Advances in Clinical Medicine
Vol. 13  No. 04 ( 2023 ), Article ID: 64350 , 9 pages
10.12677/ACM.2023.134880

间充质干细胞及其衍生物治疗压疮的相关研究进展

李楷1,2,金超颖1,2,项佳妮1,2,吴慧玲2*

1浙江大学医学院,浙江 杭州

2浙江大学医学院附属第一医院整形美容中心,浙江 杭州

收稿日期:2023年3月21日;录用日期:2023年4月17日;发布日期:2023年4月24日

摘要

压疮是指由骨隆起部位持续受压引起的缺血性损伤,目前尚缺乏有效的治疗压疮的手段,而且经常复发,对患者的精神和身体构成严重威胁。持续性的缺血缺氧环境和缺血再灌注损伤被认为是压疮形成的主要原因。因此,促进恢复压疮皮肤血管再生,抑制炎症产生以及调节和恢复正常的细胞行为是治疗压疮的核心。近年来,间充质干细胞(mesenchymal stem cells, MSCs)在治疗慢性创面愈合方面有极大的潜力,其疗效多归因于其外分泌功能。据报道,MSCs及其衍生物能通过调节细胞行为参与炎症反应、血管生成、再上皮化和胶原重塑等阶段。本文我们归纳了目前针对MSC及其衍生物治疗压疮的一系列研究,总结了其可能存在的机制和治疗潜力。此外,我们还总结了组织工程与干细胞治疗结合压疮等慢性伤口的最新进展。这一综述可能为后续MSCs及其衍生物治疗压疮的基础和临床研究提供有意义的指导。

关键词

压疮,间充质干细胞,外泌体,组织工程

Research Progress of Mesenchymal Stem Cells and Their Derivatives in the Treatment of Pressure Ulcer

Kai Li1,2, Chaoying Jin1,2, Jiani Xiang1,2, Huiling Hu2*

1Medical College of Zhejiang University, Zhejiang University, Hangzhou Zhejiang

2Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou Zhejiang

Received: Mar. 21st, 2023; accepted: Apr. 17th, 2023; published: Apr. 24th, 2023

ABSTRACT

Pressure ulcers are ischemic injuries caused by continuous pressure on the bone ridges. Currently, there is no effective treatment for pressure ulcers, and they often recur, posing a serious mental and physical threat to patients. Persistent ischemia-hypoxia environment and ischemia-reperfusion injury are considered to be the main causes of pressure ulcers. Therefore, promoting the recovery of pressure ulcer skin angiogenesis, inhibiting inflammation and regulating and restoring normal cell behavior is the core of the treatment of pressure ulcer. In recent years, mesenchymal stem cells (MSCs) have shown great potential in treating chronic wound healing, and its efficacy is mainly attributed to their exocrine function. MSCs and their derivatives have been reported to be involved in inflammatory responses, angiogenesis, reepithelialization, and collagen remodeling by regulating cellular behavior. In this paper, we summarize a series of studies on the treatment of pressure ulcers by MSC and its derivatives, and summarize their possible mechanisms and therapeutic potential. In addition, we summarize the recent advances in the combination of tissue engineering and stem cell therapy for chronic wounds such as pressure ulcers. This review may provide meaningful guidance for subsequent basic and clinical studies on the treatment of pressure ulcers by MSCs and their derivatives.

Keywords:Pressure Ulcer, Mesenchymal Stem Cells, Exosome, Tissue Engineering

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

压疮,又称作压力性损伤,是指受到压力或合并剪切力的压力作用下皮肤和皮下组织产生的局限性损伤,最常见于骨性隆起处如骶尾部或髋部 [1] 。压疮常好发于因活动能力受限需要长期卧床的患者,如昏迷、老年痴呆、脊髓受损瘫痪。长期的外部压力导致局部的组织血供受限,最终导致组织缺血缺氧最后坏死。同时组织缺血的过程多伴随着缺血再灌注损伤,再灌注损伤是由于缺血一段时间后血液供应的恢复而发生的,缺血组织的再灌注可能导致活性氧的形成增加并引发炎症反应 [2] ,Peirce等人在大鼠皮肤模型中发现,相同时间内多次的缺血再灌注循环比持续的组织缺血造成的皮肤破坏更严重 [3] 。

压疮的损伤范围可以从表皮真皮层的损伤发展到筋膜、肌肉、骨骼,加大了患者感染的风险,大大增加了患者的死亡率。2019年发行的2019年NPIAP/EPUAP/PPPIA国际指南将压疮简单分为4个等级:I级皮肤完整,可能伴有红斑;II级表皮层破坏,暴露真皮层;III级表皮层真皮层破坏,脂肪组织暴露;IV级损伤至肌层,甚至累及骨骼、筋膜 [1] 。随着人口老龄化的趋势,压疮的患病率和死亡率有所增加。尽管近年来临床工作中越来越重视压疮的预防和早期压疮的护理工作,压疮病人数量依旧庞大且预后效果不佳 [4] 。仅仅在美国,每年就有300万成年人患有压疮,且在逐年增加,每年美国治疗压疮的费用约为每年16.8~68亿美元,超过美国医疗总预算的1% [5] 。一项研究中国12家医院的压疮病人的调查报告显示,医院压疮现患率为1.577%,其中医院内获得性压疮现患率为0.628% [6] 。

