Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 65670 , 7 pages
10.12677/ACM.2023.1351144

SphK1和微炎症状态在慢性肾脏病中的作用

呼延逸然1,鲍苗1,鲁滟新1,李振江2*,朱燕亭2

1西安医学院研究生工作部,陕西 西安

2陕西省人民医院肾病血透中心,陕西 西安

收稿日期:2023年4月22日;录用日期:2023年5月15日;发布日期:2023年5月23日

摘要

鞘氨醇激酶1 (Sphingosine Kinase-1, SphK1)是一种广泛存在的脂类激酶,在生物体内参与生长、分化、增殖、凋亡及调节炎症反应等多种病理生理过程。微炎症状态是指炎症因子持续轻度增高的一种无显性感染的炎症状态。目前已证实SphK1、微炎症状态和慢性肾脏病(Chronic Kidney Disease, CKD)均有着密切关系,因此SphK1、微炎症状态在CKD中的作用受到人们越来越多的关注。本文就SphK1和微炎症状态在CKD中的作用研究现状进行综述,重点介绍SphK1、微炎症状态在CKD发生发展中的作用以及SphK1、微炎症状态之间的相互关系。

关键词

鞘氨醇激酶1,微炎症状态,慢性肾脏病

The Role of SphK1 and Micro-Inflammation in Chronic Kidney Disease

Yiran Huyan1, Miao Bao1, Yanxin Lu1, Zhenjiang Li2*, Yanting Zhu2

1Graduate Work Department, Xi’an Medical University, Xi’an Shaanxi

2Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an Shaanxi

Received: Apr. 22nd, 2023; accepted: May 15th, 2023; published: May 23rd, 2023

ABSTRACT

Sphingosine Kinase-1 (SphK1) is a ubiquitous lipid kinase that participates in various pathophysiological processes such as growth, differentiation, proliferation, apoptosis and regulation of inflammatory response in organisms. The micro-inflammatory state refers to an inflammatory state without dominant infection in which inflammatory factors continue to increase slightly. It has been confirmed that SphK1, micro-inflammatory state and chronic kidney disease (CKD) are closely related, so the role of SphK1 and micro-inflammatory state in CKD has attracted more and more attention. This article reviews the role of SphK1 and microinflammatory state in CKD, focusing on the role of SphK1 and microinflammatory state in the development of CKD and the relationship between SphK1 and microinflammatory state.

Keywords:Sphingosine Kinase-1, Micro-Inflammatory State, Chronic Kidney Disease

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

慢性肾脏病(Chronic Kidney Disease, CKD)是我国常见的慢性疾病之一。当今社会,由于糖尿病、高血压及高脂血症的高发病率和日渐严重的人口老龄化,CKD已经达到了流行病的发病水平 [1] 。2017年CKD的全球患病率已达9.1% (6.975亿例) [2] 。中国成年人CKD患病率达10.8% (约1.3亿例),其中,大约1% (3000万例)的患者将发展至终末期肾病(End Stage Renal Disease, ESRD);然而,CKD发病机制复杂,起病隐匿,一旦进展至ESRD,患者将不得不进行肾脏替代治疗,心血管不良事件等并发症的发生率及死亡率也显著增加(超过一半的死亡由心血管疾病引起 [3] ),这不仅使患者持续遭受病痛折磨,而且对患者家庭甚至我国社会造成巨大的经济负担。因此进一步明确CKD的发病机制及其发生发展的影响因素,对于改善CKD患者预后及社会发展都尤为重要。虽然近年来临床上有多种手段来控制CKD的病情进展,但主要为对症治疗且缺乏特异性的靶向治疗。CKD发病机制复杂,尚未完全明确。研究发现多种分子信号参与了CKD的发生发展,其中,SphK1在CKD的发生发展中起着重要作用 [4] 。另有研究显示 [5] [6] ,微炎症状态亦与CKD的病情进展有着密切关系。

