Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62768 , 5 pages
10.12677/ACM.2023.133564

NLRP3炎性小体与MDSC在骨髓增生异常 综合征中的作用及研究进展

张晓华,郝建萍*

新疆医科大学第一附属医院血液病中心,新疆 乌鲁木齐

收稿日期:2023年2月15日;录用日期:2023年3月11日;发布日期:2023年3月20日

摘要

NLRP3炎症小体是近年来研究较为深入的炎症复合体之一,其不仅在各种炎性疾病中发挥重要作用,而且与肿瘤的发生发展有密切关系。髓源性抑制细胞(MDSCs)是肿瘤微环境的主要组成部分,有强大的免疫抑制活性,在肿瘤、感染和炎症中可异常增多,有效抑制T细胞、B细胞对肿瘤的杀伤,与骨髓增生异常综合征(MDS)的发生发展密切相关。最新研究表明,NLRP3炎症小体的效应因子IL-1β可招募大量的髓源性抑制细胞(MDSCs)到肿瘤部位,协助肿瘤细胞逃避免疫监测,促进肿瘤的发展。本文就NLRP3炎症小体与MDSC在MDS发病过程中的作用及研究进展作一综述。

关键词

NLRP3炎症小体,髓源性抑制细胞,骨髓增生异常综合征

The Role and Research Progress of NLRP3 Inflammasome and MDSC in Myelodysplastic Syndrome

Xiaohua Zhang, Jianping Hao*

Department of Blood Disesase Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Feb. 15th, 2023; accepted: Mar. 11th, 2023; published: Mar. 20th, 2023

ABSTRACT

NLRP3 inflammasome are one of the inflammatory complexes that have been intensively studied in recent years. They not only play an important role in various inflammatory diseases, but also have a close relationship with the occurrence and development of tumors. Myeloid-derived suppressor cells (MDSCs) are the main components of tumor microenvironment. They have strong immunosuppressive activity and can increase abnormally in tumor, infection and inflammation. They can effectively inhibit the killing of tumor by T cells and B cells, and are closely related to the occurrence and development of myelodysplastic syndrome (MDS). Recent studies have shown that IL-1β, an effector of NLRP3 inflammatory vesicles, recruits large numbers of myeloid-derived suppressor cells (MDSCs) to tumour sites, assisting tumour cells to evade immune surveillance and promoting tumour progression. This article reviews the role and research progress of NLRP3 inflammasome and MDSC in the pathogenesis of MDS.

Keywords:NLRP3 Inflammasome, Myeloid Derived Suppressor Cells, Myelodysplastic Syndrome

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. NLRP3炎症小体与骨髓增生异常综合征

炎性小体是炎症反应中起着重要作用的分子,可被多种微生物感染、内源性压力和环境刺激物所激活,参与机体先天免疫防御反应 [1] [2]。其作为驱动炎症反应的关键步骤,近年来引起了全世界研究人员的极大关注。

NLRP3炎性小体是最具代表性,也是研究最为广泛的炎症小体,它由感受器(NLRP3)、调节器(ASC,凋亡相关斑点蛋白)和效应器(procaspase-1)三部分组成。其中,ASC是NLRP3蛋白和procaspase-1的桥梁 [3]。当受到损伤因子刺激后,NLRP3蛋白与ASC相互作用启动炎性小体的形成,且ASC同时募集并激活procaspase-1以产生活性的caspase-1,然后剪切诱导pro-I-1β和pro-IL-18形成具有生物学活性的IL-1β和IL-18,从而触发一系列的炎症反应 [3] [4]。研究显示,NLRP3炎性小体的激活分两个阶段:第一阶段,Toll样受体(TLRs)识别各种应激因素并激活NF + kB,从而促使pro-IL-1β和pro-IL-18产生;第二阶段,组装NLRP3炎性复合体,然后诱导ⅡL-1β和IL-18的成熟与分泌 [3] [5]。

