Advances in Clinical Medicine
Vol. 12  No. 04 ( 2022 ), Article ID: 50899 , 9 pages
10.12677/ACM.2022.124511

β-葡萄糖醛酸酶的研究进展

李桃1,2,崔童3,王建华2*

1西安医学院,陕西 西安

2陕西省人民医院普外二科,陕西 西安

3陕西省人民医院肿瘤内科,陕西 西安

收稿日期:2022年3月26日;录用日期:2022年4月21日;发布日期:2022年4月28日

摘要

β-葡萄糖醛酸酶(β-Glucuronidase, GUSB)是一种重要的溶酶体酶,参与含葡萄糖醛酸的糖胺聚糖的降解。GUSB缺乏导致粘多糖病VII型(mucopolysaccharidosis type VII, MPSVII),导致溶酶体储存在大脑中。GUSB是一种在表达、序列、结构和功能等方面得到广泛研究的蛋白质。本综述旨在总结β-葡萄糖醛酸苷酶结构、性质及其生物学功能研究进展。

关键词

β-葡萄糖醛酸酶,结构,基因突变,功能

Progress in β-Glucuronase Studies

Tao Li1,2, Tong Cui3, Jianhua Wang2*

1Xi’an Medical University, Xi’an Shaanxi

2Second Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an Shaanxi

3Department of Medical Oncology, Shaanxi Provincial People’s Hospital, Xi’an Shaanxi

Received: Mar. 26th, 2022; accepted: Apr. 21st, 2022; published: Apr. 28th, 2022

ABSTRACT

β-Glucuronidase (GUSB) is an important lysosomal enzyme involved in the degradation of glucuronate-containing glycosaminoglycan. The deficiency of GUSB causes mucopolysaccharidosis type VII (MPSVII), leading to lysosomal storage in the brain. GUSB is a well-studied protein for its expression, sequence, structure, and function. The purpose of this review is to summarize the structure, properties and biological functions of β-glucuronidase.

Keywords:β-Glucuronidase, Structure, Gene Mutation, Function

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

溶酶体是参与生物大分子降解必不可少的细胞器。水解酶消化溶酶体中的蛋白质、DNA、RNA、碳水化合物和脂质 [1] [2]。溶酶体酶与不同类型的粘多糖症相关,例如:MPSVII中的β-葡萄糖醛酸酶和MPSIX (mucopolysaccharidosis type VII, MPSIX)中的透明质酸酶 [3] [4]。这些溶酶体酶携带特定的识别标记6-磷酸甘露糖,该标记附着在由M6P (mannose 6-phosphate)受体识别的蛋白质的聚糖链上,M6P受体将溶酶体酶引导至溶酶体 [5],其对大分子的降解至关重要。然而,溶酶体酶的不完全降解会导致溶酶体酶贮存疾病 [6]。

降解糖胺聚糖的溶酶体酶的活性缺乏导致MPSVII的常染色体隐性疾病。GUSB是一种332 kD的糖基水解酶,从溶酶体中GAG (de-grade glycosaminoglycan)的非还原末端水解β-葡萄糖醛酸 [7]。GUSB缺乏导致硫酸软骨素、硫酸皮肤素以及硫酸乙酰肝素不完全降解,导致它们在许多组织的溶酶体中累积 [8] [9],进一步导致细胞的损伤和器官功能障碍。这种结果称为粘多糖贮积病或MPSVII或Sly综合征 [8] [9]。它会导致智力迟钝、进行性残疾、器官功能障碍、畸形、行为缺陷和寿命缩短。人类基因突变数据库中报告的GUSB基因中有54种不同的突变(错义突变、缺失、无义突变、剪接位点突变)与MPSVII有关。其中,在这些突变中,Leu176Phe突变是MPSVII患者中最常见的突变之一。在本综述中,我们收集了关于GUSB的序列、结构和功能的所有基本信息。

