Advances in Clinical Medicine
Vol. 13  No. 02 ( 2023 ), Article ID: 61473 , 13 pages
10.12677/ACM.2023.132314

免疫调节在支气管扩张症发病机制中的 研究进展

于 洋1*,李玉红2

1青海大学研究生院,青海 西宁

2青海大学附属医院呼吸科,青海 西宁

收稿日期:2023年1月16日;录用日期:2023年2月11日;发布日期:2023年2月17日

摘 要

支气管扩张症是由各种疾病引起反复发生的化脓性感染,导致中小气管反复损伤和/或阻塞,致使支气管壁结构破坏,引起支气管异常和持续性扩张。支气管扩张症的病因诸多,这些因素都直接或间接损害了宿主防御能力,反复性细菌感染和炎症反应失调导致了进行性肺损伤。其中炎症反应在肺部产生的蛋白酶会损害气道并导致病理性扩张,是整个宿主防御受损的关键,并与机体免疫功能存在关联,以免疫损害、免疫炎性反应等形式对机体产生侵害。本文着重讨论了支气管扩张症发病机制中的免疫学因素及相关免疫反应,为进一步研究提供理论依据。

关键词

支气管扩张症,免疫调节,发病机制

Research Progress of Immune Regulation in the Pathogenesis of Bronchiectasis

Yang Yu1*, Yuhong Li2

1Graduate School of Qinghai University, Xining Qinghai

2Department of Respiratory Medicine, Qinghai University Affiliated Hospital, Xining Qinghai

Received: Jan. 16th, 2023; accepted: Feb. 11th, 2023; published: Feb. 17th, 2023

ABSTRACT

Bronchiectasis is a recurrent suppurative infection caused by various diseases, resulting in repeated injury and/or obstruction of small and medium-sized trachea, resulting in the destruction of bronchial wall structure, causing bronchial abnormalities and persistent dilation. There are many causes of bronchiectasis. These factors directly or indirectly damage the host’s defense ability. Repeated bacterial infection and inflammatory reaction disorder lead to progressive lung injury. Among them, the protease produced by inflammatory reaction in the lung will damage the airway and cause pathological expansion, which is the key to the damage of the whole host’s defense, and is associated with the body’s immune function, which will harm the body in the form of immune damage, immune inflammatory reaction, etc. This article focuses on the immunological factors and related immune reactions in the pathogenesis of bronchiectasis, providing theoretical basis for further research.

Keywords:Bronchiectasis, Immune Regulation, Pathogenesis

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

支气管扩张症是以一个或多个支气管出现不可逆的永久性异常扩张为特征的,呼吸内科常见的慢性进行性肺部疾病。在支气管扩张症中,支气管因气道弹性和肌肉层的受损导致异常扩张,造成粘液积聚并促使细菌感染。反复的细菌感染,最终导致气道阻塞以及慢性咳嗽和粘稠痰的产生 [1] 。

值得注意的是,有多种因素可能导致支气管扩张症的进展。当前研究表明支气管扩张症与许多遗传性、获得性、感染性、过敏性和自身免疫性疾病相关。其中感染是最为重要的原因 [2] 。与感染性加重相关的细菌病原体通常是流感嗜血杆菌、副流感嗜血杆菌和铜绿假单胞菌。较为罕见但仍然重要的细菌病原体是肺炎链球菌、卡他莫拉菌、金黄色葡萄球菌以及革兰阴性肠杆菌等 [3] [4] 。然而,在一些支气管扩张症病例中,肺部被非结核分枝杆菌(non-tuberculous mycobacteria, NTM)定植,在这些少数患者中,NTM促使肺损伤进行性加重,并伴有一系列影像学的特征性变化 [5] 。无论是何种病因,支气管扩张症患者通常都伴有细菌定植及宿主防御系统的失调,即使在稳定状态下也是如此。

自20世纪90年代以来,高分辨率CT (HRCT)扫描已成为支气管扩张症诊断的金标准,并建立了一系列放射学诊断标准 [6] 。据既往研究数据表明,我国成年人支气管扩张症的患病率增加了2.31倍,从2013年的每10万人75.48例(62.26, 88.69)增加到2017年的每10万人174.45例(137.02, 211.88)。从2013年到2017年,支气管扩张症患者的人均总费用和住院费用分别增长了2.18倍和1.83倍。5年内,年均住院率从1.20到1.24倍不等 [7] 。

大众逐渐意识到一直被认为“罕见病”支气管扩张症正变得越来越常见 [8] ,成为呼吸系统发病率和死亡率的主要原因,给社会带来了巨大的医疗和经济负担。从免疫学的角度来看,支气管扩张症为一种常见的呼吸系统疾病,因结构性破坏导致病菌感染,免疫缺陷或许成为支气管扩张发病机制的重要因素,因此认识其免疫反应反或将成为改善患者预后的潜在机会,故临床有效增强机体免疫功能具有重要意义 [9] [10] 。现将支气管扩张症发病机制中的免疫学因素及相关免疫反应进展综述如下。

2. 支扩发病机制由“恶性循环”假说更新为“涡旋”理论

支气管扩张症的潜在发病机制尚不清楚。最广为人知的支气管扩张症发展理论是1986年由cole提出的“恶性循环”假说 [11] ,该假说涉及气道感染、炎症、黏液纤毛清除受损以及与多种病因相关的结构损伤 [12] ,并认为,在恶性循环中任何一个环节的发生都会导致疾病的进展。然而,当削弱某一环节(例如抗生素的使用或气道清除疗法)对支气管扩张症的临床结局仅有一定程度的影响,并没有阻断支扩的进展。因此恶性循环假说并不能完全解释支扩反复发病 [13] [14] [15] 。

近来Flume等学者 [16] ,提出了一个名为“恶性涡旋”的新概念(见图1),这一新概念指出各因素之是相互关联的,没有一致的循环顺序。粘膜清除功能的受损以及气道分泌物的滞留,破坏原本正常的宿主防御,使气道更容易发生慢性感染,细菌病原体与宿主间相互作用,其免疫调节特性促使细菌长期存活,引发机体炎症反应,导致气道损伤和异常重塑,继而引起支气管扩张症的发生。支气管扩张是病原体、宿主微生物群和宿主炎症、免疫调节之间相互作用的结果 [10] 。涡旋概念不仅表明支气管扩张症是由不同关键因素的复杂相互作用引起的,也更好地解释为什么单独治疗(如抗生素或抗炎药的应用)对支气管扩张症的临床结果只有轻微的影响。因此,描述为“涡旋”理论似乎更加合理 [17] 。

Figure 1. Model diagram describing the pathogenesis of bronchiectasis

图1. 描述支气管扩张症发病机制的模式图

3. 细胞在支气管扩张症气道炎症中的作用

3.1. 中性粒细胞

无论是在稳定期支气管扩张症或是在加重期支气管扩张症中均有大量中性粒细胞的存在 [18] [19] ,与持续性细菌感染密切相关。中性粒细胞使用表面受体来识别细菌结构和病原体相关分子模式(PAMP)及Toll样受体(TLR),TLR2和TLR4是最能明确反应出细菌感染的受体 [20] ,支气管扩张症中的主要细菌病原体均被证明可激活TLR [21] 。中性粒细胞在感染部位迅速聚集,可直接作用于病原体,消灭细菌的方式主要包含三个过程,即吞噬作用,脱颗粒过程,以及产生活性氧(ROS) [22] [23] 。

