Open Journal of Natural Science
Vol. 09  No. 05 ( 2021 ), Article ID: 45160 , 7 pages
10.12677/OJNS.2021.95080

含水玄武质熔体与方辉橄榄岩反应对克拉通岩石圈演化的约束

王孝燕*,张行一,李龙曜,王志诚,于博媛

宿州学院资源与土木工程学院,安徽 宿州

收稿日期:2021年8月9日;录用日期:2021年9月6日;发布日期:2021年9月13日

摘要

克拉通岩石圈在减薄的过程中几乎都发生了性质的改变,在古生代之前华北克拉通的岩石圈地幔主要的岩石类型是方辉橄榄岩,而在中生代以后主要的岩石类型是二辉橄榄岩。在克拉通破坏的过程中,来自软流圈和俯冲板块的玄武质熔体在上升中加热软化岩石圈地幔的同时交代改造岩石圈,但并非所有克拉通岩石圈都会因玄武岩熔体的交代而受到破坏。为了深入了解玄武质熔体交代克拉通岩石圈地幔对认识克拉通型岩石圈地幔演化的意义,在活塞圆筒压机上进行了1100℃/3.0 GPa条件下含水玄武质熔体与方辉橄榄岩的反应实验,模拟了与太平洋板块俯冲有关的岩石圈来源的玄武质熔体交代岩石圈地幔的情景。实验结果显示,克拉通岩石圈交代以后可以从方辉橄榄岩向二辉橄榄岩转化,这与华北克拉通岩石圈中生代的演化趋势一致。因此,太平洋板块俯冲断离造成的含水玄武质熔体上涌可能是造成中生代华北克拉通岩石圈破坏的重要原因之一。

关键词

克拉通,高温高压,方辉橄榄岩,玄武质熔体

Constraints on the Evolution of the Cratonic Lithosphere from the Reaction of Water-Bearing Basaltic Melts with Harzburgite

Xiaoyan Wang*, Xingyi Zhang, Longyao Li, Zhicheng Wang, Boyuan Yu

School of Resource and Civil Engineering, Suzhou University, Suzhou Anhui

Received: Aug. 9th, 2021; accepted: Sep. 6th, 2021; published: Sep. 13th, 2021

ABSTRACT

The lithosphere of the craton has almost all changed in the process of thinning, and before the Paleozoic Era, the main rock type of the lithospheric mantle of the North China Cratons was harzburgite, while the main rock type after the Mesozoic Era was lherzolite. In the process of craton destruction, basaltic melts from the asthenosphere and subducting plates heat and soften the lithospheric mantle while replacing and reforming the lithosphere, but not all cratonic lithospheres are damaged due to replacement of basaltic melts. In order to understand the significance of replacing cratonic lithospheric mantle by basaltic melts for recognizing the evolution of craton-type lithospheric mantle, we carried out 1100˚C/3.0 GPa water-bearing basaltic melts and harzburgite on a piston cylinder press. The reaction experiment simulates the scenario in which basaltic melts derived from the lithosphere associated with the subduction of the Pacific plate replace the lithospheric mantle. The results show that after replacement, the cratonic lithosphere can be transformed from harzburgite to lherzolite, which is consistent with the Mesozoic evolution trend of the North China cratonic lithosphere. Therefore, the upwelling of water-bearing basaltic melts caused by the subduction and break-off of the Pacific plate may be one of the important reasons for the destruction of the Mesozoic lithosphere in the North China Cratons.

Keywords:Craton, High Temperature and High Pressure, Harzburgite, Basaltic Melts

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

克拉通岩石圈地幔演化是地质历史过程中的重要过程,现有研究显示几乎所有的克拉通型岩石圈地幔在漫长的地质历史过程中都经历了不同程度的减薄 [1] [2]。然而,有些克拉通岩石圈在减薄的过程中发生了性质的改变,比较典型的例子是中国的华北克拉通。现有的产自华北地区的古生代地幔捕掳体研究证实,在古生代之前华北克拉通的岩石圈地幔主要的岩石类型是方辉橄榄岩,成分上表现出富Mg、富Sr-Nd-Hf同位素的特点 [3] [4] [5] [6] [7],这样的岩石圈地幔使得华北板块东部自1.8 Ga以来一直到古生代都保持稳定 [1] [8]。然而,华北地区中生代以后产出的地幔捕掳体的岩石类型主要是二辉橄榄岩,证实华北克拉通东部板块岩石圈地幔发生转变。同时,地幔岩石在成分上表现出主量元素富集、Sr-Nd-Hf同位素亏损的特点,并且在该板块内部出现大规模的岩浆活动和构造运动,发生了克拉通的破坏 [7] [9] [10] [11] [12]。