早期的压疮治疗可以通过更换敷料 [7] [8] 或是负压吸引技术 [9] [10] 使伤口保持清洁促进愈合,晚期的压疮因为保守治疗无效常常需要外科手术干预,例如清创和皮瓣移植手术 [11] [12] 。而且因为压疮伤口愈合还与患者年龄代谢营养免疫情况,伤口周围血管及神经病变情况以及伤口的炎症感染程度有关,再加上皮肤长期受压的情况无法得到改变,压疮的治疗过程往往反复迁移,使得患者及其家庭承受很大的经济压力 [13] 。压疮患者多长期卧床,老年体弱,多难以耐受手术治疗。保守治疗方法虽然也有许多,但尚未有十分有效的治疗方法报道。

近年来随着干细胞治疗的逐渐兴起,间充质干细胞(Mesenchymal stem cell, MSC)及其衍生物已经被充分证明能有效促进伤口愈合以及组织修复。MSC是一系列具有多向分化潜能且能分泌大量细胞因子的干细胞,已被证明能够促进血管生长、降低炎症反应和促进组织细胞再生,具有分离提取方便、排异性低、安全性等优点 [14] 。MSC的来源十分广泛,除了骨髓、脂肪、脐带、滑膜、牙龈等组织外,尿路上皮组织、乳牙等也存在MSC,尽管来源不一,但大多数MSC在功能上都具有一定的相似性 [15] 。近年来研究发现MSC主要通过旁分泌机制发挥其修复和再生作用 [16] ,外泌体在其中发挥着关键作用,研究发现干细胞外泌体在伤口愈合的几乎所有阶段都能发挥作用,它可以抑制炎症,控制免疫反应,促进细胞增殖和血管生成 [17] [18] 。外泌体被定义为细胞分泌的一种大小在10~200 nm不等的球形脂质双分子层囊泡,其主要携带包括遗传信息、RNA (mRNA、tRNA、rRNA、miRNA、lncRNA、circRNA等)、蛋白质、脂类、细胞因子、生长因子等 [19] 。外泌体内容物在机体或人为调控下通过细胞膜释放到外部,影响受体细胞功能,从而参与机体生理和病理过程 [20] 。相比于MSC,间充质干细胞外泌体(MSC-sEVs)体积更小,免疫原性更低,大大增加其安全性。而且MSC-EVs的剂量和成分更好控制,还可以作为携带药物、基因、酶的载体,在组织修复再生方向拥有良好的前景 [21] 。

目前已经有大量针对干细胞治疗压疮的研究,然而暂没发现有关这方面有关的综述,因此本研究参考大量文献,针对MSC及其衍生物治疗压疮的研究进展进行综述,为干细胞治疗压疮的基础研究和临床研究提供参考。

2. 间充质干细胞及其衍生物治疗压疮机制研究

1) 促进血管再生

压疮的形成与皮肤血液供应的缺失密切相关。通常来说,当外部压力大于动脉毛细血管充盈压力(约32 mmHg)或静脉毛细血管流出压力(8~12 mmHg)时,血液流动就会受到抑制,局部组织缺氧,而持续的外力压迫导致长时间的缺血缺氧最终走向坏死 [22] 。因此促进血管再生、恢复皮肤组织正常血供是治疗压疮的过程的关键。Pu等人 [23] 尝试将脂肪干细胞(ADSCs-sEVs)注射入缺血再灌注损伤的皮瓣,发现术后第5天,ADSCs-sEVs治疗的皮瓣存活率和毛细血管密度获得显著提升,证明ADSCs能在缺血环境中促进血管生成。该机制是涉及ADSCs释放IL-6实现的,IL-6具有血管生成和炎症的调节相关的生物活性。动物实验中Chen等人 [24] 在老年小鼠压疮模型中发现,人胚胎干细胞外泌体(ESC-sEVs)能显著促进压疮愈合,促进创面局部血管再生。进一步研究发现ESC-sEVs中含有的miR-200a能通过激活Nrf2信号通路延缓血管内皮细胞的衰老。Katahira等人 [25] 发现人脱落乳牙来源的MSC通过分泌血管内皮生长因子(VEGF)和肝细胞生长因子(HGF)促进小鼠压疮伤口的血管再生。邓呈亮等人 [26] 将ADSC与血小板血浆(PRP)作为对比,发现经ADSC治疗的压疮小鼠血管再生数目优于PRP组。

一些关于MSC促进血管再生的机制方面的研究发现,MSC-sEVs中携带的miRNA-31 [27] 、miRNA-125a [28] 、miRNA-21 [29] 能有效促进血管生成。Ding等人 [30] 发现人骨髓间充质干细胞(BMSCs)在通过PI3K/AKT信号通路刺激血管再生。Yu等人 [31] 以及Zhang等人 [32] 发现类似的途径还有AKT/eNOS通路、Wnt4/β-Catenin通路。

2) 抗炎作用

缺血再灌注损伤是压疮形成的另一重要因素。再灌注损伤是指由于缺血一段时间后,血液供应的恢复导致活性氧的形成增加并引发炎症反应。此外氧自由基(ROS)水平的升高可以直接破坏脂质、蛋白质和DNA的结构,并通过各种途径诱导细胞死亡 [33] 。近年来Stadler的压疮动物实验模型被广泛运用,这是一种简单且无创的小鼠皮肤压疮模型。该模型主要原理就是通过在小鼠背部皮肤夹持磁铁12小时皮肤使血流受阻,再通过解除夹持12 h从而造成缺血再灌注损伤完成压疮造模,一般来说3个循环足以形成皮肤三级压疮 [34] 。此前已有许多研究表明通过注射干细胞可以改善各种器官的缺血再灌注损伤,包括心脏 [35] 、肺 [36] 、肾脏 [37] 、肝脏 [38] 等。干细胞主要通过减轻炎症反应,抑制氧化应激和细胞凋亡的机制来对抗缺血再灌注损伤,促进组织再生。罗雅婷等人 [39] 发现皮下注射人脐带干细胞外泌体(hucMSC-sEVs)能有效降低压疮造模小鼠皮肤丙二醇含量(MDA)同时增加超氧化物歧化酶(SOD)活性,改善小鼠体内氧化应激水平。Motegi等人 [40] 研究也发现MSCs能抑制小鼠压疮模型皮肤中的氧化应激以及炎症细胞的产生,此外体外实验证明了MSCs能抑制氧化诱导的成纤维细胞中ROS的生成以及细胞的凋亡,以及MSCs能抑制缺血再循环诱导产生的内质网应激。这表明MSCs能有效控制缺血再灌注产生的炎症,抑制氧化应激和内质网应激,从而控制压疮的进展。