通常,中性粒细胞在趋化因子的作用下移动到吞噬部位,通过CR1、CR3和FcRⅠ、FcRⅡ、FcRⅢ等受体识别C3b、C3bi和免疫球蛋白等经补体或抗体调理的细菌颗粒后,调理的细菌与受体接触并被中性粒细胞表面的黏附分子粘住、开启吞噬作用 [24] 。

随着吞噬作用的启动,中性粒细胞的颗粒移位并与质膜内陷形成的吞噬体融合,形成吞噬溶酶体,颗粒中的各种抗菌蛋白水解酶随即释放出来,脱颗粒过程自此开启。在通过分级脱颗粒过程,嗜天青颗粒(初级颗粒)释放髓过氧化物酶,弹性蛋白酶,蛋白酶3和组织蛋白酶G等。特异性颗粒(次级颗粒)释放其他关键抗菌蛋白,如乳铁蛋白和组织蛋白酶,三级(明胶酶)颗粒含有并释放明胶酶乙酰转移酶和溶菌酶 [21] 。Mitchell T [25] 等人发现髓过氧化物酶和弹性蛋白酶等细胞溶解酶的过度脱颗粒过程与宿主组织损伤存在相关性。

吞噬细胞在吞噬过程中,其富有的NADPH氧化酶和NADH氧化酶可催化摄取的氧接受电子而转变为氧自由基,用以杀灭微生物同时伴耗氧量显着增加,这一现象称为呼吸爆发或氧爆发。呼吸爆发导致ROS的释放,如过氧化氢。细胞内ROS在介导杀伤方面非常有效,慢性肉芽肿病的遗传缺陷强调了这一途径的重要性。它是由NADPH氧化酶的一个亚基的缺陷基因引起的,因无法产生ROS,导致复发性危及生命的细菌感染和肉芽肿形成 [21] [26] 。Reeves等人指出 [27] ,呼吸爆发也为蛋白酶(如弹性蛋白酶)消化吞噬泡内容物创造了有利的环境。通过离子通量和pH的变化,细胞质颗粒释放的酶变得更加活跃,有助于破坏病原体。然而,当中性粒细胞释放失控的ROS可导致周围组织受损,从而加剧肺部疾病进展 [28] 。

3.2. 巨噬细胞

巨噬细胞是一种位于组织内的白血球,源自单核细胞,是以固定细胞或游离细胞的形式对细胞残片及病原体进行噬菌作用,并激活淋巴球或其他免疫细胞,令其对病原体作出反应。巨噬细胞具有与中性粒细胞相似的功能,包括其表面受体如TLR的表达、吞噬作用和细胞内杀伤,以及ROS的产生 [20] 。

Zheng等人发现 [29] ,与对照组相比,支气管扩张患者支气管内膜活检中巨噬细胞数量增加,提示支气管扩张的病人的支气管中巨噬细胞的聚集可能是通过肿瘤坏死因子a (tumor necrosis factor α, TNF α)促进中性粒细胞浸润而形成的。

肺泡巨噬细胞(AM)作为专职吞噬细胞,是聚居在肺部气道和肺泡腔的一线防御细胞。肺巨噬细胞可分泌蛋白酶,包括中性粒细胞弹性蛋白酶(NE)以及基质金属蛋白酶(MMP) 1、9和12,它们是破坏支气管壁并导致病理性支气管扩张的主要介质 [30] [31] 。研究发现支气管扩张症患者的肺泡巨噬细胞吞噬作用呈降低现象 [32] 。当AM的吞噬功能下降会影响AM对病原微生物及坏死上皮细胞或有害细微颗粒的清除,易造成呼吸道病原微生物感染及严重肺部炎症,导致支气管扩张的形成。

此外Wood [33] 等人指出,在α1-抗胰蛋白酶缺乏的患者中,通过活化肺泡巨噬细胞而在胞葬过程中发挥作用的维生素D结合蛋白(vitamin D binding protein, VDBP),其基因的GC2变异型与支气管扩张症之间存在关联。

3.3. 淋巴细胞

支气管扩张症的特点是反复感染,参与介导获得性免疫应答的主要是淋巴细胞。淋巴细胞不仅对细菌感染具有适应性免疫,而且对中性粒细胞炎症的高表达也具有适应性免疫。一项来自于Whitwell [34] 的研究表明,支气管扩张症患者的小气道有显著的淋巴细胞浸润,并形成淋巴滤泡。其他研究也证实了支气管扩张症中的T细胞浸润 [35] [36] 。最近对支气管扩张症患者手术肺标本的一项研究发现,许多病变的支气管周围分布着富含B淋巴细胞、T淋巴细胞和生发中心的淋巴样聚集体 [37] 。

既往的免疫组织学研究观察到以CD8+T细胞为主的大量单核细胞浸润 [35] [38] 。

最近的研究表明,支气管扩张症的特征可能是CD4+或CD8+T细胞增加 [39] ,或者两种表型都不占优势 [40] 。也有证据表明,在许多呼吸系统疾病中,如结节病 [41] 、慢性支气管炎 [42] 、哮喘 [43] [44] 中细胞介导的免疫应答模式与支气管粘膜内活化的CD4+T淋巴细胞浸润有关。此外,在许多其他系统性疾病中发现CD4+细胞的增加,如银屑病 [45] 、类风湿性关节炎 [46] 和溃疡性结肠炎 [47] ,其中已知后两种疾病与支气管扩张有关。

在转录因子RORγt和RORα的调节下,初始CD4+T 细胞分化为Thl7细胞,后者可分泌一种强效的促炎症细胞因子和中性粒细胞趋化物IL-17。Th17免疫应答激活中性粒细胞,在宿主对细菌的防御中发挥重要作用,同时也促使炎症反应发展,并在支气管扩张症的发病机制中发挥重要作用 [48] 。有研究表明支气管上皮和支气管内膜活检中IL-17和Th17的细胞水平升高 [37] [49] 。

抗原呈递相关转运体缺乏患者因为无法生成CD8 T细胞,所以反复发生呼吸道感染,最终发展为支气管扩张症 [50] 。人类免疫缺陷综合征患者由于CD4细胞数量减少同样反复发生感染,并最终发展为支气管扩张症 [51] 。

此外特发性支气管扩张症患者的免疫遗传学证据支持这样的假设,即自然杀伤(NK)细胞活化水平与疾病易感性之间可能存在联系,这暗示了先天免疫机制的易感作用。自然杀伤细胞不仅是先天免疫感染的有效、快速部分,也是启动适应性免疫的一环 [5] 。NK细胞充当先天免疫应答和适应性免疫应答之间的桥梁,它的功能包括直接细胞毒性以及产生细胞因子和趋化因子 [20] 。

既往的研究中发现淋巴细胞亚群与支气管扩张症疾病严重程度指数、住院时间以及铜绿假单胞菌或其他微生物定植没有显着相关性。然而近来研究发现,表达CD16/CD56表面标志物的细胞计数和百分比与支气管扩张症恶化次数之间存在统计学上的显着负相关,这表明CD16/56 + NK细胞百分比的降低增加了住院次数,也表明自然杀伤细胞百分比以及计数低的患者恶化率较高 [52] 。