在克拉通破坏的过程中,来自软流圈和俯冲板块的玄武质熔体的交代作用可能是关键机制,这些玄武质熔体在上升过程中加热软化岩石圈地幔的同时交代改造岩石圈地幔 [13] [14],华北地区中生代大规模发育的带有地幔捕掳体的玄武质岩浆也是该过程的有力证据 [15]。然而,并不是所有的玄武质岩浆交代都会引起克拉通岩石圈的破坏,资料显示格陵兰(Greenland)克拉通 [16] [17] [18]、塔里木(Tarim)克拉通 [19] 以及印度的Dharwar克拉通 [20] 都发育有含地幔捕掳体的玄武岩,说明这些岩浆与这三个克拉通的岩石圈也经历了玄武质熔体的交代,而这些克拉通至今仍然保持稳定。由此可见,深入了解玄武质熔体交代克拉通岩石圈(方辉橄榄岩型)地幔对认识克拉通型岩石圈地幔的演化具有重要意义。

现有关于玄武质熔体交代方辉橄榄岩的研究方法主要有野外研究和实验室研究两种。通过大量的野外研究 [21] [22] [23] [24] 证实,该过程确实在很大程度上影响了华北克拉通岩石圈地幔的岩石类型和化学成分,但是很难给出具体的细节,这限制了我们对玄武岩熔体交代方辉橄榄岩地幔这一重要过程的深入研究。而实验室研究则是野外研究的有力补充,通过条件已知的高温高压实验模拟这一重要过程,为进一步深入认识该过程提供有力的实验岩石学证据。前人也进行了玄武质熔体与橄榄岩反应的实验,但是大部分实验都是无水玄武岩熔体与橄榄岩的反应 [25] [26] [27],本论文拟开展1100℃/3.0 GPa条件下含水玄武质熔体与方辉橄榄岩反应的实验研究,进一步研究含水玄武质熔体交代对克拉通岩石圈矿物相及成分的影响。

2. 实验方法

本论文的实验初始物包括人工方辉橄榄岩和玄武岩玻璃(代表软流圈部分熔融后为未分异的原始岩浆),具体成分见表1。人工方辉橄榄岩的制作方法如下:将采自河北大麻坪的地幔二辉橄榄岩(DMP-01)岩清洗干净,手工破碎至约20目,在双目镜下选取纯净的橄榄石(Ol)、斜方辉石(Opx)等矿物,将选好的Ol、Opx颗粒用水和酒精在超声波清洗机中洗净,手工破碎,研磨至200目以下,分别制成对应的矿物粉末,精确称重并用特制模具在压片机上压制粉末片(如图1所示)组装。玄武岩玻璃是将采贵州都格的峨眉山玄武岩,手工破碎后研磨,在高温炉中制成玻璃再研磨,反复三次,最后制成成分与初始物接近的均匀的玄武质玻璃粉,最后将玻璃粉压片后装入已经装好人工样品的石墨管中加入粉末质量5 wt%的超纯水后放入铂金管焊封。高温高压实验在宿州学院安徽省煤矿勘查技术研究中心的活塞圆筒压机(洛克泰克RTC-PC-1型)上进行,依图1所示方式装入活塞圆筒压机(10 mm压盘),实验的温度采用K型热电偶测定和控制,温度误差 < ±2℃,根据NaCl熔融曲线标定 [28],本组装的压力误差 < ±0.1 GPa,根据活塞圆筒压机温度梯度分布范围,本文实验的样品室温度梯度约为5℃ [29]。实验时,先缓慢升压至目标压力的百分之六十,然后再分2个阶段[1000℃ (10℃/min)、1100℃ (2℃/min)]加热到目标温度,最后保压恒温72 h。实验按照预设时间完成后断电淬火,然后将样品小心取出,移入环氧树脂中制成样品靶,打磨抛光,用于后期的反射光观察和电子探针分析。

初始物玄武岩的化学组成在中国科学院地球化学研究所矿床地球化学国家重点实验室的Axios (PW4400) X射线荧光光谱仪(XRF)上分析,结果见表1。初始物二辉橄榄岩的Ol和Opx的化学成分的主量元素成分分析在长安大学成矿作用及其动力学重点实验室的JOEL JXA-8100型电子探针上完成,进行实验产物化学成分分析时加速电压15 kV,束电流20 nA,标样为对应矿物,其中Cr和Ni的标样为纯的氧化物。实验产物的背散射照片在中国科学院地球化学研究所月球与行星科学研究中心的FIB/SEM双束系统上完成,分辨率为600 dpi,分析完成后自动拼接成为完整图片(图2)。