炎症反应同时也是伤口愈合过程中重要的一环,炎症通过免疫细胞能够有效防御外来病原体、清除坏死组织。伤口愈合分为四个阶段:止血期、炎症期、增殖期和重塑期。而类似压疮的慢性伤口常常会因为各种因素停留在炎症阶段从而使伤口蔓延反复,难以愈合 [41] 。例如过量的促炎因子的释放、蛋白酶的持续激活、ROS和衰老细胞的产生、持续反复感染的存在,以及干细胞的功能失调或缺乏。Li等人 [42] 发现MSC-exos可以在慢性伤口模型中缓解中性粒细胞的浸润,减少伤口中性粒细胞的数量,有效控制了过度炎症。Wang等人 [43] 发现Nrf-2预处理的BM-MSCs中取得的sEVs能通过下调TNF-α和IL1β等促炎因子以及上调IL-4和IL10等抗炎因子来减轻大鼠慢性伤口的炎症反应。

巨噬细胞、T淋巴细胞和B淋巴细胞等免疫细胞功能异常被认为是产生持续过度炎症的罪魁祸首 [44] 。Ti等人 [45] 发现MSC-sEVs能促进M1促炎表型的巨噬细胞转化为M2抗炎表型的巨噬细胞。M2表型巨噬细胞可以激活角质形成细胞、成纤维细胞和内皮细胞,从而促进表皮的再上皮化胶原沉积和血管重塑。Khare等人 [46] 发现BMSCs-sEVs可以调节B淋巴细胞的激活和分化,抑制免疫细胞的增殖,这或许有助于解决长期的炎症反应。Fan等人 [47] 发现MSCs可以抑制自然杀伤细胞的过度激活和增殖,从而缓解过度的炎症反应。Monguio等人 [48] 发现MSCs能抑制炎性T细胞的增殖。

3) 修复真皮层细胞外基质

在正常伤口愈合过程中,成纤维细胞增殖、迁移并分化为肌成纤维细胞参与伤口闭合,成纤维细胞同时也合成细胞外基质(ECM),分泌细胞因子和生长因子参与伤口愈合 [49] 。然而在压疮伤口的炎症微环境中普遍存在衰老的细胞群,细胞群的衰老导致增殖和分泌能力受损,衰老的成纤维无法对典型的伤口愈合信号作出反应,成纤维细胞不能发挥正常的功能,无法生成足够的ECM,伤口愈合无法进入增殖期 [50] 。同时,因为炎症刺激导致蛋白酶水平过高,加快了ECM的破坏。ECM的蛋白水解破坏引起炎症细胞,进一步延长了炎症周期 [51] 。已有许多实验证明了MSCs能恢复成纤维细胞活力,促进ECM再生。Zhao 等人 [52] 发现hucMSC-sEVs能显著改善衰老成纤维细胞的生物学功能,如促进其增殖和迁移,增强ECM合成,减少基质金属蛋白酶(MMPs)的过表达。该机制可能是通过RAGE通路的抑制以Smad通路的激活实现的。Xiao [53] 等人发现来源于糖尿病患者的ASC能有效促进小鼠压疮模型中的胶原沉积,促进伤口愈合。Strong等人 [54] 用ASC对比治疗年轻和年老小鼠的压疮伤口,发现ASC表现出呈细胞浓度依赖性加速伤口闭合、能改善表皮真皮结构,并验证了注射ASCs治疗皮肤压疮的安全性。

慢性伤口愈合过程中,由于成纤维细胞和肌成纤维细胞异常活化,在瘢痕组织中合成更多的ECMs,容易产生瘢痕疙瘩和增生性瘢痕,这是慢性炎症刺激后伤口过度愈合的结果 [55] 。Biniazan等人 [56] 发现人羊膜上皮细胞(hAECs)通过降低TGF-β1/TGF-β3比率的表达可以减少压疮动物模型中的瘢痕形成。

4) 促进创面再上皮化

压疮伤口的慢性炎症环境中,角质形成细胞增殖和迁移能力受损导致的再上皮功能障碍可严重阻碍伤口愈合 [57] 。恢复高效的创面上皮细胞再生,有助于加速伤口闭合控制感染。ADSC-sEVs已经被证明可以能通过激活Wnt/β-catenin信号通路 [58] 、AKT/ hif1信号通路或AKT通路 [59] 增强角质形成细胞活性,促进慢性伤口愈合。