2. SphK1分子作用机制

神经酰胺(Ceramide, Cer)、鞘氨醇(Sphingosine, Sph)和鞘氨醇-1-磷酸(Sphingosine 1-Phosphate, S1P)是人体内重要的鞘脂代谢物,在细胞生长、分化、增殖、凋亡及调节炎症反应的过程中起着重要作用,它们之间可以相互转化。SphK1是一种广泛存在的脂类激酶,负责将Cer磷酸化转化为S1P,而S1P可以激活胞膜上与S1P结合的G蛋白偶联受体(G Protein Coupled Receptors, GPCRs)家族,即S1P受体(S1P receptor, S1PR),这些受体在各种类型细胞中差异分布和表达 [7] 。目前发现了5种S1P-GPCR (S1PR1-5),S1PR的激活引起了S1P广泛的下游效应 [8] ,从而引起多种生物学效应。因此SphK1能依据Sph水平适当地调整S1P水平,以此维持Sph、S1P的平衡。已有研究证实,SphK1可被不同的生长因子或促进生长的激动剂激活,如血小板源性生长因子 [8] 、血管内皮生长因子 [9] 和胰岛素样生长因子 [8] 。SphK1可直接或通过下游的S1PR1-5来间接发挥作用,通过作用于不同的受体,SphK1发挥着广泛的多种生物学功能,如炎症调节 [10] 、免疫反应 [11] 、调节凋亡 [12] 等作用。

3. 微炎症状态定义及检测指标

炎症的结果通常是宿主防止感染扩散,使组织恢复到其正常结构和功能状态的一种保护性生理机制 [13] ,这种机制是在机体受到的刺激后,免疫系统会启动多种细胞、细胞因子和其他分子的组合来充当诱导物、传感器、介质和效应器,从而引发不同类型的炎症反应 [14] 。与感染引起的炎症反应不同,微炎症的状态是由内毒素、补体、各种化学物质和免疫复合物的刺激、单核巨噬细胞系统的激活或炎症细胞因子的释放引起的轻微炎症反应 [15] 。进一步讲,微炎症状态是指炎症因子持续轻度增高的一种无显性感染的炎症状态,多是由于机体免疫功能异常所引起的一种免疫性炎症,这种慢性炎症是组织细胞对损伤所产生的不良适应性反应 [16] ,其具体机制可能是非病原微生物感染所引起的以单核巨噬细胞系统激活为中心的轻度、缓慢和持续的免疫炎症反应,单核巨噬细胞系统的激活持续刺激炎性细胞因子(白介素、肿瘤坏死因子)的产生 [16] [17] 。微炎症状态的主要检测指标为血液循环中的促炎细胞因子,如白介素-1 (Interleukin-1, IL-1)、白介素-6 (Interleukin-6, IL-6)、肿瘤坏死因子α (Tumor Necrosis Factor-α, TNF-α)、血清淀粉样蛋白A、纤维蛋白原和C-反应蛋白(C-Reactive Protein, CRP) [17] 。

4. 微炎症状态在慢性肾脏病中作用的研究现状

持续的微炎症状态在许多慢性疾病(动脉粥样硬化、肥胖症、癌症、慢性阻塞性肺病、哮喘、炎症性肠病、神经退行性疾病、多发性硬化症或类风湿性关节炎)发病机制中起着重要作用 [13] 。有研究表明,CKD患者中普遍存在的微炎症状态 [6] ,其机制可能与多种因素引起的免疫紊乱和炎症激活有关,并且随着CKD患者病情进展,肾小球滤过功能的下降会使炎症细胞因子清除率降低,炎症因子的产生也会增加,这些因素共同导致它们在血液中的含量增加。除肾功能下降引起的原因外,CKD患者微炎症状态的发生也与透析因素 [18] 、肠道菌群因素、细胞氧化应激因素 [19] 相关。遗传因素、生活方式、饮食习惯和体内尿毒症毒素积累等表观遗传变化也可进一步激活炎症反应 [18] [20] 。