2. 生物合成与分泌

大多数溶酶体蛋白质是作为膜结合溶酶体上的大前体合成的,在运输到溶酶体期间或之后,膜结合溶酶体受到翻译后修饰 [9]。GUSB的每个单体在膜结合核糖体上合成,随后转移到内质网,发生翻译后修饰。GUSB多肽被糖基化共翻译并转移到微粒体腔 [9]。这种酶在高等真核生物中经历一系列翻译后修饰 [9]。Li等人 [10] 观察到GUSB的前肽与serpin超家族(丝氨酸蛋白酶抑制剂)具有序列相似性,并在其区隔化中发挥重要作用。

GUSB在溶酶体酶中是独特的,因为它显示出溶酶体和内质网的双重定位。Egasyn是一种在内质网中发现的酶,作为一种非特异性羧酸酯酶,代谢多种化合物。除了酯酶活性外,egasyn还与GUSB结合,并在内质网中隔离10%~25%的GUSB总量。尽管GUSB在内质网中的作用尚不清楚,但有人提出GUSB可能在内源性和外源性葡糖苷酸的水解中发挥作用 [11]。

3. 基因结构与调控

GUSB基因位于7号染色体臂上,跨越约20 kb,包含11个内含子和12个外显子。GUS mRNA长度为1953 bp,其编码651-氨基酸前体。并且包含一个22个残基长的信号肽,和四个潜在的N连接的糖基化位点。GUSB的四个亚基共同形成了具有酶活性的同源四聚体 [7]。在22-氨基酸N-末端信号肽裂解和糖基化后,78 kDa单体被运输到溶酶体中,并在溶酶体中裂解成成熟活性酶的60 kDa和18 kDa亚基(图1)。

(a)(b)

Figure 1. Three-dimensional structure of GUSB shown in cartoon model. (a) Overall structure of GUSB containing four identical subunits. (b) Structure of monomer showing the jelly roll domain, immunoglobulin-like domain, and TIM barrel domain in sky blue, pink, and light green, respectively. The glycosylation (yellow) and active site residues (orange) are shown as ball and stick structures. The lysosomal targeting loop is shown in red. Structure was drawn in PyMol using atomic coordinates of human GUSB structure at 1.7 A˚ resolution (PDB id: 3HN3)

图1. 卡通模型中GUSB的三维结构。(a) GUSB整体结构包含四个相同的亚基。(b) 单体的结构,分别显示天蓝色、粉红色和浅绿色的果冻卷域、免疫球蛋白样域和TIM桶域。糖基化(黄色)和活性位点残基(橙色)显示为球棒结构。溶酶体靶向环以红色显示。使用人类GUSB结构的原子坐标在PyMol中绘制结构,分辨率为1.7度(PDB id: 3HN3)

研究人员 [12] 分析了GUSB表达所必需的上游序列。在翻译起始位点上游200 bp处观察到72%的G + C含量和TATA和CAAT盒缺失。并且该位点包含转录因子如Spl和激活蛋白2 (AP-2)的潜在结合位点。这些特征存在于所有管家基因,并且执行基本的代谢功能。调节GUSB基因表达的因子有Ca2+离子浓度和pH。此外,钙离子载体A23187和三磷酸腺苷酶抑制剂thapsigargin可以下调GUSB基因的表达。转录因子AP-2结合位点通过位于GUSB启动子−354到+2片段的转录机制参与了钙离子载体A23187对GUSB的调控。钙通道阻滞剂也可以降低GUSB的活性,而腺相关病毒则可以增强GUSB在脑组织中的表达 [13] [14] [15]。

4. GUSB突变

突变分布于整个基因,除插入和重排外,GUSB所有类型的突变都被发现。总共有49个突变,其中包括36个错义突变、6个无义突变、2个剪接位点突变和5个缺失突变。在总共103个突变等位基因中,每种类型的突变数量分别为81个错义突变(78.6%)、13个无义突变(12.6%)、6个缺失突变(5.8%)和3个剪接位点突变(2.9%)。因此,错义突变在GUS突变中最为普遍。五种最常见的突变(占44/103等位基因)为外显子点突变,即p.L176F、p.R357X、p.P408S、p.P415L和p.A619V。