3. 间充质干细胞及其衍生物与组织工程

伤口的愈合过程及其复杂,涉及到各种类型的细胞和一系列生物反应过程。然而,对于压疮等慢性伤口的复杂环境,单纯的细胞或分泌因子悬液注射很难保证稳定的疗效。在这种情况下,组织工程与细胞联合的使用,具有一定治疗优势。组织工程是指将在体外产生的有功能和有生命的组织可以植入机体用以取代受损的组织和器官,对于皮肤伤口来说最重要的应用就是生物支架 [60] 。应用于压疮皮肤的生物支架应保证一定的强度,当作用于下背部等部位伤口时要能够承受一定的压力、剪切力和摩擦力。同时支架也要保证干细胞与周围环境的充分交互,维持干细胞所需的氧气和营养 [61] 。多年来,已经有许多用于压疮治疗的生物支架。这些生物支架要么单独使用,要么作为各种成分的载体运送到伤口部位。这种治疗方式对于不能忍受大型或侵入性皮瓣手术的患者尤其重要。这些支架可以自然材料、合成材料,甚至可以是两者的组合。天然材料具有易降解、与生物体具有高相容性等特点,常见的材料有透明质酸、壳聚糖、海藻酸盐、胶原蛋白等。在Ichioka等人 [62] 的实验中使用了胶原基质真皮替代品(Terudermis®, Terumo Corp)来治疗9例IV级骶骨压疮患者。Terudermis®是一种含有硅酮层的胶原基质,特别用于治疗骨和肌腱暴露的深层伤口。结果显示在治疗84.1 ± 8.2天后,治疗组的伤口已经被健康的肉芽组织覆盖且为完全的上皮化。在作为保守治疗的对照组完全上皮化时间为215.3 ± 38.4天。而合成生物材料,如聚乙烯醇、聚乙二醇(PEG)、聚氨酯、聚l-乳酸(PLLA)、聚乙醇酸(PGA)等虽然没有天然材料的安全性,但其具有能够根据需求改变特性,可以制造具有确定形状和孔径的支架,甚至与天然材料结合使用。Sun等人 [63] 开发了一种新型的由聚乳酸和明胶制成的合成3d打印支架。该支架旨在模拟人体ECM微结构,可以作为粉末单独应用,也可以与富血小板纤维蛋白(PRF)结合作为水凝胶或薄膜。在5例III期和IV期压疮患者的临床测试中,该支架显示出良好的伤口粘附性,可诱导纤维蛋白层的形成,促进再上皮化和伤口闭合。

将组织工程与干细胞治疗结合起来已是目前细胞治疗的趋势。Feldman等人 [64] 利用了一种结合MSCs和TGF-β3的白蛋白支架来治疗全层压疮模型兔子。治疗1周后发现,对比对照组,利用MSCs/ TGF-β3白蛋白支架治疗的压疮伤口治疗效果显著,尤其在上皮化率上效果最为显著,达到了66%。Ribeiro等人 [65] 将hMSC与在聚乙烯醇(PVa)水凝胶膜结合治疗两只狗的慢性伤口,在促进皮肤再生上取得了不错的疗效。Zhu等人 [66] 发明了一种结合了内皮祖细胞(EPCs)和酸性成纤维细胞生长因子(aFGF)的一种甲基丙烯酸凝胶(EPCs/aFGF@GelMA),并将其注射于糖尿病压疮模型大鼠的皮损处。与单独使用EPCs/aFGF或GelMA相比,他们发现这种混合冷冻凝胶具有极强的愈合性,可加速伤口闭合率、肉芽形成、胶原沉积以及再上皮细胞形成。在De Francesco等人 [67] 的一项研究中,他们使用一种名为Rigeneracons® (Human Brain Wave srl)的医疗设备治疗了30例慢性溃疡伤口患者,该设备能将小块皮肤组织机械分解获得的真皮微移植物。结果显示比起对照组应用微移植物后的溃疡伤口部位愈合更好,伤口更小且肉芽组织更多。在进行机制的体外实验中,他们发现这些微移植物能表达MSC标记,并与胶原蛋白海绵形成了具有活力和增殖能力的生物复合物。

4. 总结和展望

对于今天来说,压疮的治疗仍然是一个重要的医学难题,尤其是对于那些老年或是行动不便的患者来说。干细胞治疗无疑是一个很好的方向。如前文所述,拥有广泛来源的MSC及其衍生物在治疗压疮上的疗效是强大的。其发挥功能的主要通过以下几个机制实现。首先,MSC可以刺激血管生成,保证伤口部位有足够的氧气和营养供应。其次MSC能调节免疫细胞,平衡细胞因子,对抗缺血再灌注产生的氧化应激,限制过度的炎症反应。最后MSC可以恢复成纤维细胞和上皮细胞的活性,促进ECM的再生,加速伤口闭合,促进组织再生。然而对于MSC及其衍生物治疗压疮在临床上的研究还太少。早在2009年李艳等人 [68] 就开始尝试利用人自体外周血干细胞移植来治疗压疮。通过手术将6例压疮病人的骨髓中造血干细胞动员并分离后,注射到患处巨大坏死溃疡期的压疮肌层深部治疗压疮。结果显示所有患者在干细胞移植后1周左右新生肉芽组织长出。类似的研究还有利用hucMSC创面移植 [69] 、hucMSC联合表皮生长因子移植 [70] 、hucMSC结合中成药 [71] 治疗重度压疮的临床研究,均取得了不错的疗效。然而考虑到压疮伤口微环境的复杂性,单纯利用细胞治疗很难保证其具体的疗效,尤其是针对巨大且反复的压疮溃疡来说。组织工程学是目前解决这一问题最有希望的选择,这点在大量动物和细胞实验上得到了有效验证。尤其是天然材料支架的开发,其安全性和生物相容性对于临床应用有着天然的优势。然而现有的结合干细胞的生物支架还缺少大量临床应用方面的研究。