在CKD尿毒症期中微炎症状态的发生发展机制可能更为多样。首先,外源性因素可能也发挥重要作用,如血液透析置管时导管插入术、暴露于微生物污染物或透析治疗过程中的生物相容性问题 [21] ,值得欣慰的是这些外源性因素可以通过严格操作等手段避免。CKD患者还可能表现出肠道菌群失调和肠道通透性增加的迹象,这种情况可导致血液中细菌DNA的存在和内毒素水平的升高,并诱导炎症因子释放 [21] 。引起CKD尿毒症微炎症持续存在的内源性因素与体内物质代谢失常有关,如矿物质代谢的变化(特别是磷酸盐和钠离子水平的变化)、氧化应激的调节、非酶糖基化增加,这些因素相互影响共同促进炎症因子的表达 [22] 。在CKD尿毒症期中肾脏中磷酸盐的吸收调节失衡和肾清除率降低,常会产生无机磷酸盐的相对超负荷,导致高磷血症,进而促进全身炎症、血管内皮功能障碍和血管钙化的发生 [23] ,这也是CKD心血管事件多发的原因之一。尿毒症患者组织中钠的积累,可能通过激活p38丝裂原活化蛋白激酶途径和诱导产生白细胞介素-17的CD4+T辅助细胞导致全身持续慢性炎症 [24] [25] 。在CKD患者存在氧化应激的调节失衡,使抗氧化反应的核因子E2相关因子2下调,使在调节炎症反应中起关键作用的核因子κB (Nuclear Factor-κB, NF-κB)上调,最终促使微炎症状态的发生 [21] [26] 。晚期糖基化终末产物(Advanced Glycation End products, AGEs)由还原糖和蛋白质、脂质和核酸等生物分子通过一系列非酶糖基化反应形成。在CKD中,AGEs的积累是由于肾脏清除率降低和形成增加所致内源性因素(AGEs的形成由高血糖促进,但也由高水平的氧化应激促进) [27] ,AGEs在体内的积累可激活NF-κB通路,从而通过释放促炎细胞因子(如IL-1、IL-6和TNF-α)使尿毒症微炎症状态持续存在 [28] 。

另有研究显示,CKD微炎症微炎症状态机制可能与巨噬细胞表型和抗炎细胞因子的异常表达有关 [17] 。巨噬细胞是免疫应答的重要细胞,主要功能是组织免疫监测和免疫抑制。巨噬细胞对周围环境进行免疫监测,识别入侵微生物和组织损伤的信号,刺激活化的淋巴细胞和其他免疫细胞,并防御微生物感染。巨噬细胞可以受到多种因素的影响,从而改变其表型,进而影响其功能。活化的巨噬细胞通常分为两类,M1样巨噬细胞和M2样巨噬细胞 [29] 。M1样巨噬细胞的功能是保护宿主免受微生物感染和抗肿瘤,它可以分泌炎症介质,如TNF-α、NO、IL-1、IL-12和IL-23,除了抵抗微生物感染,它还参与多种慢性炎症和自身免疫疾病的发病机制;M2样巨噬细胞具有抑制炎症和促进伤口愈合的功能,它可以分泌TGF-β1和血小板源性生长因子来促进成纤维细胞的生长,并具有调节2型炎症反应的功能,巨噬细胞既可以发挥促炎和组织损伤作用,也可以控制炎症反应并参与组织修复 [17] [30] 。由此可见,巨噬细胞具有促纤维化作用,并在CKD患者微炎症状态发生发展中起重要作用。相关研究显示,微炎症状态相关指标IL-6可以通过其对趋化因子表达的影响,来招募和增强纤维细胞、成纤维细胞和肌成纤维细胞的增殖,并促进胶原蛋白的产生 [31] ,从而促进纤维化的发生。在炎症的作用方面,虽然炎症是宿主对损伤反应的防御机制的一个组成部分,但非可控性炎症可能通过形成自身抗体造成组织损伤,并促使纤维化疾病的发展 [32] 。因此,微炎症状态可能在CKD患者肾间质纤维化的发生发展中扮演重要角色,从而推动CKD的病情进展。

5. SphK1在微炎症状态及慢性肾脏病中的作用

肾纤维化包括肾小球硬化、肾小管间质纤维化和肾小血管硬。肾间质纤维化(Renal Interstitial Fibrosis, RIF)又包括肾小管间质纤维化(Tubulointerstitial Fibrosis, TIF)、肾小血管硬等。肾纤维化的病理机制涉及多个因素,包括氧化应激和炎症因子的激活、葡萄糖代谢紊乱和血液动力学异常 [33] 。RIF是多种病因的CKD进展至ESRD的共同途径,近年来检出的RIF发病率呈现上升的趋势,因此明确RIF的发生机制及影响因素可为CKD的治疗提供更多选择方案。RIF是以肾小管上皮细胞和间质成纤维细胞为主的一个动态汇聚的过程 [34] ,在肾实质损伤后经过一系列动态演变使肾小球的系膜区及肾小管间质中的ECM过度积累,最终发生纤维化。