3.4. 嗜酸性粒细胞

研究发现支气管扩张症患者支气管粘膜中活化的EG2+ (抗ECP/嗜酸性粒细胞)嗜酸性粒细胞数量增加,尽管与中性粒细胞、巨噬细胞和T细胞数量相比,这些数量很少 [53] 。在支气管扩张症患者的痰液中观察到嗜酸性粒细胞,其数量与疾病严重程度可能存在相关性 [54] 。目前支气管扩张症中嗜酸性粒细胞数量增加的意义尚不清楚,考虑阻塞性通气不足所导致疾病恶化可能是其数量增加原因。

4. 免疫球蛋白和其他抗微生物肽

4.1. 免疫球蛋白G (Immunoglobulin G, IgG)

低丙种球蛋白血症在支气管扩张的发展中起着重要作用,其常见于普通变异型免疫缺陷病(CVID)以及低水平的免疫球蛋白(Ig)G中,而在X连锁丙种球蛋白缺乏症中少见。一项研究发现 [55] ,在65名特发性支气管扩张症患者中,几乎有一半患者存在IgG亚类缺乏(多数是IgG2),这与B型流感嗜血杆菌Haemophilus influenzae type b HiB抗体反应受损相关。然而最近的两项研究发现 [56] [57] ,IgG亚类缺乏在患有支气管扩张症的成年人中很少见。

因此IgG亚型缺乏导致支气管扩张症患病率较高这是有争议的 [58] [59] [60] ,系统性和分泌型IgA缺乏或许与之有关,但由于大多数IgA缺乏症患者没有临床疾病的表现,这种相关性仍有待证实,免疫球蛋白功能研究对于调查体液免疫至关重要。

4.2. 免疫球蛋白A (Immunoglobulin A, IgA)

分泌型IgA是呼吸道粘膜分泌物中的主要抗体同种型,有助于初始防御机制 [61] 。肺组织的尸检研究表明,与对照组相比,支气管扩张症患者肺中IgA阳性细胞的数量增加 [62] 。

IgA亚型在肺部和血液中分泌的比例不同。大多数血液IgA属于IgA1亚型,其中10%~20%为IgA2,而肺部分泌物中约有30%为IgA2。许多致病细菌产生的IgA蛋白酶具有抵抗力,在感染情况下,IgA2的稳定性比IgA1更好 [62] 。在感染的情况下IgA2的生成增加,这表现为IgA2的比例随着痰的增加而增加 [63] 。气道分泌物中的IgA与凝集素样细菌粘附素结合,阻断上皮定植,并作为免疫屏障发挥作用。此外,IgA通过与嗜酸性粒细胞、中性粒细胞和单核细胞表面表达的Fc受体结合促进吞噬作用,并能够将抗原通过上皮输送到管腔分泌物中,从而清除局部形成的免疫复合物并限制其进入全身循环 [62] 。

4.3. 免疫球蛋白E (Immunoglobulin E, IgE)

高IgE综合征是一种原发性免疫缺陷,伴有湿疹、反复皮肤和肺部感染、骨骼/结缔组织异常和IgE升高,支气管扩张症是重要的肺部表现 [32] 。该综合征由信号转导因子和转录激活因子3 (STAT3)的突变所导致。STAT3影响多种细胞因子的产生,如白细胞介素(IL) 17的生成受损。研究中发现总IgE水平高的患者中,当总IgE水平过高(≥100 IU/L)时,其疾病严重程度指数BSI更高。一项针对丹麦国家登记处的研究发现,IgE致敏性与慢性下呼吸道感染性疾病的风险增高显著相关 [64] 。然而,文献中没有先前的研究调查过BSI和IgE水平之间的关系。这是一项新的发现,建议在支气管扩张症患者的随访期间监测总IgE水平,以预测疾病的严重程度。

4.4. 其他抗微生物肽

甘露糖结合凝集素(MBL)作为急性期的反应物在血液中表达,并与细菌病原体表面的甘露糖结合,然后通过凝集素途径激活补体,其缺乏与支气管扩张有关 [65] 。

抗原加工相关转运体(TAP)的缺乏影响主要组织相容性复合体1类(MHC-I)的功能。如果没有功能性TAP,大多数人类白细胞抗原(HLA)I类分子不会在细胞表面表达。此类患者有严重的上呼吸道和下呼吸道感染,并可能发展为支气管扩张 [50] 。

其他先天性肺内防御机制包括气道分泌的某些抗感染蛋白和多肽,如抑菌蛋白溶菌酶和乳铁蛋白,由粘液腺、巨噬细胞和上皮细胞分泌的具有抗真菌、抗病毒和抗菌特性的分泌型白细胞蛋白酶抑制因子Secretary leucoprotease inhibitor (SLPI),以及溶菌酶和防御素补体成分 、抗菌肽 、表面活性蛋白等 [21] [66] 。这些抗体是机体对各种病原体适应性免疫应答所必须的,其缺失导致呼吸道的反复感染,并最终可能形成支气管扩张症 [10] 。

5. 细菌在支气管扩张气道内的慢性定植

支气管扩张症中引起肺部炎症的大多数细菌以共生的形式存在于上呼吸道微生物组中,集中在鼻咽部 [20] 。微生物组中的某些细菌在进入下呼吸道时可能会引起炎症,并被称作潜在病原微生物(PPM) [18] 。气道潜在致病微生物potentially pathogenic microorganisms (PPM)的感染是造成支气管扩张症进展的主要驱动因素。我国的多项研究表明,临床稳定期的支气管扩张症患者最常见的PPM是铜绿假单胞菌,其次是副流感嗜血杆菌和流感嗜血杆菌 [67] 。其他感染可能包括肺炎链球菌、金黄色葡萄球菌和非结核分枝杆菌。细菌种群复杂的细胞间信号传导机制可以调节它们存活、定植以及潜在入侵宿主的行为和能力。

群体效应(Quorum sensing)是近来日益受到广泛关注的一种细菌群体行为调控机制,很多细菌有这种能力,即分泌一种或多种自诱导剂(Autoinducer),细菌通过感应这些自诱导剂来判断菌群密度和周围环境变化,当菌群数达到一定的阈值(quorum,菌落或集落数)后,启动相应一系列基因的调节表达,以调节菌体的群体行为。这些信号通路调节细菌的各种功能,包括它们的代谢、毒力因子的表达和生物膜的形成 [68] 。

Telford等人 [69] 证实假单胞菌群体效应信号分子N-(3-氧代十二烷酰基)-L-同型丝氨酸内酯(3-O-C12-HSL)除了在调节毒力方面的公认作用外,还具有免疫调节活性。Ritchie等人 [70] 表明该分子在T细胞激活的初始阶段发挥了作用,Smith等人 [71] (在小鼠中)发现假单胞菌的群体效应系统可以通过T细胞在体内诱导炎性介质,促进炎性细胞因子γ干扰素的产生。

铜绿假单胞菌的另一个重要特征是它能够形成生物膜。生物膜不仅可以保护细菌种群免受宿主防御,而且还增加对抗菌剂的耐受性。总体而言,群体效应和生物膜形成很可能在细菌(尤其是铜绿假单胞菌)在宿主中定植的能力中发挥作用,使其在肺部长期存在并破坏宿主免疫防御 [21] 。铜绿假单胞菌不仅导致支气管扩张症预后不良,而且与疾病负担增加独立相关,包括加重频率增加、生活质量降低和死亡率增加 [72] 。研究人员发现,黏液样铜绿假单胞菌的毒力基因exoU和pldA导致疾病频繁加重 [73] 。此外一项观察性研究的系统回顾表明,铜绿假单胞菌的感染与死亡风险增加3倍、住院风险增加近7倍以及平均每名患者每年增加1次病情恶化相关 [74] 。