5. GUSB基因的CpG位点转换与CpG位点甲基化状态之间的关系

导致人类遗传疾病的点突变的种类、频率和位置是高度非随机的。导致DNA水平非随机性的一个重要因素是局部DNA序列环境,尤其是CpG二核苷酸。CpG二核苷酸胞嘧啶残基处的DNA的甲基化产生了5-甲基胞嘧啶,这导致了脱氨基后的C-to-T过渡变化 [16]。

GUSB基因的CpG位点有17个过渡突变。CpG二核苷酸的突变占所述突变等位基因的40.8%,以及引起MPS VII的外显子点突变的44.7%。我们发现外显子2至12的67个CpG胞嘧啶广泛甲基化,而外显子1的24个CpG胞嘧啶完全未甲基化。在42个外显子点突变中,CpG位点的17个过渡性突变全部位于外显子2和12之间,表明外显子1的非甲基化与外显子1的CpG位点没有过渡性突变有关,而外显子2到12的CpG位点的过渡性突变则相反。一个假缺乏等位基因(p.D152N)和一个良性多态等位基因(p.P649L)也是从CpG的G-A或C-T转变而来的,而p.D152N、p.P649L两个等位基因都改变了同一个氨基酸残基 [16]。

6. 酶的功能和机制

GUSB是一种在多数组织中都表达的管家酶,其功能是参与溶酶体中蛋白多糖的降解过程。它通过催化GAG (degrade glycosaminoglycan)的第五步降解,在皮肤素和角蛋白硫酸盐的降解中起着重要的作用。GUSB还参与了各种代谢物如戊糖、葡萄糖醛酸、叶绿素、卟啉和蔗糖的阳离子结合和相互转化。而且GUSB在生理和炎症状态下细胞外基质成分的重塑中也起着非常重要的作用。例如:在慢性炎症患者的组织中β-葡萄糖醛酸酶活性和蛋白质水平较正常组织显著增加 [17] [18] [19]。

除此之外,GUSB还帮助体内各种潜在的毒素、激素和各种药物的解偶联 [20] [21]。它还参与人体内源性和外源性生物的葡萄糖醛酸的水解,因为它对葡萄糖醛酸结合物具有水解活性 [22]。GUSB在内源性化合物的裂解中发挥重要作用,从而在色素胆石症的发病机制中增加胆汁中的活性。Whiting等人 [23] 证明微粒体GUSB影响胆红素-IXa葡萄糖醛酸苷的胆汁排泄率。胆汁中胆红素钙的分离也是由GUSB催化的。具体过程是GUSB将胆红素葡萄糖醛酸水解成游离胆红素和葡萄糖醛酸。

GUSB的功能也在几种中间代谢途径中有所报道 [23] [24] [25]。它参与l-抗坏血酸的生物合成路径,因为其中一种中间体该反应的主要成分是d-葡萄糖醛酸,维生素C的前体。此外,细菌的GUSB基因还作为分析乳酸杆菌启动子的报告基因 [26]。

GUSB活性的精确两步机制:第一步是一种羧酸盐对糖的异构体中心进行亲核攻击。在第二步中,中间体通过碱催化的水在异构体中心的攻击而水解,导致糖苷键断裂,异构体构型保持不变。糖基酶中间体的形成和水解通过具有大量氧碳正离子特征的过渡态进行 [27]。

研究发现,在底物和GUSB的七个残基之间形成了八个分子内氢键,包括Tyr509、Ser557、Asn566和Lys568。此外,定点诱变研究已证实具有Tyr509Ala、Ser557Pro、Asn566Ser和Lys568Gln的突变体已显着失去其底物特异性 [28]。最后,Geddie等人 [29] 提出了一个模型,该模型显示GUSB和b-木糖苷底物仅在其C5取代基上有所不同,因此GUSB中的单个氨基酸替换可能足以将其转化为木糖苷酶。