非可控性炎症可能促使纤维化疾病的发展 [32] 的观点已经广范被人们所接受,其中微炎症状态在RIF的形成过程中也发挥了重要作用。有研究证实,红景天苷(从红景天中分离出来的一种活性成分,具有抗炎和肾脏保护作用)可以减少ECM (包括III型胶原和I型胶原)的沉积,从而起到抗RIF作用,其作用机制可能是减少炎性细胞因子(IL-1β、IL-6、TNF-α)的释放以及抑制上皮-间充质转化 [35] 。类似的,脂联素也是通过对炎症的控制进而发挥抗RIF的作用 [33] 。

在微炎症的形成过程中,SphK1可能发挥了重要的推动作用,并可能通过对微炎症状态的影响或其他途径参与组织纤维化发生发展。有学者通过敲除小鼠SphK1基因进行对照实验,发现SphK1基因的缺失可减轻小鼠滑膜和关节周围炎症(一种慢性炎症性自身免疫疾病,其血液中TNF-α和IL-1等炎症介质水平呈持续轻度升高状态),其机制是SphK1的缺失通过减少滑膜炎症和破骨细胞数量来抑制这种微炎症状态 [36] 。SphK1的敲除可抑制脑组织缺血在再灌注损伤时诱导的TNF-α、IL-6和IL-1等细胞因子水平的升高 [10] 。不仅如此,SphK1可通过调节NLRP3炎症小体表达促进婴儿肺炎的炎症、肝脏炎症及肝脏纤维化 [37] [38] ,阻滞SphK1/S1P信号通路还可降低心肌梗死后大鼠血清中IL-1、IL-6和TNF-α的表达以及纤维化因子α-平滑肌肌动蛋白和I型胶原蛋白的表达 [39] ,从而抑制心肌组织微炎症状态和纤维化。PF-543 (一种竞争性SphK1抑制剂)通过特异性抑制SphK1来减轻急性乙醇中毒小鼠肺组织中TNF-α、IL-6、IL-1和IL-18的表达水平 [40] ,从而对肺脏起到保护作用。白术内酯-1可通过抑制SPHK1/PI3K/AKT轴显著降低结肠炎小鼠体内微炎症状态指标(TNF-α、IL-6、IL-1)并调节结肠炎小鼠肠道菌群的多样性和丰度,从而治疗溃疡性结肠炎 [41] 。因此,我们可推测SphK1对人体器官具有普遍的促炎作用及促纤维化作用,抑制SphK1的表达可减弱微炎症状态和延缓组织纤维化。

综上所述,微炎症状态的持续存在与SphK1的上调、组织器官纤维化(尤其是RIF)的发生发展,三者之间有着密切的联系,SphK1和微炎症状态不仅可通过多种分子信号途径促进CKD的进展,并且SphK1和微炎症状态可能通过相互影响,进一步促进CKD的发生发展。

6. 总结与展望

SphK1、微炎症状态与CKD的发生发展有着密切的联系,SphK1、微炎症状态可通过多种途径促进CKD的发生发展,因此通过检测SphK1、微炎症状态相关指标有望为CKD的诊断、评估病情、治疗提供更多的证据及方案,以期更早期发现和及时延缓CKD的病情进展。然而,SphK1和微炎症状态促进CKD发展的具体机制尚未完全明确,值得我们进一步研究。

声明

利益冲突所有作者均声明没有利益冲突。

文章引用

呼延逸然,鲍 苗,鲁滟新,李振江,朱燕亭. SphK1和微炎症状态在慢性肾脏病中的作用
The Role of SphK1 and Micro-Inflammation in Chronic Kidney Disease[J]. 临床医学进展, 2023, 13(05): 8174-8180. https://doi.org/10.12677/ACM.2023.1351144