并且NLRP3炎性小体的激活受到多种触发因素的影响和调控,离子通量(K流、Ca动员、Na流、Cl流)、线粒体活性氧ROS的产生以及溶酶体等都已被证明能够激活NLRP3炎症小体 [6]。炎性小体的激活是细胞焦亡过程的关键 [7]。细胞焦亡是人体对各种有害刺激的过度反应,主要表现为细胞破裂后释放出大量炎症因子等内容物,细胞焦亡信号传导途径可分为经典的Caspase-1依赖细胞焦亡途径和非Caspase-1依赖的细胞焦亡途径。前者的特征是依赖Caspase-1的激活,释放出大量的炎症因子,进而引起剧烈的炎症瀑布,加重损伤 [8] [9]。当机体受到外源性和内源性危险因素的刺激,模式识别受体(pattern recognition receptor, PRRs)能够识别病原相关分子模式(pathogen-associated molecular patterns, PAMPs)和损伤相关分子模式(damage associated molecular patterns, DAMPs),导致炎性小体合成和激活Caspase-1,引起细胞焦亡,进而促进IL-1β、IL-18的成熟与分泌,引起剧烈的炎症级联反应 [10] [11]。不同于经典的Caspase-1依赖的细胞焦亡途径,非经典的细胞焦亡可不依赖炎症小体激活,直接由病原体结构分子激活Caspase-11介导细胞焦亡 [12]。
炎症小体通过识别PAMPs或者DAMPs,进而激活Caspase-1。激活后的Caspase-1促进成熟炎症因子的释放,加重炎症反应,形成恶性循环。

骨髓增生异常综合征(MDS)是一组起源于造血干细胞,以血细胞病态造血,高风险向急性髓系白血病转化的髓系肿瘤 [13]。MDS的特点是髓系细胞发育异常。MDS的另一个特点是NLRP3炎性小体异常活化。异常活化的NLRP3炎性小体驱动细胞克隆性增殖和炎性凋亡,不论是降低NLRP3或者Caspase-1表达、药物阻滞抑制NLRP3均可抑制细胞炎性凋亡并恢复MDS小鼠有效造血 [14]。目前已有研究证实炎症小体在MDS中表达升高 [15]。Basiorka等 [14] 利用共聚焦荧光显微镜发现NLRP3炎症小体在MDS病人中表达升高,其中MDS中的基因突变、S100A9的分泌等多种因素能够诱导NLRP3炎症小体激活,敲除NLRP3或Caspase-1或药物抑制NLRP3后MDS小鼠的有效造血功能得到明显恢复,提示MDS中的多种因素进一步激活NLRP3炎症小体,使其高表达在MDS发病中可能起着促进的作用。此外,Sallman等 [16] 研究发现在MDS中CASP1、NLRP1、NLRP3、IL-1β、IL-18编码基因表达上调,并利用CASP1shRNA转染MDS-BMMNC发现,与对照组相比细胞凋亡分数下降约47%,提示CASP1参与MDS的细胞凋亡。此外还发现,MDS中炎症小体激活还能诱导细胞增多和增强细胞的自我更新。表明炎症小体可能通过调控MDS中的异常细胞增殖及凋亡途径促进MDS的发病。MDS患者Caspase-3多表达正常,而Caspase-1表达升高,Caspase-1不参与细胞凋亡,其通过细胞焦亡在MDS中起作用 [17]。Basiorka等研究显示MDS患者的骨髓标本中可发现大量的NLRP3炎性小体及细胞焦亡相关的分子,该结果提示NLRP3炎症小体引发的细胞焦亡可能是MDS骨髓无效造血的原因之一 [18]。

2. 髓源性抑制细胞(MDSC)与骨髓增生异常综合征

髓源性抑制细胞(myeloid-derived suppressor cells, MDSCs)是由骨髓产生和分泌的未成熟髓样细胞(immature medullary cells, IMCs),是肿瘤微环境的主要组成部分,近年来肿瘤微环境中髓源性抑制细胞(MDSC)的免疫抑制作用被广泛关注,与许多病理条件下的免疫调节、癌症的不良预后密切相关 [19]。目前在小鼠和人类中均发现了两种MDSCs,分别为单核细胞MDSC及粒细胞MDSCs,两者在肿瘤免疫反应中均有重要作用 [20]。

