Advances in Clinical Medicine
Vol. 13  No. 04 ( 2023 ), Article ID: 64390 , 7 pages
10.12677/ACM.2023.134891

儿童肺炎支原体肺炎肺外并发症的研究进展

张珊,李渠北

重庆医科大学附属儿童医院呼吸科,重庆

收稿日期:2023年3月21日;录用日期:2023年4月17日;发布日期:2023年4月24日

摘要

肺炎支原体肺炎(MPP)是由肺炎支原体(MP)感染引起的一种常见的儿童社区获得性肺炎(CAP),除引起呼吸系统相关症状外,还可以引起广泛的肺外系统表现,包括皮肤、中枢神经、心血管、血液、消化系统等,其中一部分可导致严重后果甚至死亡。提高对该类疾病的认识,早期识别并进行及时有效的治疗,改善其预后非常重要。本文综述讨论了儿童肺炎支原体肺炎各类型肺外并发症的研究进展,以便临床医师对该类疾病有更好的认识。

关键词

肺炎支原体,肺炎,肺外并发症,儿童,综述

Research Progress in Extrapulmonary Complications of Mycoplasma pneumoniae Pneumonia in Children

Shan Zhang, Qubei Li

Respiratory Department of Children’s Hospital Affiliated to Chongqing Medical University, Chongqing

Received: Mar. 21st, 2023; accepted: Apr. 17th, 2023; published: Apr. 24th, 2023

ABSTRACT

Mycoplasma pneumoniae pneumonia (MPP) is a common community-acquired pneumonia (CAP) in children caused by Mycoplasma pneumoniae (MP) infection. In addition to causing respiratory system-related symptoms, it can also cause a wide range of extrapulmonary manifestations, including skin, nerve, cardiovascular, blood, digestive system, etc., some of which can cause serious consequences or even death. It is very important to improve the understanding of this kind of disease, early identification and timely and effective treatment, and improve its prognosis. This article reviews and discusses the research progress in various types of extrapulmonary complications of Mycoplasma pneumoniae pneumonia in children, so that clinicians can have a better understanding of this kind of disease.

Keywords:Mycoplasma pneumoniae, Pneumonia, Extrapulmonary Complications, Children, Review

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 概述

近年来随着大环内酯类药物耐药率的上升,重症支原体肺炎(Severe mycoplasma pneumonia, SMPP)及难治性支原体肺炎(Refractory mycoplasma pneumonia, RMPP)的病例数不断增多,肺炎支原体肺炎(Mycoplasma pneumoniae pneumonia, MPP)的临床表现也愈发呈现出复杂多样,不仅表现为呼吸系统相关症状,广泛的肺外系统表现也逐渐被大家所关注,肺外可以表现为神经、消化、心血管、皮肤及血液系统等,可以发生在MPP之前、期间和之后,尤其是在儿童中,肺外表现更为突出。随着对MPP肺外并发症的关注及认识增加,国内外相继报道了许多肺外并发症相关内容,现将MPP肺外并发症相关内容阐述如下。

2. 肺外并发症

2.1. 神经系统

神经系统相关受累包括外周神经系统(Peripheral nervous system, PNS)和中枢神经系统(Central nervous system, CNS),是最难诊断和治疗的并发症,也是影响其预后最重要的因素。可引起脑炎、无菌性脑膜炎、多发性神经根炎、小脑性共济失调、脊髓炎、吉兰–巴雷综合征和周围神经炎等多种疾病。

神经系统发病机制尚未明确,目前认为有三种不同的机制 [1] :一是直接类型:当MP通过上皮呼吸细胞之间的间隙到达神经系统时,诱导产生细胞因子和趋化因子对其直接造成损伤,也可产生社区获得性呼吸窘迫综合征毒素直接损伤。通常,这种损害发生在呼吸道感染后7天内,所以直接型中枢神经系统疾病被定义为早发性疾病;二是间接类型:与宿主细胞产生交叉反应,引起自身免疫反应,通常MP的感染时间 ≥ 8天,间接类型也被认为是迟发性疾病。Samiah等的研究也支持早发及迟发的两种观点 [2] 。三是通过直接或间接机制发生的局部血管炎或血栓性血管闭塞,为血管类型。

儿童主要神经系统表现为脑炎,其中一部分可不出现相关呼吸系统症状,只表现为神经系统相关症状,其两种表现形式,即直接相关的早发型脑炎和间接介导的迟发性脑炎 [3] 。