参考文献

  1. 1. Ruiz-Ortega, M., Rayego-Mateos, S., Lamas, S., et al. (2020) Targeting the Progression of Chronic Kidney Disease. Nature Reviews Nephrology, 16, 269-288. https://doi.org/10.1038/s41581-019-0248-y

  2. 2. Carney, E.F. (2020) The Impact of Chronic Kidney Disease on Global Health. Nature Reviews Nephrology, 16, 251. https://doi.org/10.1038/s41581-020-0268-7

  3. 3. Ahmadmehrabi, S. and Tang, W.H.W. (2018) Hemodialy-sis-Induced Cardiovascular Disease. Seminars in Dialysis, 31, 258-267. https://doi.org/10.1111/sdi.12694

  4. 4. Xie, T., Chen, C., Peng, Z., et al. (2020) Erythrocyte Metabolic Reprogramming by Sphingosine 1-Phosphate in Chronic Kidney Disease and Therapies. Circulation Research, 127, 360-375. https://doi.org/10.1161/CIRCRESAHA.119.316298

  5. 5. Dai, L., Golembiewska, E., Lindholm, B., et al. (2017) End-Stage Renal Disease, Inflammation and Cardiovascular Outcomes. Contributions to Nephrology, 191, 32-43. https://doi.org/10.1159/000479254

  6. 6. Wang, Y. and Gao, L. (2022) Inflammation and Cardiovascular Disease Associated with Hemodialysis for End-Stage Renal Disease. Frontiers in Pharmacology, 13, Article ID: 800950. https://doi.org/10.3389/fphar.2022.800950

  7. 7. Vázquez-Victorio, G., González-Espinosa, C., Espinosa-Riquer, Z.P., et al. (2016) GPCRs and Actin-Cytoskeleton Dynamics. Methods in Cell Biology, 132, 165-188. https://doi.org/10.1016/bs.mcb.2015.10.003

  8. 8. Li, F., Wang, J., Zhu, Y., et al. (2018) SphK1/S1P Mediates PDGF-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation via miR-21/BMPRII/Id1 Signaling Pathway. Cel-lular Physiology and Biochemistry, 51, 487-500. https://doi.org/10.1159/000495243

  9. 9. Bazzazi, H. and Popel, A.S. (2017) Computational Investigation of Sphin-gosine Kinase 1 (SphK1) and Calcium Dependent ERK1/2 Activation Downstream of VEGFR2 in Endothelial Cells. PLOS Computational Biology, 13, e1005332. https://doi.org/10.1371/journal.pcbi.1005332

  10. 10. Zhou, F., Wang, Y.K., Zhang, C.G., et al. (2021) miR-19a/b-3p Promotes Inflammation during Cerebral Ischemia/Reperfusion Injury via SIRT1/FoxO3/SPHK1 Pathway. Journal of Neuroinflammation, 18, Article No. 122. https://doi.org/10.1186/s12974-021-02172-5

  11. 11. Lau, P., Zhang, G., Zhao, S., et al. (2022) Sphingosine Kinase 1 Promotes Tumor Immune Evasion by Regulating the MTA3-PD-L1 Axis. Cellular & Molecular Immunology, 19, 1153-1167. https://doi.org/10.1038/s41423-022-00911-z

  12. 12. Liu, K., Sun, T., Luan, Y., et al. (2022) Berberine Ameliorates Erectile Dysfunction in Rats with Streptozotocin-Induced Diabetes Mellitus through the Attenuation of Apoptosis by Inhibiting the SPHK1/S1P/S1PR2 and MAPK Pathways. Andrology, 10, 404-418. https://doi.org/10.1111/andr.13119

  13. 13. Nathan, C. and Ding, A. (2010) Nonresolving Inflammation. Cell, 140, 871-882. https://doi.org/10.1016/j.cell.2010.02.029

  14. 14. Medzhitov, R. (2008) Origin and Physiological Roles of Inflamma-tion. Nature, 454, 428-435. https://doi.org/10.1038/nature07201