在正常状态下未成熟的髓系细胞(IMC)存在于骨髓中且无免疫抑制作用,在恶性肿瘤、感染等病理状态下MDSC会在外周淋巴器官和肿瘤组织中聚集,活化后的MDSC则可抑制效应T细胞的抗肿瘤免疫作用,还可促进Treg细胞的增殖来间接发挥免疫抑制作用。MDSC作为近年来肿瘤疾病中研究较热的重要免疫负调控细胞群,在体内具有如下免疫抑制作用:抑制T细胞的增殖和杀伤能力;诱导调节性T细胞(Treg细胞)的产生;影响树突细胞的正常分化;抑制自然杀伤(NK)细胞固有免疫应答;分化为其他细胞亚群发挥免疫抑制作用。

在MDS的免疫微环境中,MDS患者中S100钙结合信号蛋白A9 (S100A9)通过与CD33结合,诱导MDSC分泌抑制性细胞因子IL-10和TGF-β,IL-10可在一定程度上影响恶性克隆造血细胞的免疫逃逸,TGF-β过度激活可导致机体的无效造血。研究发现MDSCs及Tregs均可产生高水平的IL-10和TGF-β,从而发挥免疫抑制作用,MDSCs在IL-10和TGF-β的作用下,还可诱导CD4+T细胞向Tregs转化而发挥更多的免疫抑制作用,利于肿瘤的生长和转移 [21]。由此可见,MDSCs在MDS的发病中发挥着重要作用。近年来在MDS中也在不断研究MDSCs的免疫效应作用,在MDS患者的外周血和骨髓血内都可发现MDSCs的显著扩增,其有助于MDS的无效造血,进而导致疾病进展,出现高风险MDS向AML转化的可能。Law等 [22] 研究发现MDSCs的表达水平与MDS疾病进展和不良的预后存在正相关。有研究表明与健康对照相比,MDS患者的MDSCs表达量增加,同时CD8+T细胞的表达量降低 [23]。高危MDS患者MDSCs显著活化,数目增多 [24],IL-10/IL-12和TGF-β/TNF-a的比值显著增高,提示高危MDS中的MDSCs具有更强的免疫抑制作用,可能与预后不良有关 [25]。此外,MDSCs可以促进Tregs的激活和扩增 [26],并且作为免疫抑制性细胞,还可与Tregs协同维持高危MDS患者免疫抑制的骨髓微环境,进一步促进恶性细胞免疫逃逸。MDSC作为MDS疾病发生发展进程中重要免疫抑制细胞,起着重要的作用。

3. NLRP3炎性小体与MDSC

在NLRP3炎症小体促进肿瘤免疫抑制的报道中,招募MDSCs是最早发现、也是证据最为充足的机制之一。据报道,多个炎症小体成员在MDS中表达增加。NLRP3炎症小体的激活可增强骨髓炎症,并导致造血细胞损伤、染色体异常、髓系来源抑制细胞扩增并诱导细胞焦亡 [27] [28]。NLRP3炎症小体在肿瘤免疫中的作用正在逐渐暴露出来,IL-1β在NLRP3炎症小体增强肿瘤免疫抑制能力中的作用最为明确,其可以诱导MDSCs向肿瘤部位聚集,从而促进肿瘤免疫抑制环境的形成,促进肿瘤进展。

Chen等 [29] 发现NLRP3炎症小体和IL-1β在头颈鳞癌和小鼠模型中的表达均升高,使用MCC950阻断后,IL-1β水平显著降低,同时MDSCs数量减少。Shi等 [30] 在黑色素瘤小鼠中发现IL-1β可募集MDSCs,阻断IL-1β受体后,MDSCs数量明显减少。Tu等 [31] 发现胃癌中存在IL-1β过表达,构建过表达IL-1β的转基因小鼠,发现过表达IL-1β会募集MDSCs,使小鼠发生胃癌的风险升高。因此可见NLRP3炎症小体可以通过IL-1β影响MDSCs,促进肿瘤生长转移。

4. 讨论

综上所述,随着对炎症小体及MDS的深入研究可能为MDS的诊断、耐药性发现新的标志物,为MDS的治疗提供新的靶点及预后的新指标。

文章引用

张晓华,郝建萍. NLRP3炎性小体与MDSC在骨髓增生异常综合征中的作用及研究进展
The Role and Research Progress of NLRP3 Inflammasome and MDSC in Myelodysplastic Syndrome[J]. 临床医学进展, 2023, 13(03): 3932-3936. https://doi.org/10.12677/ACM.2023.133564