Table 1. Chemical composition of the initial substance (wt%)

表1. 初始物的化学成分(wt%)

Figure 1. Aschematic diagram of the assembly

图1. 组装示意图

反应的矿物缩写:Ol = 橄榄石,Gl = 玻璃,Opx = 斜方辉石,Grt = 反应生成石榴子石,Opx = 反应生成斜方辉石,Cpx = 反应生成单斜辉石。

Figure 2. The BSE photo of reaction by water-bearing (5 wt%) basalt melt, Artificial harzburgite (3.0 GPa, 1100˚C, 72 h)

图2. 含水(5 wt%)玄武质熔体_人工方辉橄榄岩反应BSE照片(3.0 GPa,1100℃,72 h)

3. 实验结果与讨论

反应后,熔体和残留人工橄榄岩形成明显的界限,如图2所示,反应产物具体可以分为三个区域:从上至下分别是残留熔体,反应带和残留矿物。在残留熔体中,除了熔体以外还通过扫描电镜鉴定出大量的矿物,种类主要是单斜辉石(Cpx)和石榴子石(Grt) (图2(C))。反应带矿物主要是Opx,而残留矿物与初始物一致,主要是Ol和Opx,并且依然与装样时的位置一致。与前人实验对比发现,本论文报道的实验与前人 [30] [31] [32] 的实验相似的是都形成了新的Opx和Cpx,特别是Tominaga等 [33] 的实验与我们的条件相似,与之相比我们的实验的产物组合是Opx + Cpx + Grt,而Tominaga等 [33] 的实验产物组合是Grt + Opx,形成这种差距的原因可能是我们的实验用的玄武岩玻璃的Si含量更低。

接下来我们将本论文的实验结果应用于解释华北克拉通岩石圈演化,关于华北克拉通岩石圈演化的假说主要有地壳加厚导致的拆沉作用以及软流圈上涌导致的底侵作用,现有观点一般认为二者可能在不同区域都有存在,另外最新的研究结果显示俯冲的太平洋板块断离可能是造成华北克拉通岩石圈破坏的主要因素。本论文的实验模拟了与太平洋板块俯冲有关的岩石圈来源的玄武质熔体交代岩石圈地幔的情景,实验证实经过交代以后克拉通岩石圈可以向从方辉橄榄岩向二辉橄榄岩转化,这与华北克拉通岩石圈中生代的演化趋势一致。

4. 结论

本论文在1100℃/3.0 GPa的条件下进行了含水玄武质熔体与方辉橄榄岩的反应实验,反应形成的矿物组合为Opx + Cpx + Grt,实验结果证实太平洋板块俯冲断离造成的含水玄武质熔体上涌可能是造成中生代华北克拉通岩石圈破坏的重要原因之一。

基金项目

安徽省大学生创新创业训练项目(S202010379109)。

文章引用

王孝燕,张行一,李龙曜,王志诚,于博媛. 含水玄武质熔体与方辉橄榄岩反应对克拉通岩石圈演化的约束
Constraints on the Evolution of the Cratonic Lithosphere from the Reaction of Water-Bearing Basaltic Melts with Harzburgite[J]. 自然科学, 2021, 09(05): 739-745. https://doi.org/10.12677/OJNS.2021.95080

参考文献

  1. 1. 吴福元, 徐义刚, 高山, 郑建平. 华北岩石圈减薄与克拉通破坏研究的主要学术争论[J]. 岩石学报, 2008, 24(6): 1145-1174.

  2. 2. Wu, F.Y., Xu, Y.G., Zhu, R.X. amd Zhang, G.W. (2014) Thinning and Destruction of the Cratonic Lithosphere: A Global Perspective. Science China Earth Sciences, 57, 2878-2890. https://doi.org/10.1007/s11430-014-4995-0

  3. 3. Zheng, J., Griffin, W.L., O’Reilly, S.Y., Yang, J.S., Li, T.F., Zhang, M., et al. (2006) Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere: Constraints on Mantle Evolution beneath Eastern China. Journal of Petrology, 47, 2233-2256. https://doi.org/10.1093/petrology/egl042

