Radiosurgery in Human Brain Metastasis. Magnetic Resonance in Medicine, 78, 1110-1120. https://doi.org/10.1002/mrm.26470

  51. 51. Nishie, A., Takayama, Y., Asayama, Y., et al. (2018) Amide Proton Transfer Imaging Can Predict Tumor Grade in Rectal Cancer. Magnetic Resonance Imaging, 51, 96-103. https://doi.org/10.1016/j.mri.2018.04.017

  52. 52. Chen, W., Li, L., Yan, Z., et al. (2021) Three-Dimension Amide Proton Transfer MRI of Rectal Adenocarcinoma: Correlation with Pathologic Prognostic Factors and Comparison with Diffusion Kurtosis Imaging. European Radiology, 31, 3286-3296. https://doi.org/10.1007/s00330-020-07397-1

  53. 53. Li, L., Chen, W., Yan, Z., et al. (2020) Comparative Analysis of Amide Proton Transfer MRI and Diffusion-Weighted Imaging in Assessing p53 and Ki-67 Expression of Rectal Adeno-carcinoma. Journal of Magnetic Resonance Imaging: JMRI, 52, 1487-1496. https://doi.org/10.1002/jmri.27212

  54. 54. Wei, Q., Yuan, W., Jia, Z., et al. (2023) Preoperative MR Radiomics Based on High-Resolution T2-Weighted Images and Amide Proton Transfer-Weighted Imaging for Predicting Lymph Node Metastasis in Rectal Adenocarcinoma. Abdominal Radiology (New York), 48, 458-470. https://doi.org/10.1007/s00261-022-03731-x

  55. 55. Nishie, A., Asayama, Y., Ishigami, K., et al. (2019) Amide Pro-ton Transfer Imaging to Predict Tumor Response to Neoadjuvant Chemotherapy in Locally Advanced Rectal Cancer. Journal of Gastroenterology and Hepatology, 34, 140-146. https://doi.org/10.1111/jgh.14315

  56. 56. Ferlay, J., Co-lombet, M., Soerjomataram, I., et al. (2021) Cancer Statistics for the Year 2020: An Overview. International Journal of Cancer, 149, 778-789. https://doi.org/10.1002/ijc.33588

  57. 57. 文洁, 王猛, 向露, 等. 3.0T磁共振酰胺质子转移成像在乳腺疾病中应用价值的初步研究[J]. 磁共振成像, 2021, 12(12): 67-70. https://doi.org/10.12015/issn.1674-8034.2021.12.013

  58. 58. Meng, N., Wang, X.J., Sun, J., et al. (2020) Compara-tive Study of Amide Proton Transfer-Weighted Imaging and Intravoxel Incoherent Motion Imaging in Breast Cancer Di-agnosis and Evaluation. Journal of Magnetic Resonance Imaging: JMRI, 52, 1175-1186. https://doi.org/10.1002/jmri.27190

  59. 59. Liu, Z., Wen, J., Wang, M., et al. (2023) Breast Amide Proton Transfer Imaging at 3T: Diagnostic Performance and Association with Pathologic Characteristics. Journal of Magnetic Resonance Imaging: JMRI, 57, 824-833. https://doi.org/10.1002/jmri.28335

  60. 60. Zhang, S., Rauch, G.M., Adrada, B.E., et al. (2021) Assessment of Early Response to Neoadjuvant Systemic Therapy in Triple-Negative Breast Cancer Using Amide Proton Transfer-Weighted Chemical Exchange Saturation Transfer MRI: A Pilot Study. Radiology Imaging Cancer, 3, e200155. https://doi.org/10.1148/rycan.2021200155

  61. 61. Heo, H.Y., Tee, Y.K., Harston, G., et al. (2023) Amide Proton Transfer Imaging in Stroke. NMR in Biomedicine, 36, e4734. https://doi.org/10.1002/nbm.4734

  62. 62. 林月, 李春媚, 陈敏. 酰胺质子转移成像的应用进展[J]. 放射学实践, 2018, 33(5): 525-528. https://doi.org/10.13609/j.cnki.1000-0313.2018.05.018

  63. 63. Koike, H., Morikawa, M., Ishimaru, H., et al. (2023) Amide Proton Transfer-Chemical Exchange Saturation Transfer Imaging of Intracranial Brain Tumors and Tumor-Like Lesions: Our Experience and a Review. Diagnostics (Basel, Switzerland), 13, Article No. 914. https://doi.org/10.3390/diagnostics13050914

  64. 64. Jiang, S., Wen, Z., Ahn, S.S., et al. (2023) Applications of Chemical Exchange Saturation Transfer Magnetic Resonance Imaging in Identifying Genetic Markers in Gliomas. NMR in Biomedicine, 36, e4731. https://doi.org/10.1002/nbm.4731

  65. 65. Sun, C., Zhao, Y. and Zu, Z. (2023) Evaluation of the Molecular Origin of Amide Proton Transfer-Weighted Imaging. Magnetic Resonance in Medicine, 91, 716-734. https://doi.org/10.1002/mrm.29878

  66. NOTES

    *通讯作者。

期刊菜单