参考文献

  1. 1. Hemenway, G. and Frishman, W.H. (2022) Therapeutic Implications of NLRP3-Mediated Inflammation in Coronary Artery Disease. Cardiology in Review, 30, 90-99. https://doi.org/10.1097/CRD.0000000000000391

  2. 2. Lee, H.E., Lee, J.Y., Yang, G., et al. (2019) Inhibition of NLRP3 Inflammasome in Tumor Microenvironment Leads to Suppression of Metastatic Potential of Cancer Cells. Scientific Reports, 9, Article No. 12277. https://doi.org/10.1038/s41598-019-48794-x

  3. 3. Wang Z, Zhang S, Xiao Y, et al. (2020) NLRP3 Inflammasome and Inflammatory Diseases. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 4063562. https://doi.org/10.1155/2020/4063562

  4. 4. Liu, D., Zeng, X., Li, X., et al. (2020) Advances in the Molecular Mechanisms
of NLRP3 Inflammasome Activators and Inactivators. Biochemical Pharmacology, 175, Article ID: 113863. https://doi.org/10.1016/j.bcp.2020.113863

  5. 5. Zhang, B., Wei, W. and Qiu, J. (2018) ALK Is Required for NLRP3 Inflammasome Activation in Macrophage. Biochemical and Biophysical Research Communications, 501, 246-252. https://doi.org/10.1016/j.bbrc.2018.04.226

  6. 6. Kelley, N., Jeltema, D., Duan, Y., et al. (2019) The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. International Journal of Molecular Sciences, 20, 3328. https://doi.org/10.3390/ijms20133328

  7. 7. 杨斯迪, 邓奇峰, 黄瑞, 吴淑燕. 炎性小体激活与细胞焦亡的研究进展[J]. 微生物与感染, 2017, 12(3): 192-196.

  8. 8. 肖少波, 等. 细胞焦亡: 一种与炎症相关的细胞死亡[J]. 生命的化学, 2017, 37(3): 423-428.

  9. 9. 刘超英, 等. 细胞焦亡与炎症发生研究进展[J]. 动物医学进展, 2017, 38(9): 101-104.

  10. 10. 黄茂凌, 等. 细胞焦亡发生机制及其与相关疾病的研究进展[J]. 疑难病杂志, 2019, 18(7): 744-747.

  11. 11. 祁会丽, 等. 细胞焦亡激活机制及相关疾病研究进展[J]. 中华实用诊断与治疗杂志, 2016, 30(5): 417-419.

  12. 12. Yang, J., Zhao, Y. and Feng, S. (2015) Non-Canonical Activation of Inflammatory Caspases by Cytosolic LPS in Innate Immunity. Current Opinion in Immunology, 32, 78-83. https://doi.org/10.1016/j.coi.2015.01.007

  13. 13. Cazzola, M. (2020) Myelodysplastic Syndromes. New England Journal of Medicine, 383, 1358-1374. https://doi.org/10.1056/NEJMra1904794

  14. 14. Basiorka, A.A., McGraw, K.L., Eksioglu, E.A., et al. (2016) The NLRP3
Inflammasome Functions as a Driver of the Myelodysplastic Syndrome Phenotype. Blood, 128, 2960-2975. https://doi.org/10.1182/blood-2016-07-730556

  15. 15. 王金霞, 刘爱飞, 李方林, 陈懿建. 炎症小体在恶性血液病发病中的作用[J]. 中国老年学杂志, 2017, 37(16): 4154-4156.

  16. 16. Sallman, D.A., Cluzeau, T., Basiorka, A.A., et al. (2016) Unraveling the Pathogenesis of MDS: The NLRP3 Inflammasome and Pyroptosis Drive the MDS Pheno-Type U. Frontiers in Oncology, 6, 151. https://doi.org/10.3389/fonc.2016.00151

  17. 17. Zhong, C., Wang, R., Hua, M., et al. (2021) NLRP3 Inflammasome Promotes the Progression of Acute Myeloid Leukemia via IL-1β Pathway. Frontiers in Immunology, 12, 2113. https://doi.org/10.3389/fimmu.2021.661939

  18. 18. Sallman, D.A. and List, A. (2019) The Central Role of Inflam-matory Signaling in
the Pathogenesis of Myelodysplastic Syndromes. Blood, 133, 1039-1048. https://doi.org/10.1182/blood-2018-10-844654