7. 基因型与表型的关系

据研究,150种以上的遗传性疾病都会影响中枢神经系统。其中,30多种疾病属于溶酶体储存疾病,可导致中枢神经系统不同程度的智力低下 [9] [30]。最常见的溶酶体贮存疾病是由于GUSB活性受损引起的,如Sly综合征或MPSVII,可导致智力低下 [31] [32]。GUSB显示针对各种GAG的外糖苷酶活性。因此,GUSB基因的任何突变都会导致外糖苷酶的功能失调,而这也是GAG在大脑中蓄积的原因,进一步导致智力迟钝。到目前为止,在MPSVII患者中发现了近54种不同的突变。这些突变包括点突变、缺失、错义突变、剪接位点突变、无义突变和重排。在这些错义突变中,Lue176Phe被认为是MPSVII患者的一种常见突变,并导致GUSB结构的细微改变 [33] [34]。

相关研究 [35] 证实了GUSB的一个假缺陷等位基因(Asp152Asn),并观察到蛋白质稳定性降低导致了酶活性显着降低。在早期婴儿MPSVII中报道的另一个突变是Tyr626His,它位于TIM桶的最后一个a螺旋中,并且与两个突变(Ala619Val和Trp627Cys)非常接近。这种突变会影响GUSB的疏水核心结构域的填充。研究人员 [36] 报告了MPSVII患者中几个新的突变,包括Pro148Ser、Tyr495Cys、Trp507X,以及外显子10 (1642D38nt) l642-1679位置的38 bp缺失。其中,截断突变Trp507X产生更严重的MPSVII表型。有趣的是,在MPSVII患者中未报告活性位点残基Glu540、Glu451或Tyr504的突变。但这些活性位点的突变可能会导致严重的临床不良后果,使患者无法生存 [37]。早些时候已经报道了关于突变位点的结构变化的综合分析。在MPSVII患者的GUSB基因中报告的所有突变中,约90%是点突变。

8. GUSB的互作蛋白

GUSB与大量蛋白质相互作用以执行多种生物学任务,UDP葡萄糖醛酸转移酶1家族的大多数成员都显示出与GUSB有明显的相互作用 [38]。UGT参与内源性和外源性药物的解毒。内质网膜中UGTs活性位点的管腔内取向结合大量分子,包括UDP葡萄糖醛酸和葡萄糖醛酸苷 [39]。在所有溶酶体酶中,碳水化合物被修饰以形成磷酸化识别标记。溶酶体酶的甘露糖残基,尤其是GUSB,在酶UGT的帮助下,在C-6处被UDP-乙酰氨基葡萄糖磷酸化。这种对溶酶体酶中低聚糖的处理使其可被M6PR识别,并指导溶酶体酶从高尔基体向溶酶体的易位。

9. 总结与展望

GUSB是一种糖基水解酶,可催化β-葡萄糖醛酸残基的裂解,其缺乏会导致MPSVII。人类GUSB的结构已经被确定,并为溶酶体靶向提供了精确机制。GUSB的活性位点残基位于TIM桶域中的Glu451、Glu540和Tyr504,而溶酶体靶向基序位于果冻卷域中。众所周知,癌症的病因与炎症途径和氧化应激密切相关,它们共同创造了有利于肿瘤形成的微环境 [40]。因此,在肿瘤环境中,由于恶性肿瘤介导的细胞死亡或溶酶体损伤,负责糖缀合物催化降解的溶酶体外糖苷酶的细胞外活性增加。而在这方面,可用的实际数据支持GUSB在肿瘤部位周围的细胞外液体和组织中的过度表达是癌症病因的主要因素 [41];因此,GUSB有望成为癌症的生物标记物和抗癌化疗的潜在分子靶点 [42]。