不可分型流感嗜血杆菌(NTHi)在支气管扩张症患者中很常见,这种细菌高度适应肺部,在某些情况下可以在细胞内生存 [75] 。正常成年对照组对这种细菌主要产生Th1反应,而患有支气管扩张症和NTHi持续感染的受试者则产生Th2反应 [76] 。Th1免疫应答通常比Th2应答更具炎症性,Wynn提出,在慢性炎症性疾病中,Th1免疫的下调可能潜在地减少宿主损伤 [77] 。

6. 支气管扩张症的相关免疫调节治疗

对于支气管扩张症患者的治疗管理的包括适当使用抗生素、清除痰液、接种疫苗以及优化患者健康和营养等;这些已被列入各种国家指南 [78] [79] [80] 。但是任何能够改变并抑制免疫反应的药物在理论上都会使感染恶化,因此了解免疫调节治疗对支气管扩张症是非常重要的。

6.1. 抗生素

推荐抗生素用于以下三种情况:① 治疗肺部恶化;② 根除铜绿假单胞菌;③ 降低恶化风险和改善症状。建议的根除铜绿假单胞菌方案为口服或静脉使用抗生素2周,然后吸入抗生素3个月 [80] [81] [82] 。一项全国性随机对照试验,进行了28天的吸入妥布霉素与吸入盐水治疗,并持续4个月,在支气管扩张症患者中已经完成(编号NCT03715322),即将获批的妥布霉素吸入溶液可能为我国根除铜绿假单胞菌提供重要治疗方法 [17] 。

长期大环内酯类药物应作为频繁加重(每年3次或加重更多次)的支气管扩张症患者的一线治疗 [80] [82] 。临床试验显示,使用大环内酯类药物可改善临床结局,且降低患者病情恶化,其临床症状及肺功能得到改善 [83] [84] [85] 。大环内酯类的功效部分与抗炎和免疫调节作用有关,而不是抗菌作用。阿奇霉素和红霉素可通过抑制炎症小体活化来对抗铜绿假单胞菌感染,从而发挥抗炎作用 [86] 。由于大众担心过度使用这些抗生素对自身的不良反应,非抗生素大环内酯类药物已经开发出来,目前正在临床试验中。最近的一份报告报道,非抗生素大环内酯类药物可恢复肺泡巨噬细胞体外的吞噬功能 [87] 。

6.2. 蛋白酶抑制剂

蛋白酶是参与支气管扩张症发病机制的主要介质,因此对蛋白酶抑制剂越来越引发关注,研究主要集中在中性粒细胞弹性蛋白酶上,大量药物公司正在研发口服弹性蛋白酶抑制剂以用于支气管扩张症和其他慢性呼吸道疾病的治疗 [88] 。并且雾化脱氧核糖核酸酶Nebulised deoxyribonuclease DNase与抗生素联合使用,可能具有抑制致病蛋白酶表达的作用 [89] [90] 。

6.3. 皮质类固醇

支气管扩张症被认为是一种中性粒细胞为主的炎症性疾病。然而,30.8%的支气管和54.8%的细支气管均存在嗜酸性粒细胞浸润 [91] 。因此,吸入性皮质类固醇在嗜酸性粒细胞炎症患者的治疗中可能发挥作用。

吸入吲哚美辛 [92] 和吸入类固醇 [93] 已被证明对减轻支气管扩张症患者的症状具有有益的效果。由于支气管扩张症与睫状体定向障碍有关,在长期吸入类固醇治疗后,睫状体可能会恢复正常 [94] 。研究观察到吸入类固醇治疗的支气管扩张症患者与未经治疗的患者之间存在差异,前者支气管粘膜内T淋巴细胞浸润较少,这是否能转化为临床改善(症状减轻和恶化减少),尚需在对照试验中进行 [53] 。

6.4. 免疫球蛋白替代治疗

免疫缺陷患者可以使用免疫球蛋白替代治疗和预防性抗生素来预防感染。对于低水平IgG的患者中,替代疗法已被证明可降低感染频率并减缓疾病进展。有证据表明 [95] [96] ,接受免疫球蛋白替代治疗的患者总体生存期增加,并且接受治疗的原发性抗体缺乏综合征Primary antibody deficiency syndromes (PADS)患者的急性和慢性感染频率有所降低。尽管使用替代治疗,仍有一些患者可能出现疾病的进展 [97] ,此外也需要监测患者在输注免疫球蛋白期间是否存在过敏反应。

6.5. 疫苗

最近的指南强调了疫苗接种在支气管扩张症患者管理中的重要性,主要是使用流感和肺炎球菌疫苗。进一步了解支气管扩张症的免疫反应对于疫苗的开发非常重要。绝大多数流感嗜血杆菌感染是由不可分型的菌株引起的,但通常HiB疫苗并不用于支气管扩张症患者,并且当前也没有针对NTHi的疫苗。文献中关于使用疫苗治疗铜绿假单胞菌感染的相关研究很少,故有待进一步查证探究 [20] 。日本学者对包含20例支气管扩张症的105例慢性呼吸道疾病患者进行研究发现,接种流感疫苗和23价肺炎疫苗可预防支气管扩张症患者的下呼吸道感染 [98] 。因此,英国、沙特的支气管扩张症指南及我国的专家共识均推荐患者接种疫苗以降低其发作 [78] [99] [100] 。

7. 结论

支气管扩张症作为呼吸系统疾病,具有多种潜在病因,但无论是何种病因,都与宿主对感染的反应受损有关,即使在稳定状态期支气管扩张症患者也通常被细菌定植,再次表明机体免疫调节功能的失调。然而由于免疫系统的庞大而复杂的特性,以及对支气管扩张症的发展,临床表现和管理至关重要,因此需进一步的研究来理解其确切的机制,为更好地控制支气管扩张症患者症状、预防肺功能进一步恶化以及减少患者的病死率提供方法。

文章引用

于 洋,李玉红. 免疫调节在支气管扩张症发病机制中的研究进展
Research Progress of Immune Regulation in the Pathogenesis of Bronchiectasis[J]. 临床医学进展, 2023, 13(02): 2241-2253. https://doi.org/10.12677/ACM.2023.132314

参考文献

  1. 1. Boyton, R.J., Reynolds, C.J., Quigley, K.J. and Altmann, D.M. (2013) Immune Mechanisms and the Impact of the Dis-rupted Lung Microbiome in Chronic Bacterial Lung Infection and Bronchiectasis. Clinical and Experimental Immunology, 171, 117-123. https://doi.org/10.1111/cei.12003

  2. 2. 孙雪峰, 高金明. 非囊性纤维化性支气管扩张症的免疫调节机制[J]. 国际呼吸杂志, 2014, 34(4): 303-309. https://doi.org/10.3760/cma.j.issn.1673-436X.2014.04.016

  3. 3. Barker, A.F. (2002) Bronchiectasis. The New England Journal of Medicine, 346, 1383-1393. https://doi.org/10.1056/NEJMra012519

  4. 4. Wilson, R., Boyton, R., Laurent, G.J. and Shapiro, S.D. (2006) Bronchiectasis. In: Encyclopedia of Respiratory Medicine, Elsevier, Oxford, UK, 259-268. https://doi.org/10.1016/B0-12-370879-6/00047-8

  5. 5. Boyton, R.J. (2009) Regulation of Immunity in Bronchiec-tasis. Medical Mycology, 47, S175-S182. https://doi.org/10.1080/13693780802163370