  4. 4. Menzies, M., Xu, Y., Zhang, H. and Fan, W. (2007) Integration of Geology, Geophysics and Geochemistry: A Key to Understanding the North China Craton. Lithos, 96, 1-21. https://doi.org/10.1016/j.lithos.2006.09.008

  5. 5. Fan, W.-M., Zhang, H.F., Baker, J., Jarvis, K.E., Mason, P.R.D. and Menzies, M.A. (2000) On and Off the North China Craton: Where Is the Archaean Keel? Journal of Petrology, 41, 933-950. https://doi.org/10.1093/petrology/41.7.933

  6. 6. Zheng, J., Griffin, W.L., O’Reilly, S.Y., Liou, J.G., Zhang, R.Y. and Lu, F. (2005) Late Mesozoic-Eocene Mantle Replacement beneath the Eastern North China Craton: Evidence from the Paleozoic and Cenozoic Peridotite Xenoliths. International Geology Review, 47, 457-472. https://doi.org/10.2747/0020-6814.47.5.457

  7. 7. Xu, Y.-G (2001) Thermo-Tectonic Destruction of the Archaean Lithospheric Keel beneath the Sino-Korean Craton in China Evidence, Timing and Mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26, 747-757. https://doi.org/10.1016/S1464-1895(01)00124-7

  8. 8. 吴福元, 徐义刚, 朱日祥, 张国伟. 克拉通岩石圈减薄与破坏[J]. 中国科学: 地球科学, 2014, 44(11): 2358-2372. https://doi.org/10.1360/zd-2014-44-11-2358

  9. 9. 翟明国. 华北克拉通的形成演化与成矿作用[J]. 矿床地质, 2010, 29(1): 24-36.

  10. 10. 张宏福. 橄榄岩-熔体相互作用: 克拉通型岩石圈地幔能够被破坏之关键[J]. 科学通报, 2009, 54(14): 2008-2026.

  11. 11. Xu, W., Gao, S., Wang, Q., Wang, D. and Liu, Y. (2006) Mesozoic Crustal Thickening of the Eastern North China Craton: Evidence from Eclogite Xenoliths and Petrologic Implications. Geology, 34, 721-724. https://doi.org/10.1130/G22551.1

  12. 12. Gao, S., Zhang, J.F., Xu, W.L. and Liu, Y.S. (2009) Delamination and Destruction of the North China Craton. Chinese Science Bulletin, 54, Article No. 3367. https://doi.org/10.1007/s11434-009-0395-9

  13. 13. Xu, Y., Li, H.Y., Pang, C.J. and He, B. (2009) On the Timing and Duration of the Destruction of the North China Craton. Chinese Science Bulletin, 54, 3379-3396. https://doi.org/10.1007/s11434-009-0346-5

  14. 14. Xu, Y.-G., Ma, J.L., Frey, F.A., Feigenson, M.D. and Liu, J.-F. (2005) Role of Lithosphere-Asthenosphere Interaction in the Genesis of Quaternary Alkali and Tholeiitic Basalts from Datong, Western North China Craton. Chemical Geology, 224, 247-271. https://doi.org/10.1016/j.chemgeo.2005.08.004

  15. 15. 徐义刚. 用玄武岩组成反演中——新生代华北岩石圈的演化[J]. 地学前缘, 2006, 13(2): 93-104.

  16. 16. Szilas, K., Kelemen, P.B. and Bernstein, S. (2015) Peridotite Enclaves Hosted by Mesoarchaean TTG-Suite Orthogneisses in the Fiskefjord Region of Southern West Greenland. GeoResJ, 7, 22-34. https://doi.org/10.1016/j.grj.2015.03.003

  17. 17. Bernstein, S., Kelemen, P.B. and Brooks, C.K. (1998) Depleted Spinel Harzburgite Xenoliths in Tertiary Dykes from East Greenland: Restites from High Degree Melting. Earth & Planetary Science Letters, 154, 221-235. https://doi.org/10.1016/S0012-821X(97)00175-1

  18. 18. Bernstein, S., Hanghøj, K., Kelemen, P.B. and Kent Brooks, C. (2006) Ultra-Depleted, Shallow Cratonic Mantle Beneath West Greenland: Dunitic Xenoliths from Ubekendt Ejland. Contributions to Mineralogy & Petrology, 152, Article No. 335. https://doi.org/10.1007/s00410-006-0109-0

  19. 19. Chen, M.-M., Tian, W., Suzuki, K., Tejada, M.-L.-G., Liu, F.-L., Senda, R., et al. (2014) Peridotite and Pyroxenite Xenoliths from Tarim, NW China: Evidences for Melt Depletion and Mantle Refertilization in the Mantle Source Region of the Tarim Flood Basalt. Lithos, 204, 97-111. https://doi.org/10.1016/j.lithos.2014.01.005