其次尽管比起MSC的直接使用,MSC-sEVs具有性质稳定、不含活体细胞、方便储存的优点,能避免细胞治疗带来的许多问题,如直接利用干细胞治疗的致瘤性问题。但目前针对外泌体的分离、鉴定和定性方法仍然没有统一的或已存在的标准。外泌体的成分是复杂的,包含各种分子,如RNA、蛋白质和趋化因子。因此,难以确定最有效的成分,这也阻碍了MSC-sEVs的进一步临床应用。另一大阻碍是MSC产品的生产和质量控制要求,目前还无法保证MSC产品的稳定的安全性和效力。虽然目前现有大量来自体内临床前实验的数据,这些数据可能并不一定反映临床特征。因此,进一步研究MSC及其衍生物在慢性伤口的临床应用是必要的。尽管存在着许多问题,MSC及其衍生物仍是一种拥有巨大潜力治疗压疮的技术。希望随着科技的发展,干细胞治疗能成为真正有效的压疮治疗手段。

文章引用

李 楷,金超颖,项佳妮,吴慧玲. 间充质干细胞及其衍生物治疗压疮的相关研究进展
Research Progress of Mesenchymal Stem Cells and Their Derivatives in the Treatment of Pressure Ulcer[J]. 临床医学进展, 2023, 13(04): 6252-6260. https://doi.org/10.12677/ACM.2023.134880

参考文献

  1. 1. Edsberg, L.E., Black, J.M., Goldberg, M., et al. (2016) Revised National Pressure Ulcer Advisory Panel Pressure Injury Staging System: Revised Pressure Injury Staging System. Journal of Wound Ostomy & Continence Nursing, 43, 585-597. https://doi.org/10.1097/WON.0000000000000281

  2. 2. Cui, F.F., Pan, Y.Y., Xie, H.H., et al. (2016) Pressure Combined with Ischemia/Reperfusion Injury Induces Deep Tissue Injury via Endoplasmic Reticulum Stress in a Rat Pressure Ulcer Model. International Journal of Molecular Sciences, 17, 284. https://doi.org/10.3390/ijms17030284

  3. 3. Peirce, S.M., Skalak, T.C. and Rodeheaver, G.T. (2000) Ische-mia-Reperfusion Injury in Chronic Pressure Ulcer Formation: A Skin Model in the Rat. Wound Repair and Regeneration, 8, 68-76. https://doi.org/10.1046/j.1524-475x.2000.00068.x

  4. 4. Liu, L., Moody, J. and Gall, A. (2016) A Quantitative, Pooled Analysis and Systematic Review of Controlled Trials on the Impact of Electrical Stimulation Settings and Place-ment on Pressure Ulcer Healing Rates in Persons with Spinal Cord Injuries. Ostomy Wound Management, 62, 16-34.

  5. 5. Dealey, C., Posnett, J. and Walker, A. (2012) The Cost of Pressure Ulcers in the United Kingdom. Journal of Wound Care, 21, 261-262, 264, 266. https://doi.org/10.12968/jowc.2012.21.6.261

  6. 6. 徐玲, 蒋琪霞. 我国12所医院压疮现患率和医院内获得性压疮发生率调研[J]. 护理学报, 2012, 19(9): 9-13.

  7. 7. Thorpe, E. (2016) Prophylactic Use of Dressings for Pressure Ulcer Prevention in the Critical Care Unit. British Journal of Nursing, 25, S6-S12. https://doi.org/10.12968/bjon.2016.25.12.S6

  8. 8. 穆鑫馨, 王俊杰. 人性化护理干预结合湿性愈合疗法在乳腺癌压疮患者中的应用效果[J]. 中华全科医学, 2017, 15(1): 157-159.

  9. 9. Li, Z., Wang, Q., Mi, W., et al. (2017) Effects of Negative-Pressure Wound Therapy Combined with Microplasma on Treating Wounds of Ulcer and the Expression of Heat Shock Protein 90. Experimental and Therapeutic Medicine, 13, 2211-2216. https://doi.org/10.3892/etm.2017.4266

  10. 10. 梁晓燕, 李艳玲, 庄惜兰, 等. 改良负压封闭引流技术在IV期压疮应用中的临床效果[J]. 医学理论与实践, 2013, 26(9): 1186-1187.

  11. 11. 钟衬珠, 钟慧玲, 尹瑞华. 应用分级护理策略预防颅脑外伤患者压疮的实践及效果[J]. 岭南急诊医学杂志, 2015, 20(2): 167-168.

  12. 12. 付晋凤, 张梦思. 创面感染的防治与护理[J]. 中华损伤与修复杂志(电子版), 2015, 10(5): 384-387.

  13. 13. 贾晓明. 压疮的流行病学特点及诊断与治疗进展[J]. 中华损伤与修复杂志(电子版), 2018, 13(1): 4-7.