  15. 15. Filiopoulos, V., Hadjiyannakos, D., Takouli, L., et al. (2009) Inflamma-tion and Oxidative Stress in End-Stage Renal Disease Patients Treated with Hemodialysis or Peritoneal Dialysis. The In-ternational Journal of Artificial Organs, 32, 872-882. https://doi.org/10.1177/039139880903201206

  16. 16. Jankowska, M., Cobo, G., Lindholm, B., et al. (2017) Inflam-mation and Protein-Energy Wasting in the Uremic Milieu. Contributions to Nephrology, 191, 58-71. https://doi.org/10.1159/000479256

  17. 17. Wu, J., Guo, N., Chen, X., et al. (2020) Coexistence of Mi-cro-Inflammatory and Macrophage Phenotype Abnormalities in Chronic Kidney Disease. International Journal of Clini-cal and Experimental Pathology, 13, 317-323.

  18. 18. Friedrich, B., Alexander, D., Janessa, A., et al. (2006) Acute Effects of Hemodialysis on Cytokine Transcription Profiles: Evidence for C-Reactive Protein-Dependency of Mediator Induction. Kidney International, 70, 2124-2130. https://doi.org/10.1038/sj.ki.5001865

  19. 19. Ademowo, O.S., Sharma, P., Cockwell, P., et al. (2020) Distribution of Plasma Oxidised Phosphatidylcholines in Chronic Kidney Disease and Periodontitis as a Co-Morbidity. Free Radical Bi-ology and Medicine, 146, 130-138. https://doi.org/10.1016/j.freeradbiomed.2019.10.012

  20. 20. Wu, W., Yang, J.J., Yang, H.M., et al. (2017) Mul-ti-Glycoside of Tripterygium wilfordii Hook. f. Attenuates Glomerulosclerosis in a Rat Model of Diabetic Nephropathy by Exerting Anti-Microinflammatory Effects without Affecting Hyperglycemia. International Journal of Molecular Medicine, 40, 721-730. https://doi.org/10.3892/ijmm.2017.3068

  21. 21. Kooman, J.P., Dekker, M.J., Usvyat, L.A., et al. (2017) Inflammation and Premature Aging in Advanced Chronic Kidney Disease. American Journal of Physiolo-gy-Renal Physiology, 313, F938-f950. https://doi.org/10.1152/ajprenal.00256.2017

  22. 22. Ebert, T., Pawelzik, S.C., Witasp, A., et al. (2020) Inflammation and Premature Ageing in Chronic Kidney Disease. Toxins (Basel), 12, Article No. 227. https://doi.org/10.3390/toxins12040227

  23. 23. Carracedo, M., Artiach, G., Witasp, A., et al. (2019) The G-Protein Coupled Receptor ChemR23 Determines Smooth Muscle Cell Phenotypic Switching to Enhance High Phos-phate-Induced Vascular Calcification. Cardiovascular Research, 115, 1557-1566. https://doi.org/10.1093/cvr/cvy316

  24. 24. Kooman, J.P., Kotanko, P., Schols, A.M., et al. (2014) Chronic Kidney Disease and Premature Ageing. Nature Reviews Nephrology, 10, 732-742. https://doi.org/10.1038/nrneph.2014.185

  25. 25. Mikolajczyk, T.P. and Guzik, T.J. (2019) Adaptive Immunity in Hy-pertension. Current Hypertension Reports, 21, Article No. 68. https://doi.org/10.1007/s11906-019-0971-6

  26. 26. Pedruzzi, L.M., Cardozo, L.F., Daleprane, J.B., et al. (2015) Sys-temic Inflammation and Oxidative Stress in Hemodialysis Patients Are Associated with Down-Regulation of Nrf2. Journal of Nephrology, 28, 495-501. https://doi.org/10.1007/s40620-014-0162-0

  27. 27. Stinghen, A.E.M., Massy, Z.A., Vlassara, H., et al. (2016) Ure-mic Toxicity of Advanced Glycation End Products in CKD. Journal of the American Society of Nephrology, 27, 354-370. https://doi.org/10.1681/ASN.2014101047

  28. 28. Sanajou, D., Ghorbani Haghjo, A., Argani, H., et al. (2018) AGE-RAGE Axis Blockade in Diabetic Nephropathy: Current Status and Future Directions. European Journal of Pharmacology, 833, 158-164. https://doi.org/10.1016/j.ejphar.2018.06.001