文章引用

李 桃,崔 童,王建华. β-葡萄糖醛酸酶的研究进展
Progress in β-Glucuronase Studies[J]. 临床医学进展, 2022, 12(04): 3520-3528. https://doi.org/10.12677/ACM.2022.124511

参考文献

  1. 1. Islam, M.R., Tomatsu, S., Shah, G.N., Grubb, J.H., Jain, S. and Sly, W.S. (1999) Active Site Residues of Human Beta-Glucuronidase. Evidence for Glu540 as the Nucleophile and Glu451 as the Acid-Base Residue. Journal of Biological Chemistry, 274, 23451-23455. https://doi.org/10.1074/jbc.274.33.23451 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=10438523&query_hl=1

  2. 2. Naz, H., Islam, A., Waheed, A., Sly, W.S., Ahmad, F. and Hassan, I. (2013) Human β-Glucuronidase: Structure, Function, and Application in Enzyme Replacement Therapy. Rejuvenation Research, 16, 352-363. https://doi.org/10.1089/rej.2013.1407

  3. 3. Bock, K.W. and Kohle, C. (2009) Topological Aspects of Oligomeric UDP-Glucuronosyltransferases in Endoplasmic Reticulum Membranes: Advances and Open Questions. Biochemical Phar-macology, 77, 1458-1465. https://doi.org/10.1016/j.bcp.2008.12.004 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=19150343&query_hl=1

  4. 4. Coussens, L.M. and Werb, Z. (2002) Inflammation and Cancer. Nature, 420, 860-867. https://doi.org/10.1038/nature01322 http://www.nature.com/articles/nature01322http://www.nature.com/articles/nature01322.pdf

  5. 5. Kim, D.H. and Jin, Y.H. (2001) Intestinal Bacterial Beta-Glucuronidase Activity of Patients with Colon Cancer. Archives of Pharmacal Research, 24, 564-567.

  6. 6. von Figura, K. and Hasilik, A. (1986) Lysosomal Enzymes and Their Receptors. Annual Review of Biochemistry, 55, 167-193. https://doi.org/10.1146/annurev.bi.55.070186.001123 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=2943218&query_hl=1

  7. 7. von Figura, K. (2007) Structure-Function Relationship for Lysosomal Enzymes. Acta Paediatrica, 96, 5. https://doi.org/10.1111/j.1651-2227.2007.00197.x http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=17391431&query_hl=1

  8. 8. Lehman, T.J., Miller, N., Norquist, B., Underhill, L. and Keutzer, J. (2011) Diagnosis of the Mucopolysaccharidoses. Rheumatology, 50, v41-v48. https://doi.org/10.1093/rheumatology/ker390 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=22210670&query_hl=1

  9. 9. Ponder, K.P. and Haskins, M.E. (2007) Gene Therapy for Mucopolysaccharidosis. Expert Opinion on Biological Therapy, 7, 1333-1345. https://doi.org/10.1517/14712598.7.9.1333 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=17727324&query_hl=1

  10. 10. Olson, L.J., Peterson, F.C., Castonguay, A., Bohnsack, R.N., Kudo, M., Gotschall, R.R., et al. (2010) Structural Basis for Recognition of Phosphodiester-Containing Lysosomal Enzymes by the Cation-Independent Mannose 6-Phosphate Receptor. Proceedings of the National Academy of Sciences of the United States of America, 107, 12493-12498. https://doi.org/10.1073/pnas.1004232107 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=20615935&query_hl=1

  11. 11. Ross, C.J., Bastedo, L., Maier, S.A., Sands, M.S. and Chang, P.L. (2000) Treatment of a Lysosomal Storage Disease, Mucopolysaccharidosis VII, with Microencapsulated Recombinant Cells. Human Gene Therapy, 11, 2117-2127. https://doi.org/10.1089/104303400750001426 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11044913&query_hl=1