  6. 6. Martinez-Garcia, M.Á., Oscullo, G. and Garcia-Ortega, A. (2022) Towards a New Definition of Non-Cystic Fibrosis Bronchiectasis. Jornal Brasileiro de Pneumologia, 48, e20220023. https://doi.org/10.36416/1806-3756/e20220023

  7. 7. Feng, J., Sun, L., Sun, X., Xu, L., Liu, L., Liu, G., Wang, J., Gao, P., Zhan, S., Chen, Y., Wang, S. and Sun, Y. (2022) Increasing Prevalence and Burden of Bronchiectasis in Urban Chinese Adults, 2013-2017: A Nationwide Population-Based Cohort Study. Respiratory Research, 23, Article No. 111. https://doi.org/10.1186/s12931-022-02023-8

  8. 8. Barker, A.F. and Bardana Jr., E.J. (1988) Bronchiecta-sis: Update of an Orphan Disease. American Review of Respiratory Disease, 137, 969-978. https://doi.org/10.1164/ajrccm/137.4.969

  9. 9. 张艳芳, 冯广满. 大环内酯类药物联合阿米卡星对支气管扩张患者PA形成生物膜的清除作用[J]. 热带医学杂志2017, 17(2): 1593-1596.

  10. 10. 程克斌, 徐金富, 李惠萍. 支气管扩张症的免疫调节机制及其免疫调节治疗进展[J]. 国际呼吸杂志, 2019, 39(6): 457-461.

  11. 11. Cole, P.J. (1986) Inflammation: A Two-Edged Sword—The Model of Bronchiectasis. European Journal of Respiratory Diseases. Sup-plement, 147, 6-15.

  12. 12. Chalmers, J.D., Chang, A.B., Chotirmall, S.H., et al. (2018) Bronchiectasis. Nature Reviews Disease Primers, 4, Article No. 45. https://doi.org/10.1038/s41572-018-0042-3

  13. 13. Muñoz, G., de Gracia, J., Buxó, M., et al. (2018) Long-Term Benefits of Airway Clearance in Bronchiectasis: A Randomised Placebo-Controlled Trial. European Respiratory Journal, 51, Article ID: 1701926. https://doi.org/10.1183/13993003.01926-2017

  14. 14. Chalmers, J.D., Boersma, W., Lonergan, M., et al. (2019) Long-Term Macrolide Antibiotics for the Treatment of Bronchiectasis in Adults: An Individual Participant Data Me-ta-Analysis. The Lancet Respiratory Medicine, 7, 845-854. https://doi.org/10.1016/S2213-2600(19)30191-2

  15. 15. Haworth, C.S., Bilton, D., Chalmers, J.D., et al. (2019) In-haled Liposomal Ciprofloxacin in Patients with Non-Cystic Fibrosis Bronchiectasis and Chronic Lung Infection with Pseudomonas aeruginosa (ORBIT-3 and ORBIT-4): Two Phase 3, Randomised Controlled Trials. The Lancet Respira-tory Medicine, 7, 213-226. https://doi.org/10.1016/S2213-2600(18)30427-2

  16. 16. Flume, P.A., Chalmers, J.D. and Olivier, K.N. (2018) Ad-vances in Bronchiectasis: Endotyping, Genetics, Microbiome, and Disease Heterogeneity. The Lancet, 392, 880-890. https://doi.org/10.1016/S0140-6736(18)31767-7

  17. 17. Xu, J.F., Gao, Y.H., Song, Y.L., Qu, J.M. and Guan, W.J. (2022) Research Advances and Clinical Management of Bronchiectasis: Chinese Perspective. ERJ Open Research, 8, Ar-ticle ID: 00017-2022. https://doi.org/10.1183/23120541.00017-2022

  18. 18. Angrill, J., Agustí, C., De Celis, R., et al. (2002) Bacterial Colonisation in Patients with Bronchiectasis: Microbiological Pattern and Risk Factors. Thorax, 57, 15-19. https://doi.org/10.1136/thorax.57.1.15

  19. 19. Watt, A.P., Brown, V., Courtney, J., et al. (2004) Neutrophil Apoptosis, Proinflammatory Mediators and Cell Counts in Bronchiectasis. Thorax, 59, 231-236. https://doi.org/10.1136/thx.2003.008037

  20. 20. King, P.T. (2018) The Role of the Immune Response in the Patho-genesis of Bronchiectasis. BioMed Research International, 2018, Article ID: 6802637. https://doi.org/10.1155/2018/6802637

  21. 21. Whitters, D. and Stockley, R. (2012) Immunity and Bacterial Colonisa-tion in Bronchiectasis. Thorax, 67, 1006-1013. https://doi.org/10.1136/thoraxjnl-2011-200206

  22. 22. Cowburn, A.S., Condliffe, A.M., Farahi, N., et al. (2008) Ad-vances in Neutrophil Biology: clinical Implications. Chest, 134, 606-612. https://doi.org/10.1378/chest.08-0422

  23. 23. Stockley, R.A. (2002) Neutrophils and the Pathogenesis of COPD. Chest, 121, 151S-155S. https://doi.org/10.1378/chest.121.5_suppl.151S

  24. 24. Mikami, M., Llewellyn-Jones, C.G., Bayley, D., et al. (1998) The Chemotactic Activity of Sputum from Patients with Bronchiectasis. American Journal of Respiratory and Critical Care Medicine, 157, 723-728. https://doi.org/10.1164/ajrccm.157.3.9606120

  25. 25. Mitchell, T., Lo, A., Logan, M.R., et al. (2008) Primary Gran-ule Exocytosis in Human Neutrophils Is Regulated by Rac-Dependent Actin Remodelling. American Journal of Physiol-ogy—Cell Physiology, 295, C1354-C1365. https://doi.org/10.1152/ajpcell.00239.2008

  26. 26. Rosenzweig, S.D. (2008) Inflammatory Manifestations in Chronic Granulomatous Disease. Journal of Clinical Immunology, 28, S67-S72. https://doi.org/10.1007/s10875-007-9160-5

  27. 27. Reeves, E.P., Lu, H., Jacobs, H.L., et al. (2002) Killing Activity of Neutrophils Is Mediated through Activation of Proteases by Flux. Nature, 416, 291-297. https://doi.org/10.1038/416291a

  28. 28. Tung, J.P., Fraser, J.F., Wood, P., et al. (2009) Respiratory Burst Function of Ovine Neurophils. BMC Immunology, 10, Article No. 25. https://doi.org/10.1186/1471-2172-10-25

  29. 29. Zheng, L., Shum, I.H., Tipoe, G.L., et al. (2001) Macrophages, Neutrophils and Tumour Necrosis Factor-α Expression in Bronchi-ectatic Airways in Vivo. Respiratory Medicine, 95, 792-798. https://doi.org/10.1053/rmed.2001.1155

  30. 30. Stockley, R.A., Hill, S.L., Morrison, H.M. and Starkie, C.M. (1984) Elastolytic Activity of Sputum and Its Relation to Purulence and to Lung Function in Patients with Bronchiectasis. Thorax, 39, 408-413. https://doi.org/10.1136/thx.39.6.408

  31. 31. Shum, D.K.Y., Chan, S.C.H. and Ip, M.S.M. (2000) Neutro-phil-Mediated Degradation of Lung Proteoglycans: Stimulation by Tumor Necrosis Factor-α in Sputum of Patients with Bronchiectasis. American Journal of Respiratory and Critical Care Medicine, 162, 1925-1931. https://doi.org/10.1164/ajrccm.162.5.9907064