轻度脑炎/脑病伴可逆性胼胝体病变(Mild encephalitis/encephalopathy with reversible callosal lesions, MERS)主要有病毒引起,是一种放射学诊断,近几年也有关于MP感染相关病例报道,其表现为全身炎症反应、轻度脑病状态,MRI显示SCC孤立性胼胝体病变,因其预后良好,所以病程中是否运用免疫调节治疗还需要更多研究来证实 [4] [5] 。

急性横贯性脊髓炎(Acute transverse myelitis,ATM)是由灰质和白质的混合炎症引起的,发病机制考虑直接和间接类型。间接机制可能是由于肺炎支原体对B细胞的激活作用或和髓鞘蛋白之间的分子抗原模拟导致抗神经元抗体的产生。目前的一线治疗是大剂量皮质类固醇3~5日,然后口服减量3~4周,如果患者在类固醇治疗后无改善,则二线治疗是血浆置换 [6] [7] 。

吉兰–巴雷综合征(Guillain Barre syndrome, GBS),是由MP产生的半乳糖脑苷脂(Galactocerebroside, GalC)与抗GalC抗体,尤其是抗GalC-IgG引发的自身交叉免疫反应 [8] 。Gaspari等 [9] 研究发现MP基因组中有结构域M200535,可编码UDP-葡萄糖差向异构酶,促进GalC的合成,这是第一个证实通过GalC的合成与GBS连接的微生物。

MP感染后发生的中风、卒中,最可能是由于血管类型引起的,即破坏血管内皮的完整性,并通过引发炎症反应来破坏凝血和抗凝之间的平衡,导致高凝和血栓形成。但在这些患者中也有检测到脑脊液MP-PCR阳性,因此也提出了直接侵袭机制 [10] [11] 。

MP介导的神经系统疾病的发病机制并不相互排斥,可同时作用,这就是为什么很难用单一的发病机制去解释各种相关的神经系统疾病。但无菌性脑膜炎是一个例外,现有证据几乎都表明该疾病是肺炎支原体直接引起的 [1] 。

2.2. 血液系统

MPP相关血液系统并发症有溶血性贫血、血栓性血小板减少性紫癜、弥散性血管内凝血、血栓、脾梗死等的报道。

MPP相关的自身免疫性溶血性贫血(Autoimmune hemolytic anemia, AIHA)是血液系统中最常见的并发症,主要为冷抗体AIHA,其发病机制为MP感染诱发冷凝集素的产生、与抗原结合形成IgM-冷凝集素、IgM-冷凝集素与补体因子C1结合启动经典补体途径、产生C3b,C3b调节的细胞容易被单核吞噬系统吞噬(主要在肝脏),形成血管外溶血;C3b也可反应形成C5转化酶,启动末端补体级联反应,终末补体激活导致血管内溶血 [12] 。Wandro等 [13] 报道了一例罕见的由婴儿SMPP并发的温抗体AIHA,其补体因子C3阳性,但血清中没有检测出任何冷凝集素,并且出现了网织红细胞减少,提示温抗体AIHA的严重性,临床上需警惕;值得庆幸的是,MPP相关的AIHA大多对单独使用大环内酯类药物反应良好,很少需要免疫抑制联合治疗,早期识别及治疗预后相对良好 [14] 。

MPP还可并发血栓,甚至发生栓塞,如心、脑、肺、四肢等几乎全身所有有血管的地方都可能出现,因为儿童的症状与成人相比不典型,往往容易被忽视,是容易出现严重后遗症甚至死亡的并发症 [15] ,如脾梗死、脑卒中、肺栓塞等,尤其是重症支原体肺炎(SMPP)的患儿中发生血栓的机率更高 [16] 。其发病机制尚不明确,可能包括很多方面,如MP感染诱导的抗磷脂抗体导致短暂的高凝状态,因为在超过50%的MP感染的患者中发现ANA和aCL-IgM阳性,尤其是在MP相关血栓形成中 [11] ;如MP感染诱导抗凝血酶原抗体、凝血因子、冷凝集素、脂蛋白等物质生成增加,促进血栓形成;如遗传易感性、血管畸形、镰状细胞等增加血栓形成风险 [17] ;LIU [16] 等研究还推测单个部位形成的孤立血栓可能是原位血栓形成,即在急性期血管损伤部位PLT过度活化形成的PLT-纤维蛋白复合物,CRP也可能促进血管重塑、内皮功能障碍和原位血栓形成。