  19. 19. Fleming, V., Hu, X., Weber, R., et al. (2018) Targeting My-eloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression. Frontiers in Immunology, 9, 98. https://doi.org/10.3389/fimmu.2018.00398

  20. 20. Ehsan, N., Ali, M., Mohammad, S.P., et al. (2021) Role of Mye-loid-Derived Suppressor Cell (MDSC) in Autoimmunity and Its Potential as a Therapeutic Target. Inflammopharmacology, 29, 1307-1315. https://doi.org/10.1007/s10787-021-00846-3

  21. 21. Li, L.H., Yu, R., Cai, T.G., et al. (2020) Effects of Immune Cells and Cytokines on Inflammation and Immunosuppression in the Tumor Microenvironment. International Immunopharmacology, 88, Article ID: 106939. https://doi.org/10.1016/j.intimp.2020.106939

  22. 22. Barreyro, L., Chlon, T.M. and Starczynowski, D.T. (2018) Chronic Immune Response Dysregulation in MDS Pathogenesis. Blood, 132, 1553-1560. https://doi.org/10.1182/blood-2018-03-784116

  23. 23. Qi, X., Jiang, H.J. Liu, P., et al. (2021) Increased Mye-loid-Derived Suppressor Cells in Patients with Myelodysplastic Syndromes Suppress CD8+ T Lymphocyte Function through the STAT3-ARG1 Pathway. Leukemia & Lymphoma, 62, 218-223. https://doi.org/10.1080/10428194.2020.1817431

  24. 24. Braun, T., Carvalho, G., Coquelle, A., et al. (2006) NF-kappaB Constitutes a Potential Therapeutic Target
in High-Risk Myelodysplastic Syndrome. Blood, 107, 1156-1165. https://doi.org/10.1182/blood-2005-05-1989

  25. 25. Han, D., Tao, J., Fu, R., et al. (2020) Myeloid-Derived Suppressor Cell Cytokine Secretion as Prognostic Factor in Myelodysplastic Syndromes. Innate Immunity, 26, 703-715. https://doi.org/10.1177/1753425920961157

  26. 26. Ben-Neriah, Y. and Karin, M. (2011) Inflammation Meets Cancer, with NF-KB as the Matchmaker. Nature Immunology, 12, 715-723. https://doi.org/10.1038/ni.2060

  27. 27. Sallman, D.A., Tanaka, T.N., List, A., et al. (2017) SOHO State of the Art
Update and Next Questions: Biology and Treatment of Myelodysplastic Syndromes. Clinical Lymphoma, Myeloma and Leukemia, 17, 613-620. https://doi.org/10.1016/j.clml.2017.09.018

  28. 28. Ward, G.A., McGraw, K.L., Abbas-Aghabababababababeh, F., et al. (2021) Oxidized Mitochondrial DNA Released after Inflammasome Activation Is a Disease Biomarker for Myelodysplastic Syndromes. Blood Advances, 5, 2216-2228. https://doi.org/10.1182/bloodadvances.2020003475

  29. 29. Chen, L., Huang, C.F., Li, Y.C., et al. (2018) Blockage of the NLRP3 Inflammasome by MCC950 Improves Anti-Tumor Immune Responses in Head and Neck Squamous Cell Carcinoma. Cellular and Molecular Life Sciences, 75, 2045-2058. https://doi.org/10.1007/s00018-017-2720-9

  30. 30. Shi, H., Qin, Y., Tian, Y., et al. (2022) Interleukin-1beta Triggers the Expansion of Circulating Granulocytic Myeloid-Derived Suppressor Cell Subset Dependent on Erk 1/2 Activation. Immunobiology, 227, 152-165. https://doi.org/10.1016/j.imbio.2021.152165

  31. 31. Tu, S., Bhagat, G., Cui, G., et al. (2008) Overexpression of In-terleukin-1β Induces Gastric Inflammation and Cancer and Mobilizes Myeloid-Derived Suppressor Cells in Mice. Cancer Cell, 14, 408-419. https://doi.org/10.1016/j.ccr.2008.10.011

  32. NOTES

    *通讯作者。

期刊菜单