  32. 32. Paulson, M.L., Freeman, A.F. and Holland, S.M. (2008) Hyper IgE Syndrome: An Update on Clinical Aspects and the Role of Signal Transducer and Activator of Transcription 3. Cur-rent Opinion in Allergy and Clinical Immunology, 8, 527-533. https://doi.org/10.1097/ACI.0b013e3283184210

  33. 33. Wood, A.M., Bassford, C., Webster, D., et al. (2011) Vita-min D-Binding Protein Contributes to COPD by Activation of Alveolar Macrophages. Thorax, 66, 205-210. https://doi.org/10.1136/thx.2010.140921

  34. 34. Whitwell, F. (1952) A Study of the Pathology and Pathogenesis of Bronchiectasis. Thorax, 7, 213-239. https://doi.org/10.1136/thx.7.3.213

  35. 35. Silva Jones Jr., J.A., Cole, P.J. and Poulter, L.W. (1989) The Immunolog-ical Component of the Cellular Inflammatory Infiltrate in Bronchiectasis. Thorax, 44, 668-673. https://doi.org/10.1136/thx.44.8.668

  36. 36. Sepper, R., Konttinen, Y.T., Ingman, T. and Sorsa, T. (1995) Presence, Activities, and Molecular Forms of Cathepsin G, Elastase, α1-Antitrypsin, and α1-Antichymotrypsin in Bronchiectasis. Journal of Clinical Immunology, 15, 27-34. https://doi.org/10.1007/BF01489487

  37. 37. Frija-Masson, J., Martin, C., Regard, L., et al. (2017) Bacteria-Driven Peribronchial Lymphoid Neogenesis in Bronchiectasis and Cystic Fibrosis. European Respiratory Journal, 49, Article ID: 1601873. https://doi.org/10.1183/13993003.01873-2016

  38. 38. Lapa, E., Silva, J.R., Guerreiro, D., Noble, B., et al. (1989) Immunopathology of Experimental Bronchiectasis. The American Journal of Respiratory Cell and Molecular Biology, 1, 297-304. https://doi.org/10.1165/ajrcmb/1.4.297

  39. 39. Eller, J., Lapa, E., Silva, J.R., Poulter, L.W., et al. (1994) Cells and Cytokines in Chronic Bronchial Infection. Annals of the New York Academy of Sciences, 725, 331-345. https://doi.org/10.1111/j.1749-6632.1994.tb39816.x

  40. 40. Mukae, H., Kadota, J., Kohno, S., et al. (1995) Increase in Activated CD8+ Cells in Bronchoalveolar Lavage Fluid in Patients with Diffuse Panbronchiolitis. American Journal of Respiratory and Critical Care Medicine, 152, 613-618. https://doi.org/10.1164/ajrccm.152.2.7633715

  41. 41. Campbell DA, du Bois RM, Butcher RG, et al. (1986) Density of HLA-DR Antigen Expression on Alveolar Macrophages Is Increased in Pulmonary Sarcoidosis. Clinical and Experi-mental Immunology, 65, 165-171.

  42. 42. Saetta, M., Di Stefano, A., Maestrelli, P., et al. (1993) Activated T-Lymphocytes and Macrophages in Bronchial Mucosa of Subjects with Chronic Bronchitis. American Review of Respiratory Disease, 147, 301-306. https://doi.org/10.1164/ajrccm/147.2.301

  43. 43. Bentley, A.M., Menz, G., Storz, C., et al. (1992) Identification of T Lymphocytes, Macrophages and Activated Eosinophils in the Bronchial Mucosa in Intrinsic Asthma. American Review of Respiratory Disease, 146, 500-506. https://doi.org/10.1164/ajrccm/146.2.500

  44. 44. Azzawi, M., Bradley, B., Jeffery, P.K., et al. (1990) Identification of Activated T Lymphocytes and Eosinophils in Bronchial Biopsies in Stable Atopic Asthma. American Review of Respira-tory Disease, 142, 1407-1413. https://doi.org/10.1164/ajrccm/142.6_Pt_1.1407

  45. 45. Poulter, L.W., Russel-Jones, R. and Hobbe, S. (1984) The Significance of Antigen Presenting Cells in Psoriasis. In: Macdonald, D.C., Ed., Immunodermatology, Butterworths, London, 185-188. https://doi.org/10.1016/B978-0-407-00338-5.50048-X

  46. 46. Poulter, L.W., Duke, O., Panayi, G.S., et al. (1985) Activated T Lymphocytes of the Synovial Membrane in Rheumatoid Arthritis and Other Arthropathies. Scandinavian Journal of Immunology, 22, 683-689. https://doi.org/10.1111/j.1365-3083.1985.tb01931.x

  47. 47. Poulter, L.W., Allison, M., Rochardson, A.T., et al. (1987) The Distribution of Lymphocyte Subsets in Inflammatory Bowel Disease and Reactive Synovitis: A Comparison. In: Mielants, H. and Veys, E.M., Eds., Spondyloarthropathies: Involvement of the Gut, Elsevier, Amsterdam, 213-220.

  48. 48. Boyton, R.J. and Altmann, D.M. (2016) Bronchiectasis: Current Concepts in Pathogenesis, Immunology, and Microbiology. Annual Review of Pathology: Mechanisms of Disease, 11, 523-554. https://doi.org/10.1146/annurev-pathol-012615-044344

  49. 49. Tan, H.-L., Regamey, N., Brown, S., Bush, A., Lloyd, C.M. and Davies, J.C. (2011) The Th17 Pathway in Cystic Fibrosis Lung Disease. American Journal of Respiratory and Critical Care Medicine, 184, 252-258. https://doi.org/10.1164/rccm.201102-0236OC

  50. 50. Zimmer, J., Andres, E., Donato, L., et al. (2005) Clinical and Immunological Aspects of HLA Class I Deficiency. QJM, 98, 719-727. https://doi.org/10.1093/qjmed/hci112

  51. 51. Bard, M., Couderc, L.J., Saimot, A.G., et al. (1998) Accelerated Ob-structive Pulmonary Disease in HIV Infected Patients with Bronchiectasis. European Respiratory Journal, 11, 771-775. https://doi.org/10.1183/09031936.98.11030771

  52. 52. Bekir, M., Karakoç Aydıner, E., Yıldızeli, Ş.O., Öğülür, İ., Kocakaya, D., Barış, S., Eryüksel, E., Özen, A. and Ceyhan, B.B. (2021) Primary Immun Deficiency in Patients with Non-Cystic Fibrosis Bronchiectasis and Its Relationship with Clinical Parameters. Turkish Thoracic Journal, 22, 37-44. https://doi.org/10.5152/TurkThoracJ.2020.19077

  53. 53. Gaga, M., Bentley, A.M., Humbert, M., et al. (1998) In-creases in CD4+ T Lymphocytes, Macrophages, Neutrophils and Interleukin 8 Positive Cells in the Airways of Patients with Bronchiectasis. Thorax, 53, 685-691. https://doi.org/10.1136/thx.53.8.685

  54. 54. Ip, M., Lauder, I.J., Wong, W.Y., et al. (1993) Multivariate Analysis of Factors Affecting Pulmonary Function in Bronchiectasis. Respiration, 60, 45-50. https://doi.org/10.1159/000196172