  20. 20. Griffin, W.L., Kobussen, A.F., Babu, E.V.S.S.K., O’Reilly, S.Y., Norris, R. et al. (2009) A Translithospheric Suture in the Vanished 1-Ga lithospheric Root of South India: Evidence from Contrasting Lithosphere Sections in the Dharwar Craton. Lithos, 112, 1109-1119. https://doi.org/10.1016/j.lithos.2009.05.015

  21. 21. 徐义刚. 上地幔熔体-岩石相互作用与大陆地幔演化[J]. 地学前缘, 1998, 5(z1): 76-85.

  22. 22. 徐义刚. 华北岩石圈减薄的时空不均一特征[J]. 高校地质学报, 2004, 10(3): 324-331.

  23. 23. 徐义刚, Bodinier, J.-L., Menzies, M.A., Mercier, J.-C.C. 熔体-上地幔岩石的相互作用及稀土元素模拟计——以法国中央高原堡雷幔源包体为例[J]. 地球化学, 1997, 27(3): 205-217.

  24. 24. Ma, Q., Xu, Y.-G., Zheng, J.-P., Griffin, W.L., Hong, L.-B. and Ma, L. (2016) Coexisting Early Cretaceous High-Mg Andesites and Adakitic Rocks in the North China Craton: The Role of Water in Intraplate Magmatism and Cratonic Destruction. Journal of Petrology, 57, 1279-1308. https://doi.org/10.1093/petrology/egw040

  25. 25. Lambart, S., Laporte, D., Provost, A. and Schiano, P. (2012) Fate of Pyroxenite-Derived Melts in the Peridotitic Mantle: Thermodynamic and Experimental Constraints. Journal of Petrology, 53, 451-476. https://doi.org/10.1093/petrology/egr068

  26. 26. Lambart, S., Laporte, D. and Schiano, P. (2009) An Experimental Study of Focused Magma Transport and Basalt-Peridotite Interactions Beneath Mid-Ocean Ridges: Implications for the Generation of Primitive MORB Compositions. Contributions to Mineralogy & Petrology, 157, 429-451. https://doi.org/10.1007/s00410-008-0344-7

  27. 27. Shaw, C.S.J. and Dingwell, D.B. (2008) Experimental Peridotite-Melt Reaction at One Atmosphere: A Textural and Chemical Study. Contributions to Mineralogy and Petrology, 155, 199-214. https://doi.org/10.1007/s00410-007-0237-1

  28. 28. Tingle, T.N., Green Jr., H.W., Young, T.E. and Koczynski, T.A. (1993) Improvements to Griggs-Type Apparatus for Mechanical Testing at High Pressures and Temperatures. Pure & Applied Geophysics, 141, 523-543. https://doi.org/10.1007/BF00998344

  29. 29. 夏莹, 丁兴, 宋茂双, 熊小林, 邵同宾, 李建峰, 等. 活塞圆筒装置压力盘样品组装的温度测定和热结构分析[J]. 高压物理学报, 2014, 28(3): 262-272.

  30. 30. Yaxley, G.M. and Green, D.H. (1998) Reactions between Eclogite and Peridotite: Mantle Refertilisation by Subduction of Oceanic Crust. Schweizerische Mineralogische Und Petrographische Mitteilungen, 78, 243-255.

  31. 31. Lambart, S., Laporte, D., Provost, A. and Schiano, P. (2012) Fate of Pyroxenite-Derived Melts in the Peridotitic Mantle: Thermodynamic and Experimental Constraints. Journal of Petrology, 53, 451-476. https://doi.org/10.1093/petrology/egr068

  32. 32. Shaw, C.S.J. and Dingwell, D.B. (2008) Experimental Peridotite-Melt Reaction at One Atmosphere: A Textural and Chemical Study. Contributions to Mineralogy and Petrology, 155, 199-214. https://doi.org/10.1007/s00410-007-0237-1

  33. 33. Tominaga, A., Kato, T., Kubo, T. and Kurosawa, M. (2009) Preliminary Analysis on the Mobility of Trace Incompatible Elements during the Basalt and Peridotite Reaction under Uppermost Mantle Conditions. Physics of the Earth & Planetary Interiors, 174, 50-59. https://doi.org/10.1016/j.pepi.2008.09.019

  34. NOTES

    *通讯作者。

期刊菜单