  12. 12. Jain, S., Drendel, W.B., Chen, Z.W., Mathews, F.S., Sly, W.S. and Grubb, J.H. (1996) Structure of Human Be-ta-Glucuronidase Reveals Candidate Lysosomal Targeting and Active-Site Motifs. Nature Structural & Molecular Biology, 3, 375-381. https://doi.org/10.1038/nsb0496-375 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8599764&query_hl=1

  13. 13. Sly, W.S. (1981) Prospects for Enzyme Replacement for Lysosomal Storage Diseases. Birth Defects Original Article Series, 17, 201-213. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=7284581&query_hl=1

  14. 14. Naz, H., Islam, A., Waheed, A., Sly, W.S., Ahmad, F. and Hassan, I. (2013) Human β-Glucuronidase: Structure, Function, and Application in Enzyme Replacement Therapy. Rejuvenation Research, 16, 352-363. https://doi.org/10.1089/rej.2013.1407https://www.liebertpub.com/doi/10.1089/rej.2013.1407https://www.liebertpub.com/doi/pdf/10.1089/rej.2013.1407

  15. 15. Li, H., Takeuchi, K.H., Manly, K., Chapman, V. and Swank, R.T. (1990) The Propeptide of Beta-Glucuronidase. Further Evidence of Its Involvement in Compartmentalization of Beta-Glucuronidase and Sequence Similarity with Portions of the Reactive Site Region of the Serpin Superfamily. Journal of Biological Chemistry, 265, 14732-14735. https://doi.org/10.1016/S0021-9258(18)77172-X http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=2394691&query_hl=1

  16. 16. Firek, S., Whitelam, G.C. and Draper, J. (1994) Endoplasmic Reticulum Targeting of Active Modified Be-ta-Glucuronidase (GUS) in Transgenic Tobacco Plants. Transgenic Research, 3, 326-331. https://doi.org/10.1007/BF01973593 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=7951335&query_hl=1

  17. 17. Shipley, J.M., Miller, R.D., Wu, B.M., Grubb, J.H., Christensen, S.G., Kyle, J.W., et al. (1991) Analysis of the 5’Flanking Region of the Human Beta-Glucuronidase Gene. Genomics, 10, 1009-1018. https://doi.org/10.1016/0888-7543(91)90192-H http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=1916806&query_hl=1

  18. 18. Kunert-Keil, C., Sperker, B., Bien, S., Wolf, G., Grube, M. and Kroemer, H.K. (2004) Involvement of AP-2 Binding Sites in Regulation of Human Beta-Glucuronidase. Naunyn-Schmiedeberg’s Archives of Pharmacology, 370, 331-339. https://doi.org/10.1007/s00210-004-0989-3 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15526106&query_hl=1

  19. 19. Sperker, B., Tomkiewicz, C., Burk, O., Barouki, R. and Kroemer, H.K. (2001) Regulation of Human Be-ta-Glucuronidase by A23187 and Thapsigargin in the Hepatoma Cell Line HepG2. Molecular Pharmacology, 59, 177-182. https://doi.org/10.1124/mol.59.2.177 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11160851&query_hl=1

  20. 20. Cearley, C.N. and Wolfe, J.H. (2006) Transduction Characteristics of Adeno-Associated Virus Vectors Expressing Cap Serotypes 7, 8, 9, and Rh10 in the Mouse Brain. Molecular Therapy, 13, 528-537. https://doi.org/10.1016/j.ymthe.2005.11.015 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=16413228&query_hl=1

  21. 21. Krawczak, M., Ball, E.V. and Cooper, D.N. (1998) Neighboring-Nucleotide Effects on the Rates of Germ-Line Single-Base-Pair Substitution in Human Genes. The American Journal of Human Genetics, 63, 474-488. https://doi.org/10.1086/301965 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9683596&query_hl=1

  22. 22. Kreamer, B.L., Siegel, F.L. and Gourley, G.R. (2001) A Novel Inhibitor of Beta-Glucuronidase: L-Aspartic Acid. Pediatric Research, 50, 460-466. https://doi.org/10.1203/00006450-200110000-00007 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11568288&query_hl=1