2.3. 皮肤、黏膜

肺炎支原体肺炎伴有的皮肤、黏膜并发症,包括多形性红斑(Erythema multiforme, EM)、肺炎支原体诱导的皮疹和粘膜炎(Mycoplasma pneumoniae induced rash and mucositis, MIRM),中毒性表皮坏死症(Toxic epidermal necrosis, TET)和史蒂文–约翰逊综合症(Steven Johnson syndrome, SJS),结节性红斑,斑丘疹、荨麻疹等 [18] ,其中荨麻疹及斑丘疹为主要并发症。

肺炎支原体引起的皮疹和粘膜炎(MIRM)是由Canavan等 [19] 在2015年由提出的新概念,它主要的临床特征为明显黏膜炎,以口腔黏膜受累最为常见,其次是眼部和泌尿生殖器,伴或不伴有皮肤受累,表现为水疱、大疱和/或靶样皮疹 [20] [21] 。Patrick等 [18] 的前瞻性纵向队列研究,对152名CAP患儿皮肤黏膜疾病的发生率和临床特征进行研究,发现有相关MIRM的发生,也支持MIRM这一特定的概念。最近提出使用新术语反应性感染性皮肤黏膜皮疹(Reactive infectious skin mucosal rash, RIME)来包含所有可以引起MIRM样临床表现的病原体,包括肺炎支原体、肺炎衣原体等 [20] 。其发病机制涉及多克隆B细胞增殖和抗体产生,导致其免疫复合物沉积和补体活化从而致皮肤损伤;和支原体P1粘附分子和角质形成细胞抗原之间可能存在分子模拟 [22] 。目前没有关于MIRM治疗的指南,根据已报道的病例 [20] [21] [22] ,使用过抗生素、皮质类固醇、免疫球蛋白、支持治疗或上述药物的组合进行治疗。与EM、SJS和TEN相比,MIRM通常病程较轻、预后良好、后遗症发生率及死亡率低 [22] 。

史蒂文斯–约翰逊综合征(SJS)是一种免疫介导的皮肤和粘膜水疱性疾病,中毒性表皮坏死松解症(TEN)是其更为严重的形式。其特征是先有前驱性疾病,随后出现严重的皮肤黏膜症状,即广泛的表皮坏死和黏膜受累 [23] 。目前发病机制尚不明确,但组织学分析显示SJS/TEN是炎症反应的结果,广泛的角质形成细胞凋亡导致坏死及血管周围淋巴细胞浸润 [24] 。SJS/TEN最常见的感染性病因为肺炎支原体感染,尤其是暴发性、聚集性SJS [23] [25] 。

与肺炎支原体相关性多形性红斑(Mycoplasma pneumoniae associated erythema multiforme, MP-EM),表现为弥漫性和非典型性靶样皮疹,伴中央水泡(突出特征),以及更为严重和广泛的粘膜炎,组织学上类似于中毒性表皮坏死(TET)。其作用机制推测有表达非自身抗原和分子模拟的角质形成细胞的细胞毒性免疫。皮质类固醇广泛用于其治疗 [26] [27] 。

显然,上述皮肤黏膜相关并发症的临床描述有许多重叠,在病因学和发病机制未得到充分明确之前,术语和分类还将继续存在混淆,以待更进一步研究与区分。

2.4. 心血管系统

MPP并发心血管系统并发症包括心肌损害,临床上最为常见,以及心内膜炎、心包炎、心包积液及心包填塞、血栓等,但在临床上并不常见 [28] [29] 。

关于心肌损害,Fan等 [30] 研究发现T细胞免疫球蛋白和黏蛋白结构域分子TIM1与CK-MB相关,Toll样受体TLR2和TLR4信号传导有助于炎症细胞活化,在心脏损伤中起关键作用。这表明MP感染引起的心脏损伤是由炎性细胞因子和自身免疫反应的组合引起的。

在少量关于心包积液的报道 [31] 中提到,由于其临床症状出现的较晚(>2周),此时不容易检查出MP-PCR阳性,从而忽视了MP在其发挥的作用,大多被诊断为特发性心包积液,所以MPP相关心包积液的发病率被低估,建议MPP并发心包积液的鉴别诊断中应考虑MP,并且应将其作为病因不明的心包炎常规检查的一部分。

关于心血管血栓的报道有左心房、右心室和主动脉血栓,Li、Wang [11] [32] 等报道的少数支原体感染伴心内血栓形成病例可看出,心内血栓形成可能是患者唯一存在的血栓类型,不伴有其他部位血栓。