  14. 14. Jo, H., Brito, S., Kwak, B.M., et al. (2021) Applications of Mesenchymal Stem Cells in Skin Regeneration and Rejuvenation. International Journal of Molecular Sciences, 22, 2410. https://doi.org/10.3390/ijms22052410

  15. 15. Kosaric, N., Kiwanuka, H. and Gurtner, G.C. (2019) Stem Cell Therapies for Wound Healing. Expert Opinion on Biological Therapy, 19, 575-585. https://doi.org/10.1080/14712598.2019.1596257

  16. 16. Yang, J., Chen, Z., Pan, D., et al. (2020) Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration. International Journal of Nanomedicine, 15, 5911-5926. https://doi.org/10.2147/IJN.S249129

  17. 17. He, X., Dong, Z., Cao, Y., et al. (2019) MSC-Derived Exosome Pro-motes M2 Polarization and Enhances Cutaneous Wound Healing. Stem Cells International, 2019, Article ID: 7132708. https://doi.org/10.1155/2019/7132708

  18. 18. Chen, G., Wu, Y., Zou, L., et al. (2021) Effect of MicroRNA-146a Modified Adipose-Derived Stem Cell Exosomes on Rat Back Wound Healing. The International Journal of Lower Ex-tremity Wounds. https://doi.org/10.1177/15347346211038092

  19. 19. Thery, C., Witwer, K.W., Aikawa, E., et al. (2018) Minimal In-formation for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. Journal of Extracellular Vesicles, 7, Article ID: 1535750. https://doi.org/10.1080/20013078.2018.1535750

  20. 20. Keerthikumar, S., Chisanga, D., Ariyaratne, D., et al. (2016) ExoCarta: A Web-Based Compendium of Exosomal Cargo. Journal of Molecular Biology, 428, 688-692. https://doi.org/10.1016/j.jmb.2015.09.019

  21. 21. Ha, D.H., Kim, H.K., Lee, J., et al. (2020) Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatory Therapeutics and Skin Regeneration. Cells, 9, 1157. https://doi.org/10.3390/cells9051157

  22. 22. Kosiak, M. (1961) Etiology of Decubitus Ulcers. Archives of Physical Medicine and Rehabilitation, 42, 19-29.

  23. 23. Pu, C.M., Liu, C.W., Liang, C.J., et al. (2017) Adipose-Derived Stem Cells Protect Skin Flaps against Ischemia/Reperfusion Injury via IL-6 Expression. Journal of Investigative Dermatology, 137, 1353-1362. https://doi.org/10.1016/j.jid.2016.12.030

  24. 24. Chen, B., Sun, Y., Zhang, J., et al. (2019) Human Embryonic Stem Cell-Derived Exosomes Promote Pressure Ulcer Healing in Aged Mice by Rejuvenating Senescent Endothelial Cells. Stem Cell Research & Therapy, 10, 142. https://doi.org/10.1186/s13287-019-1253-6

  25. 25. Katahira, Y., Murakami, F., Inoue, S., et al. (2022) Protective Ef-fects of Conditioned Media of Immortalized Stem Cells from Human Exfoliated Deciduous Teeth on Pressure Ulcer Formation. Frontiers in Immunology, 13, Article ID: 1010700. https://doi.org/10.3389/fimmu.2022.1010700

  26. 26. 邓呈亮, 刘志远, 姚远镇, 等. 人脂肪来源干细胞对小鼠压疮愈合影响的实验研究[J]. 中国修复重建外科杂志, 2018, 32(6): 726-735.

  27. 27. Kang, T., Jones, T.M., Naddell, C., et al. (2016) Adipose-Derived Stem Cells Induce Angi-ogenesis via Microvesicle Transport of miRNA-31. Stem Cells Translational Medicine, 5, 440-450. https://doi.org/10.5966/sctm.2015-0177

  28. 28. Liang, X., Zhang, L., Wang, S., et al. (2016) Exosomes Secreted by Mesenchymal Stem Cells Promote Endothelial Cell Angiogenesis by Transferring miR-125a. Journal of Cell Science, 129, 2182-2189. https://doi.org/10.1242/jcs.170373

  29. 29. An, Y., Zhao, J., Nie, F., et al. (2019) Exosomes from Adipose-Derived Stem Cells (ADSCs) Overexpressing miR-21 Promote Vascularization of Endothelial Cells. Scientific Reports, 9, Article No. 12861. https://doi.org/10.1038/s41598-019-49339-y

  30. 30. Ding, J., Wang, X., Chen, B., et al. (2019) Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Stimulated by Deferoxamine Accelerate Cutaneous Wound Healing by Promoting Angiogenesis. BioMed Research International, 2019, Article ID: 9742765. https://doi.org/10.1155/2019/9742765

  31. 31. Yu, M., Liu, W., Li, J., et al. (2020) Exosomes Derived from Atorvas-tatin-Pretreated MSC Accelerate Diabetic Wound Repair by Enhancing Angiogenesis via AKT/eNOS Pathway. Stem Cell Research & Therapy, 11, 350. https://doi.org/10.1186/s13287-020-01824-2

  32. 32. Zhang, B., Wu, X., Zhang, X., et al. (2015) Human Umbilical Cord Mesenchymal Stem Cell Exosomes Enhance Angiogenesis through the Wnt4/beta-catenin Pathway. Stem Cells Translational Medicine, 4, 513-522. https://doi.org/10.5966/sctm.2014-0267

  33. 33. Granger, D.N., Hollwarth, M.E. and Parks, D.A. (1986) Ische-mia-Reperfusion Injury: Role of Oxygen-Derived Free Radicals. Acta Physiologica Scandinavica, Supplement, 548, 47-63.