  55. 55. De Gracia, J., Rodrigo, M.J., Morell, F., et al. (1996) IgG Subclass Defi-ciencies Associated with Bronchiectasis. American Journal of Respiratory and Critical Care Medicine, 153, 650-655. https://doi.org/10.1164/ajrccm.153.2.8564113

  56. 56. Hill, S.L., Mitchell, J.L., Burnett, D. and Stockley, R.A. (1998) IgG Subclasses in the Serum and Sputum from Patients with Bronchiectasis. Thorax, 53, 463-468. https://doi.org/10.1136/thx.53.6.463

  57. 57. Ooi, G.C., Khong, P.L., Chan-Yeung, M., et al. (2002) High-Resolution CT Quantification of Bronchiectasis: Clinical and Functional Correlation. Radiology, 225, 663-672. https://doi.org/10.1148/radiol.2253011575

  58. 58. Pasteur, M.C., Helliwell, S.M., Houghton, S.J., et al. (2000) An Investigation into Causative Factors in Patients with Bronchiectasis. American Journal of Respiratory and Critical Care Medicine, 162, 1277-1284. https://doi.org/10.1164/ajrccm.162.4.9906120

  59. 59. King, P.T., Hutchinson, P., Holmes, P.W., et al. (2006) As-sessing Immune Function in Adult Bronchiectasis. Clinical & Experimental Immunology, 144, 440-446. https://doi.org/10.1111/j.1365-2249.2006.03091.x

  60. 60. Vendrell, M., de Gracia, J., Rodrigo, M.-J., et al. (2005) Antibody Production Deficiency with Normal IgG Levels in Bronchiectasis of Unknown Etiology. Chest, 127, 197-204. https://doi.org/10.1378/chest.127.1.197

  61. 61. Pilette, C., Detry, B., Guisset, A., et al. (2006) Dual Effect of Neutro-phils on Secretory Component Production by Human Bronchial Epithelial Cells. European Respiratory Review, 15, 175-176. https://doi.org/10.1183/09059180.00010111

  62. 62. Burnett, D., Crocker, J. and Stockley, R.A. (1987) Cells contain-Ing IgA Subclasses in Bronchi of Subjects with and without Chronic Obstructive Pulmonary Disease. Journal of Clinical Pathology, 40, 1217-1220. https://doi.org/10.1136/jcp.40.10.1217

  63. 63. Burnett, D., Hill, S.L. and Bradwell, A.R. (1990) IgA Subclasses in Sputum from Patients with Bronchiectasis. Respiratory Medicine, 84, 123-127. https://doi.org/10.1016/S0954-6111(08)80014-5

  64. 64. Skaaby, T., Husemoen, L.L., Thuesen, B.H., et al. (2017) IgE Sensitization to Inhalant Allergens and the Risk of Airway Infection and Disease: A Population-Based Study. PLOS ONE, 12, e0171525. https://doi.org/10.1371/journal.pone.0171525

  65. 65. Chalmers, J.D., McHugh, B.J., Doherty, C., et al. (2013) Man-nose-Binding Lectin Deficiency and Disease Severity in Non-Cystic Fibrosis Bronchiectasis: A Prospective Study. The Lancet Respiratory Medicine, 1, 224-232. https://doi.org/10.1016/S2213-2600(13)70001-8

  66. 66. Rogan, M.P., Geraghty, P., Green, C.M., et al. (2006) Anti-microbial Proteins and Polypeptides in Pulmonary Innate Defence. Respiratory Research, 7, Article No. 29. https://doi.org/10.1186/1465-9921-7-29

  67. 67. Guan, W.J., Gao, Y.H., Xu, G., et al. (2015) Sputum Bacteriology in Steady-State Bronchiectasis in Guangzhou, China. The International Journal of Tuberculosis and Lung Disease, 19, 610-619. https://doi.org/10.5588/ijtld.14.0613

  68. 68. Asad, S. and Opal, S. (2008) Bench-to-Bedside Review: Quorum Sensing and the Role of Cell-to-Cell Communication during Invasive Bacterial Infection. Critical Care, 12, Ar-ticle No. 236. https://doi.org/10.1186/cc7101

  69. 69. Telford, G., Wheeler, D. and Williams, P. (1998) The Pseudo-monas aeruginosa Quorum-Sensing Signal Molecule N- (3-oxododecanoyl)-L-homoserine Lactone Has Immunomodu-latory Activity. Infection and Immunity, 66, 36-42. https://doi.org/10.1128/IAI.66.1.36-42.1998

  70. 70. Ritchie, A.J., Jansson, A., Stallberg, J., et al. (2005) The Pseu-domonas aeruginosa Quorum-Sensing Signal Molecule N-(3-oxododecanoyl)-L-homoserine Lactone Inhibits T-Cell Differentiation and Cytokine Production by a Mechanism Involving an Early Step in T-Cell Activation. Infection and Immunity, 73, 1648-1655. https://doi.org/10.1128/IAI.73.3.1648-1655.2005

  71. 71. Smith, R.S., Harris, S.G., Phipps, R., et al. (2002) The Pseudomonas aeruginosa Quorum-Sensing Molecule N-(3- Oxododecanoyl)Homoserine Lactone Contributes to Viru-lence and Induces Inflammation in Vivo. Journal of Bacteriology, 184, 1132-1139. https://doi.org/10.1128/jb.184.4.1132-1139.2002

  72. 72. Wang, H., Ji, X.B., Mao, B., et al. (2018) Pseudomonas aeruginosa Isolation in Patients with Non-Cystic Fibrosis Bronchiectasis: A Retrospective Study. BMJ Open, 8, e014613. https://doi.org/10.1136/bmjopen-2016-014613

  73. 73. Luo, R.G., Miao, X.Y., Luo, L.L., et al. (2019) Presence of pldA and exoU in Mucoid Pseudomonas aeruginosa Is Associated with High Risk of Exacerbations in Non-Cystic Fi-brosis Bronchiectasis Patients. Clinical Microbiology and Infection, 25, 601-606. https://doi.org/10.1016/j.cmi.2018.07.008

  74. 74. Finch, S., McDonnell, M.J., Abo-Leyah, H., et al. (2015) A Com-prehensive Analysis of the Impact of Pseudomonas aeruginosa Colonization on Prognosis in Adult Bronchiectasis. An-nals of the American Thoracic Society, 12, 1602- 1611. https://doi.org/10.1513/AnnalsATS.201506-333OC

  75. 75. Clementi, C.F. and Murphy, T.F. (2011) Non-Typeable Haemophilus influenzae Invasion and Persistence in the Human Respiratory Tract. Frontiers in Cellular and Infection Microbiology, 1, Article 1. https://doi.org/10.3389/fcimb.2011.00001

  76. 76. King, P.T., Hutchinson, P.E., Johnson, P.D., Holmes, P.W., Freez-er, N.J. and Holdsworth, S.R. (2003) Adaptive Immunity to Nontypeable Haemophilus influenzae. American Journal of Respiratory and Critical Care Medicine, 167, 587-592. https://doi.org/10.1164/rccm.200207-728OC

  77. 77. Wynn, T.A. (2004) Fibrotic Disease and the TH1/TH2 Paradigm. Nature Reviews Immunology, 4, 538-594. https://doi.org/10.1038/nri1412

  78. 78. Pasteur, M.C., Bilton, D. and Hill, A.T. (2010) British Thoracic Society Guideline for Non-CF Bronchiectasis. Thorax, 65, 577. https://doi.org/10.1136/thx.2010.142778