  23. 23. Hazenberg, M.P., de Herder, W.W. and Visser, T.J. (1988) Hydrolysis of Iodothyronine Conjugates by Intestinal Bacteria. FEMS Microbiology Reviews, 4, 9-16. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=3078770&query_hl=1

  24. 24. Zhu, B.T., Evaristus, E.N., Antoniak, S.K., Sarabia, S.F., Ricci, M.J. and Liehr, J.G. (1996) Metabolic Deglucuronidation and Demethylation of Estrogen Conjugates as a Source of Parent Estrogens and Catecholestrogen Metab-olites in Syrian Hamster Kidney, a Target Organ of Estrogen-Induced Tumorigenesis. Toxicology and Applied Pharmacology, 136, 186-193. https://doi.org/10.1006/taap.1996.0023 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8560473&query_hl=1

  25. 25. Adlercreutz, H., Martin, F., Pulkkinen, M., Dencker, H., Rimér, U., Sjöberg, N.O., et al. (1976) Intestinal Metabolism of Estrogens. The Journal of Clinical Endocrinology & Metabolism, 43, 497-505. https://doi.org/10.1210/jcem-43-3-497 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=956337&query_hl=1

  26. 26. Kuhn, J.G. (1998) Pharmacology of Irinotecan. Oncology, 12, 39-42. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9726089&query_hl=1

  27. 27. Schollhammer, I., Poll, D.S. and Bickel, M.H. (1975) Liver Microsomal Beta-Glucuronidase and UDP-Glucuronyl- transferase. Enzyme, 20, 269-276. https://doi.org/10.1159/000458949 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=230&query_hl=1

  28. 28. Whiting, J.F., Narciso, J.P., Chapman, V., Ransil, B.J., Swank, R.T. and Gollan, J.L. (1993) Deconjugation of Bilirubin-IX Alpha Glucuronides: A Physiologic Role of Hepatic Microsomal Beta-Glucuronidase. Journal of Biological Chemistry, 268, 23197-23201. https://doi.org/10.1016/S0021-9258(19)49447-7 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8226839&query_hl=1

  29. 29. de Graaf, M., Boven, E., Scheeren, H.W., Haisma, H.J. and Pinedo, H.M. (2002) Beta-Glucuronidase-Mediated Drug Release. Current Pharmaceutical Design, 8, 1391-1403. https://doi.org/10.2174/1381612023394485 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12052215&query_hl=1

  30. 30. Sperker, B., Werner, U., Murdter, T.E., Tekkaya, C., Fritz, P., Wacke, R., et al. (2000) Expression and Function of Beta-Glucuronidase in Pancreatic Cancer: Potential Role in Drug Targeting. Naunyn-Schmiedeberg’s Archives of Pharma-cology, 362, 110-115. https://doi.org/10.1007/s002100000260 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=10961372&query_hl=1

  31. 31. Platteeuw, C., Simons, G. and de Vos, W.M. (1994) Use of the Escherichia coli Beta-Glucuronidase (gusA) Gene as a Reporter Gene for Analyzing Promoters in Lactic Acid Bacteria. Applied and Environmental Microbiology, 60, 587-593. https://doi.org/10.1128/aem.60.2.587-593.1994 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8135517&query_hl=1

  32. 32. Wong, A.W., He, S., Grubb, J.H., Sly, W.S. and Withers, S.G. (1998) Identification of Glu-540 as the Catalytic Nu-cleophile of Human Beta-Glucuronidase Using Electrospray Mass Spectrometry. Journal of Biological Chemistry, 273, 34057-34062. https://doi.org/10.1074/jbc.273.51.34057 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9852062&query_hl=1