  34. 34. Stadler, I., Zhang, R.Y., Oskoui, P., et al. (2004) Development of a Simple, Noninvasive, Clinically Rele-vant Model of Pressure Ulcers in the Mouse. Journal of Investigative Surgery, 17, 221-227. https://doi.org/10.1080/08941930490472046

  35. 35. Li, S.C., Acevedo, J., Wang, L., et al. (2012) Mechanisms for Progenitor Cell-Mediated Repair for Ischemic Heart Injury. Current Stem Cell Research & Therapy, 7, 2-14. https://doi.org/10.2174/157488812798483449

  36. 36. Chen, S., Chen, X., Wu, X., et al. (2017) Hepatocyte Growth Factor-Modified Mesenchymal Stem Cells Improve Ischemia/Reperfusion-Induced Acute Lung Injury in Rats. Gene Therapy, 24, 3-11. https://doi.org/10.1038/gt.2016.64

  37. 37. Zhu, X.Y., Urbieta-Caceres, V., Krier, J.D., et al. (2013) Mesenchymal Stem Cells and Endothelial Progenitor Cells Decrease Renal Injury in Experimental Swine Renal Artery Stenosis through Different Mechanisms. Stem Cells, 31, 117-125. https://doi.org/10.1002/stem.1263

  38. 38. Jin, G., Qiu, G., Wu, D., et al. (2013) Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells Attenuate Hepatic Ischemia-Reperfusion Injury by Suppressing Oxidative Stress and Inhibiting Apoptosis in Rats. International Journal of Molecular Medicine, 31, 1395-1401. https://doi.org/10.3892/ijmm.2013.1340

  39. 39. 罗雅婷, 解婧, 许涛, 等. 人脐带间充质干细胞来源外泌体对小鼠压疮的治疗作用及机制[J]. 海军军医大学学报, 2022, 43(6): 622-632.

  40. 40. Motegi, S.I., Sekiguchi, A., Uchiyama, A., et al. (2017) Protective Effect of Mesenchymal Stem Cells on the Pressure Ulcer Formation by the Regulation of Ox-idative and Endoplasmic Reticulum Stress. Scientific Reports, 7, Article No. 17186. https://doi.org/10.1038/s41598-017-17630-5

  41. 41. Frykberg, R.G. and Banks, J. (2015) Challenges in the Treatment of Chronic Wounds. Advances in Wound Care (New Rochelle), 4, 560-582. https://doi.org/10.1089/wound.2015.0635

  42. 42. Li, X., Liu, L., Yang, J., et al. (2016) Exosome Derived from Hu-man Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation. EBioMedicine, 8, 72-82. https://doi.org/10.1016/j.ebiom.2016.04.030

  43. 43. Wang, L., Cai, Y., Zhang, Q., et al. (2022) Pharmaceutical Acti-vation of Nrf2 Accelerates Diabetic Wound Healing by Exosomes from Bone Marrow Mesenchymal Stem Cells. Inter-national Journal of Stem Cells, 15, 164-172. https://doi.org/10.15283/ijsc21067

  44. 44. Li, M., Hou, Q., Zhong, L., et al. (2021) Macrophage Related Chronic In-flammation in Non-Healing Wounds. Frontiers in Immunology, 12, Article ID: 681710. https://doi.org/10.3389/fimmu.2021.681710

  45. 45. Ti, D., Hao, H., Tong, C., et al. (2015) LPS-Preconditioned Mesenchymal Stromal Cells Modify Macrophage Polarization for Resolution of Chronic Inflammation via Exo-some-Shuttled let-7b. Journal of Translational Medicine, 13, 308. https://doi.org/10.1186/s12967-015-0642-6

  46. 46. Khare, D., Or, R., Resnick, I., et al. (2018) Mesenchymal Stromal Cell-Derived Exosomes Affect mRNA Expression and Function of B-Lymphocytes. Frontiers in Immunology, 9, 3053. https://doi.org/10.3389/fimmu.2018.03053

  47. 47. Fan, Y., Herr, F., Vernochet, A., et al. (2019) Human Fetal Liver Mesenchymal Stem Cell-Derived Exosomes Impair Natural Killer Cell Function. Stem Cells and Development, 28, 44-55. https://doi.org/10.1089/scd.2018.0015

  48. 48. Monguio-Tortajada, M., Roura, S., Galvez-Monton, C., et al. (2017) Nanosized UCMSC-Derived Extracellular Vesicles but Not Conditioned Medium Exclusively Inhibit the Inflammatory Response of Stimulated T Cells: Implications for Nanomedicine. Theranostics, 7, 270-284. https://doi.org/10.7150/thno.16154

  49. 49. Darby, I.A. and Hewitson, T.D. (2007) Fibroblast Differentiation in Wound Healing and Fibrosis. International Review of Cytology, 257, 143-179. https://doi.org/10.1016/S0074-7696(07)57004-X

  50. 50. Wertheimer, E., Spravchikov, N., Trebicz, M., et al. (2001) The Regulation of Skin Proliferation and Differentiation in the IR Null Mouse: Implications for Skin Complications of Diabetes. Endocrinology, 142, 1234-1241. https://doi.org/10.1210/endo.142.3.7988

  51. 51. Mccarty, S.M. and Percival, S.L. (2013) Proteases and Delayed Wound Healing. Advances in Wound Care (New Rochelle), 2, 438-447. https://doi.org/10.1089/wound.2012.0370

  52. 52. Zhao, X., Liu, Y., Jia, P., et al. (2021) Chitosan Hydrogel-Loaded MSC-Derived Extracellular Vesicles Promote Skin Rejuvenation by Ameliorating the Senescence of Dermal Fibroblasts. Stem Cell Research & Therapy, 12, 196. https://doi.org/10.1186/s13287-021-02262-4

  53. 53. Xiao, S., Liu, Z., Yao, Y., et al. (2019) Diabetic Human Adi-pose-Derived Stem Cells Accelerate Pressure Ulcer Healing by Inducing Angiogenesis and Neurogenesis. Stem Cells and Development, 28, 319-328. https://doi.org/10.1089/scd.2018.0245

  54. 54. Strong, A.L., Bowles, A.C., Maccrimmon, C.P., et al. (2015) Adipose Stromal Cells Repair Pressure Ulcers in both Young and Elderly Mice: Potential Role of Adipogenesis in Skin Repair. Stem Cells Translational Medicine, 4, 632-642. https://doi.org/10.5966/sctm.2014-0235