  79. 79. Chang, A.B., Bell, S.C., Torzillo, P.J., et al. (2015) Chronic Suppurative Lung Disease and Bronchiectasis in Children and Adults in Australia and New Zealand Thoracic Society of Australia and New Zealand guidelines. Medical Journal of Australia, 202, 130. https://doi.org/10.5694/mjac14.00287

  80. 80. Polverino, E., Goeminne, P.C., McDonnell, M.J., et al. (2017) European Respiratory Society Guidelines for the Management of Adult Bronchiectasis. European Respiratory Journal, 50, Article ID: 1700629. https://doi.org/10.1183/13993003.00629-2017

  81. 81. Hill, A.T., Sullivan, A.L., Chalmers, J.D., et al. (2019) British Thoracic Society Guideline for Bronchiectasis in Adults. Thorax, 74, 1-69. https://doi.org/10.1136/thoraxjnl-2018-212463

  82. 82. Bronchiectasis Expert Consensus Writing Group, Pulmonary Infection Assembly, Chinese Thoracic Society (2021) [Expert Consensus on the Diagnosis and Treatment of Adult Bronchiectasis in China]. Chinese Journal of Tuberculosis and Respiratory Diseases, 44, 311-321.

  83. 83. Wong, C., Jayaram, L., Karalus, N., et al. (2012) Azithromycin for Prevention of Exacerbations in Non-Cystic Fibrosis Bronchiec-tasis (EMBRACE): A Randomised, Double-Blind, Placebo-Controlled Trial. The Lancet, 380, 660-667. https://doi.org/10.1016/S0140-6736(12)60953-2

  84. 84. Serisier, D.J., Martin, M.L., McGuckin, M.A., et al. (2013) Effect of Long-Term, Low-Dose Erythromycin on Pulmonary Exacerbations among Patients with Non-Cystic Fibrosis Bronchiectasis: The BLESS Randomized Controlled Trial. Journal of the American Medical Association, 309, 1260-1267. https://doi.org/10.1001/jama.2013.2290

  85. 85. Altenburg, J., de Graaff, C.S., Stienstra, Y., et al. (2013) Effect of Azithromycin Maintenance Treatment on Infectious Exacerbations among Patients with Non-Cystic Fibrosis Bronchiec-tasis: The BAT Randomized Controlled Trial. The Journal of the American Medical Association, 309, 1251-1259. https://doi.org/10.1001/jama.2013.1937

  86. 86. Fan, L.C., Lin, J.L., Yang, J.W., et al. (2017) Macrolides Protect against Pseudomonas aeruginosa Infection via Inhibition of Inflammasomes. American Journal of Physiology-Lung Cellular and Molecular Physiology, 313, L677-L686. https://doi.org/10.1152/ajplung.00123.2017

  87. 87. Hodge, S., Tran, H.B., Hamon, R., et al. (2017) Nonantibiotic Macrolides Restore Airway Macrophage Phagocytic Function with Potential Anti-Inflammatory Effects in Chronic Lung Diseases. American Journal of Physiology-Lung Cellular and Molecular Physiology, 312, L678-L687. https://doi.org/10.1152/ajplung.00518.2016

  88. 88. Stevens, T., Ekholm, K., Granse, M., et al. (2011) AZD9668: Pharmacological Characterization of a Novel Oral Inhibitor of Neutrophil Elastase. Journal of Pharmacology and Ex-perimental Therapeutics, 339, 313-320. https://doi.org/10.1124/jpet.111.182139

  89. 89. King, P.T., Sharma, R., O’Sullivan, K.M., et al. (2017) Deoxyribonu-clease 1 Reduces Pathogenic Effects of Cigarette Smoke Exposure in the Lung. Scientific Reports, 7, Article No. 12128. https://doi.org/10.1038/s41598-017-12474-5

  90. 90. Brinkmann, V. and Zychlinsky, A. (2012) Neutrophil Extracel-lular Traps: Is Immunity the Second Function of Chromatin? The Journal of Cell Biology, 198, 773-783. https://doi.org/10.1083/jcb.201203170

  91. 91. Chen, Z.G., Li, Y.Y., Wang, Z.N., et al. (2018) Aberrant Epithelial Remodeling with Impairment of Cilia Architecture in Non-Cystic Fibrosis Bronchiectasis. Journal of Thoracic Disease, 10, 1753-1764. https://doi.org/10.21037/jtd.2018.02.13

  92. 92. Tamaoki, J., Chiyotani, A., Kobayashi, K., et al. (1992) Effect of In-domethacin on Bronchorrhea in Patients with Chronic Bronchitis, Diffuse Panbronchiolitis or Bronchiectasis. American Review of Respiratory Disease, 145, 548-552. https://doi.org/10.1164/ajrccm/145.3.548

  93. 93. Elborn, J.S., Johnstone, B., Allen, F., et al. (1992) Inhaled Steroids in Patients with Bronchiectasis. Respiratory Medicine, 86, 121-124. https://doi.org/10.1016/S0954-6111(06)80227-1

  94. 94. Rayner, C.F., Rutman, A., Dewar, A., et al. (1995) Ciliary Disorientation in Patients with Chronic Upper Respiratory Tract Inflammation. American Journal of Respiratory and Critical Care Medicine, 151, 800-804. https://doi.org/10.1164/ajrccm/151.3_Pt_1.800

  95. 95. Tarzi, M.D., Grigoriadou, S., Carr, S.B., Kuitert, L.M. and Longhurst, H.J. (2009) Clinical Immunology Review Series: An Approach to the Management of Pulmonary Disease in Primary Antibody Deficiency. Clinical & Experimental Immunology, 155, 147-155. https://doi.org/10.1111/j.1365-2249.2008.03851.x

  96. 96. Chapel, H.M. (1994) Fortnightly Review: Concensus on Diagnosis and Management of Primary Antibody Deficiencies. BMJ, 308, Article No. 581. https://doi.org/10.1136/bmj.308.6928.581

  97. 97. Stubbs, A., Bangs, C., Shillitoe, B., et al. (2018) Bronchiectasis and Deteriorating Lung Function in Agammaglobulinaemia Despite Immunoglobulin Replacement Therapy. Clinical & Ex-perimental Immunology, 191, 212-219. https://doi.org/10.1111/cei.13068

  98. 98. Sumitani, M., Tochino, Y., Kamimori, T., et al. (2008) Additive Inoculation of Influenza Vaccine and 23-Valent Pneumococcal Polysaccharide Vaccine to Prevent Lower Respiratory Tract Infections in Chronic Respiratory Disease Patients. Internal Medicine, 47, 1189-1197. https://doi.org/10.2169/internalmedicine.47.0799

  99. 99. 成人支气管扩张症诊治专家共识编写组. 成人支气管扩张症诊治专家共识[J]. 中华结核和呼吸杂志, 2012, 35(7):485-492. https://doi.org/10.3760/cma.j.issn.1001-0939.2012.07.003

  100. 100. Al-Jahdali, H., Alshimemeri, A., Mobeireek, A., et al. (2017) The Saudi Thoracic Society Guidelines for Diagnosis and Management of Noncystic Fibrosis Bronchiectasis. The Annals of Thoracic Surgery, 12, 135-161. https://doi.org/10.4103/atm.ATM_171_17

  101. NOTES

    *通讯作者。

期刊菜单