  29. 29. Yunna, C., Mengru, H., Lei, W., et al. (2020) Macrophage M1/M2 Polarization. European Journal of Pharmacology, 877, Article ID: 173090. https://doi.org/10.1016/j.ejphar.2020.173090

  30. 30. Xu, N., Bo, Q., Shao, R., et al. (2019) Chitinase-3-Like-1 Pro-motes M2 Macrophage Differentiation and Induces Choroidal Neovascularization in Neovascular Age-Related Macular Degeneration. Investigative Ophthalmology & Visual Science, 60, 4596-4605. https://doi.org/10.1167/iovs.19-27493

  31. 31. Wilson, M.S. and Wynn, T.A. (2009) Pulmonary Fibrosis: Pathogene-sis, Etiology and Regulation. Mucosal Immunology, 2, 103-121. https://doi.org/10.1038/mi.2008.85

  32. 32. Nathan, C. (2022) Nonresolving Inflammation Redux. Immunity, 55, 592-605. https://doi.org/10.1016/j.immuni.2022.03.016

  33. 33. Jing, H., Tang, S., Lin, S., et al. (2020) Adiponectin in Renal Fibrosis. Aging (Albany NY), 12, 4660-4672. https://doi.org/10.18632/aging.102811

  34. 34. Campanholle, G., Ligresti, G., Gharib, S.A., et al. (2013) Cellular Mechanisms of Tissue Fibrosis. 3. Novel Mechanisms of Kidney Fibrosis. American Journal of Physiology-Cell Physi-ology, 304, C591-C603. https://doi.org/10.1152/ajpcell.00414.2012

  35. 35. Li, R., Guo, Y., Zhang, Y., et al. (2019) Salidroside Ameliorates Renal Interstitial Fibrosis by Inhibiting the TLR4/NF-κB and MAPK Signaling Pathways. International Journal of Mo-lecular Sciences, 20, 1103. https://doi.org/10.3390/ijms20051103

  36. 36. Baker, D.A., Barth, J., Chang, R., et al. (2010) Genetic Sphingosine Kinase 1 Deficiency Significantly Decreases Synovial Inflammation and Joint Erosions in Murine TNF-Alpha-Induced Arthritis. The Journal of Immunology, 185, 2570-2579. https://doi.org/10.4049/jimmunol.1000644

  37. 37. Ding, N., Meng, Y., Liu, L., et al. (2022) Sphingosine Kinase-1 (SPHK1) Promotes Inflammation in Infantile Pneumonia by Reg-ulating NLRP3 Inflammasome and SIRT1 Expression. Histology and Histopathology, 37, 1227-1240.

  38. 38. Hou, L., Yang, L., Chang, N., et al. (2020) Macrophage Sphingosine 1-Phosphate Receptor 2 Blockade Attenuates Liver Inflam-mation and Fibrogenesis Triggered by NLRP3 Inflammasome. Frontiers in Immunology, 11, Article No. 1149. https://doi.org/10.3389/fimmu.2020.01149

  39. 39. Wu, X., Xu, J., Li, X., et al. (2022) Inhibition of SphK1/S1P Sig-naling Pathway Alleviates Fibrosis and Inflammation of Rat Myocardium after Myocardial Infarction. Computational and Mathematical Methods in Medicine, 2022, Article ID: 5985375. https://doi.org/10.1155/2022/5985375

  40. 40. Chen, L., Li, L., Song, Y., et al. (2021) Blocking SphK1/S1P/S1PR1 Signaling Pathway Alleviates Lung Injury Caused by Sepsis in Acute Ethanol Intoxication Mice. Inflammation, 44, 2170-2179. https://doi.org/10.1007/s10753-021-01490-3

  41. 41. Qu, L., Shi, K., Xu, J., et al. (2022) Atractylenolide-1 Targets SPHK1 and B4GALT2 to Regulate Intestinal Metabolism and Flora Composition to Improve Inflammation in Mice with Colitis. Phytomedicine, 98, Article ID: 153945. https://doi.org/10.1016/j.phymed.2022.153945

  42. NOTES

    *通讯作者。

期刊菜单