  55. 55. Song, K.X., Liu, S., Zhang, M.Z., et al. (2018) Hyperbaric Oxygen Therapy Improves the Effect of Keloid Surgery and Radiotherapy by Reducing the Recurrence Rate. Journal of Zhejiang University: Science B, 19, 853-862. https://doi.org/10.1631/jzus.B1800132

  56. 56. Biniazan, F., Rajaei, F., Darabi, S., et al. (2022) Effects of Placen-ta-Derived Human Amniotic Epithelial Cells on the Wound Healing Process and TGF-beta Induced Scar Formation in Murine Ischemic-Reperfusion Injury Model. Stem Cell Reviews and Reports, 18, 2045-2058. https://doi.org/10.1007/s12015-022-10355-7

  57. 57. Berlanga-Acosta, J.A., Guillen-Nieto, G.E., Rodri-guez-Rodriguez, N., et al. (2020) Cellular Senescence as the Pathogenic Hub of Diabetes-Related Wound Chronicity. Frontiers in Endocrinology (Lausanne), 11, Article ID: 573032. https://doi.org/10.3389/fendo.2020.573032

  58. 58. Ma, T., Fu, B., Yang, X., et al. (2019) Adipose Mesenchymal Stem Cell-Derived Exosomes Promote Cell Proliferation, Migration, and Inhibit Cell Apoptosis via Wnt/beta-Catenin Signaling in Cutaneous Wound Healing. Journal of Cellular Biochemistry, 120, 10847-10854. https://doi.org/10.1002/jcb.28376

  59. 59. Zhang, Y., Han, F., Gu, L., et al. (2020) Adipose Mesenchymal Stem Cell Exosomes Promote Wound Healing through Accelerated Keratinocyte Migration and Proliferation by Activating the AKT/HIF-1alpha Axis. Journal of Molecular Histology, 51, 375-383. https://doi.org/10.1007/s10735-020-09887-4

  60. 60. Domaszewska-Szostek, A., Krzyzanowska, M. and Siemionow, M. (2019) Cell-Based Therapies for Chronic Wounds Tested in Clinical Studies: Review. Annals of Plastic Surgery, 83, e96-e109. https://doi.org/10.1097/SAP.0000000000001947

  61. 61. Van der Veen, V.C., Van der Wal, M.B., Van Leeuwen, M.C., et al. (2010) Biological Background of Dermal Substitutes. Burns, 36, 305-321. https://doi.org/10.1016/j.burns.2009.07.012

  62. 62. Ichioka, S., Ohura, N., Sekiya, N., et al. (2003) Regenerative Surgery for Sacral Pressure Ulcers Using Collagen Matrix Substitute Dermis (Artificial Dermis). Annals of Plastic Sur-gery, 51, 383-389. https://doi.org/10.1097/01.SAP.0000067971.90978.8F

  63. 63. Sun, H., Lv, H., Qiu, F., et al. (2018) Clinical Appli-cation of a 3D-Printed Scaffold in Chronic Wound Treatment: A Case Series. Journal of Wound Care, 27, 262-271. https://doi.org/10.12968/jowc.2018.27.5.262

  64. 64. Feldman, D.S. and Mccauley, J.F. (2018) Mesenchymal Stem Cells and Transforming Growth Factor-beta(3) (TGF-beta(3)) to Enhance the Regenerative Ability of an Albumin Scaf-fold in Full Thickness Wound Healing. Journal of Functional Biomaterials, 9, 65. https://doi.org/10.3390/jfb9040065

  65. 65. Ribeiro, J., Pereira, T., Amorim, I., et al. (2014) Cell Therapy with Human MSCs Isolated from the Umbilical Cord Wharton Jelly Associated to a PVA Membrane in the Treatment of Chronic Skin Wounds. International Journal of Medical Sciences, 11, 979-987. https://doi.org/10.7150/ijms.9139

  66. 66. Zhu, H., Luo, H., Lin, M., et al. (2022) Methacrylated Gelatin Shape-Memorable Cryogel Subcutaneously Delivers EPCs and aFGF for Improved Pressure Ulcer Repair in Diabetic Rat Model. International Journal of Biological Macromolecules, 199, 69-76. https://doi.org/10.1016/j.ijbiomac.2021.12.138

  67. 67. De Francesco, F., Graziano, A., Trovato, L., et al. (2017) A Regenerative Approach with Dermal Micrografts in the Treatment of Chronic Ulcers. Stem Cell Reviews and Reports, 13, 139-148. https://doi.org/10.1007/s12015-016-9692-2

  68. 68. 李艳, 谷小燕, 王桂云. 6例自体外周血干细胞移植治疗巨大坏死溃疡期压疮的效果观察[J]. 检验医学与临床, 2009, 6(22): 1977-1978.

  69. 69. 王杨, 张翼, 王锦文, 等. 脐血干细胞移植治疗压疮性溃疡创面[J]. 吉林医学, 2012, 33(34): 7421-7423.

  70. 70. 陈娟, 秦志慧, 曾进, 等. 脐带间充质干细胞联合表皮生长因子治疗III、IV期压疮的临床研究[J]. 现代生物医学进展, 2013, 13(32): 6362-6364.

  71. 71. 肖光辉, 崔东明, 胡艳萍, 等. 脐血干细胞移植联合参芪扶正注射液治疗重度压疮的临床观察[J]. 黑龙江中医药, 2019, 48(4): 152-153.

  72. NOTES

    *通讯作者。

期刊菜单