  33. 33. Matsumura, I. and Ellington, A.D. (2001) In Vitro Evolution of Beta-Glucuronidase into a Beta-Galactosidase Proceeds through Non-Specific Intermediates. Journal of Molecular Biology, 305, 331-339. https://doi.org/10.1006/jmbi.2000.4259 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11124909&query_hl=1

  34. 34. Geddie, M.L. and Matsumura, I. (2004) Rapid Evolution of Beta-Glucuronidase Specificity by Saturation Mutagenesis of an Active Site Loop. Journal of Biological Chemistry, 279, 26462-26468. https://doi.org/10.1074/jbc.M401447200 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15069062&query_hl=1

  35. 35. Zhao, H., Brunk, U.T. and Garner, B. (2011) Age-Related Lysosomal Dysfunction: An Unrecognized Roadblock for Cobalamin Trafficking? Cellular and Molecular Life Sciences, 68, 3963-3969. https://doi.org/10.1007/s00018-011-0861-9 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=22015613&query_hl=1

  36. 36. Sly, W.S., Quinton, B.A., Mcalister, W.H. and Rimoin, D.L. (1973) Beta Glucuronidase Deficiency: Report of Clinical, Radiologic, and Biochemical Features of a New Mucopolysaccharidosis. The Journal of Pediatrics, 82, 249-257. https://doi.org/10.1016/S0022-3476(73)80162-3 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=4265197&query_hl=1

  37. 37. Vogler, C., Levy, B., Galvin, N., Lessard, M., Soper, B. and Barker, J. (2005) Early Onset of Lysosomal Storage Disease in a Murine Model of Mucopolysaccharidosis Type VII: Undegraded Substrate Accumulates in Many Tissues in the Fetus and Very Young MPS VII Mouse. Pediatric and Developmental Pathology, 8, 453-462. https://doi.org/10.1007/s10024-005-0025-8 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=16222480&query_hl=1

  38. 38. Matte, U., Yogalingam, G., Brooks, D., Leistner, S., Schwartz, I., Lima, L., et al. (2003) Identification and Charac-terization of 13 New Mutations in Mucopolysaccharidosis Type I Patients. Molecular Genetics and Metabolism, 78, 37-43. https://doi.org/10.1016/S1096-7192(02)00200-7 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12559846&query_hl=1

  39. 39. Wu, B.M., Tomatsu, S., Fukuda, S., Sukegawa, K., Orii, T. and Sly, W.S. (1994) Overexpression Rescues the Mutant Phenotype of L176F Mutation Causing Beta-Glucuronidase Deficiency Mucopolysaccharidosis in Two Mennonite Siblings. Journal of Biological Chemistry, 269, 23681-23688. https://doi.org/10.1016/S0021-9258(17)31569-7 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8089138&query_hl=1

  40. 40. Vervoort, R., Islam, M.R., Sly, W., Chabas, A., Wevers, R., de Jong, J., et al. (1995) A Pseudodeficiency Allele (D152N) of the Human Beta-Glucuronidase Gene. The American Journal of Human Genetics, 57, 798-804. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=7573038&query_hl=1

  41. 41. Jin, Y., Tian, X., Jin, L., Cui, Y., Liu, T., Yu, Z., et al. (2018) Highly Specific Near-Infrared Fluorescent Probe for the Real-Time Detection of Beta-Glucuronidase in Various Living Cells and Animals. Analytical Chemistry, 90, 3276-3283. https://doi.org/10.1021/acs.analchem.7b04813 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=29400050&query_hl=1.

  42. 42. Yamada, S., Tomatsu, S., Sly, W.S., Islam, R., Wenger, D.A., Fukuda, S., et al. (1995) Four Novel Mutations in Mucopolysaccharidosis Type VII Including a Unique Base Substitution in Exon 10 of the Beta-Glucuronidase Gene That Creates a Novel 5’-Splice Site. Human Molecular Genetics, 4, 651-655. https://doi.org/10.1093/hmg/4.4.651 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=7633414&query_hl=1

  43. NOTES

    *通讯作者。

期刊菜单