2.5. 消化系统

消化系统受累可引起恶心、呕吐、腹痛、腹泻、肝功能损害、肝炎、胰腺炎等,其中肝炎及胰腺炎相对少见。

MP相关性肝炎常见于儿童,可表现为肝酶无症状升高、多种凝血因子抑制或胆汁淤积等,因无明显临床表现而被忽视,从而导致严重肝损害 [33] [34] 。Bi,Ma [34] 等构建了一种预测模型MRP,在MRP模型中,红细胞分布宽度被确定为监测病程和预测肝炎严重程度的指标,对早期识别有一定帮助。研究发现一些免疫和炎性分子,如TLR,TIM蛋白和细胞因子参与了发病过程,提示先天性和适应性免疫反应都有可能在其中发挥作用 [35] 。

从已报道的相关病例 [36] [37] 中我们可以得出MPP并发的胰腺炎的范围可以从无症状的胰腺炎到急性坏死性胰腺炎,大部分患者肺炎和胰腺炎都同时发生,伴有上腹部疼痛、恶心和呕吐等明显症状。在没有诱因(酒精,胆结石,高钙血症,甘油三酯水平升高以及药物),特别是在儿童中出现的急性胰腺炎,MPP的感染性病因应该被警惕。Khan [38] 等报道的病例中发现早期判断其相关性,运用克林霉素抗感染治疗后,患者病情有明显改善。

2.6. 其他

其他并发症包括发生在肌肉骨骼系统的关节炎/关节痛、横纹肌溶解,泌尿系统的各类肾炎、肾病等。

MPP并发相关关节炎根据既往报道可表现为3种形式:第一种是感染的急性期出现的,是迁移性的,影响大关节;第二种也是急性期出现期,表现为多个中型关节的晨僵、充血和关节水肿,但可能持续时间长;而第三种常见于免疫功能低下的患者,易导致化脓性关节炎 [39] [40] 。

MP不是儿童横纹肌溶解感染性病因中的主要病原体,发病罕见但病情危重,其发病机制有直接侵入肌肉或免疫反应引起的肌肉损伤等,目前尚未明确。当有明确的MP感染病史(PCR或IgM阳性),且出现肌痛、乏力及茶色尿,伴肌酸激酶和肌红蛋白升高时,需高度怀疑此罕见的肺外并发症,积极诊断及治疗,避免发生急性肾损伤 [41] [42] 。

MP感染所致肾炎包括各种病理学表现的肾小管间质性肾炎和肾小球肾炎,如系膜增生性肾小球肾炎、毛细血管增生性肾小球肾炎炎、过敏性紫癜性肾炎、新月体肾小球肾炎等 [43] 。Aizawa等 [44] 报道了第一例由MP抗原引起的免疫复合物相关的膜性肾病,根据肺炎及肾病发生的时间,推测是由MP的直接侵入,随后在肾小球区域形成免疫复合物的沉积。

3. 总结与展望

总的来说,就目前国内外的研究及报道来看,肺炎支原体肺炎相关肺外并发症复杂多样,可涉及各个系统,因早期临床症状不典型和无特异性,极易被忽视,虽然大多数肺外并发症预后良好,但严重病例国内外也均有报道,正确、早期识别,及时治疗是其良好预后的重要因素。目前尚没有肺外并发症的诊疗指南及共识,发病机制也尚未完全清楚,已经提出的一些推测也有待进一步的实验室研究来证明其合理性,未来还有很多我们需要去挖掘研究。

利益冲突

所有作者均声明不存在利益冲突。

文章引用

张 珊,李渠北. 儿童肺炎支原体肺炎肺外并发症的研究进展
Research Progress in Extrapulmonary Complications of Mycoplasma pneumoniae Pneumonia in Children[J]. 临床医学进展, 2023, 13(04): 6335-6341. https://doi.org/10.12677/ACM.2023.134891

参考文献

  1. 1. Jujaray, D., Juan, L.Z., Shrestha, S., et al. (2018) Pattern and Sig-nificance of Asymptomatic Elevation of Liver Enzymes in Mycoplasma Pneumonia in Children. Clinical Pediatrics (Phi-la), 57, 57-61. https://doi.org/10.1177/0009922816688737

  2. 2. D’alonzo, R., Mencaroni, E., Di Genova, L., et al. (2018) Pathogenesis and Treatment of Neurologic Diseases Associat-ed with Mycoplasma pneumoniae Infection. Frontiers in Microbiology, 9, 2751. https://doi.org/10.3389/fmicb.2018.02751

  3. 3. Al-Zaidy, S.A., Macgregor, D., Mahant, S., et al. (2015) Neuro-logical Complications of PCR-Proven M. pneumoniae Infections in Children: Prodromal Illness Duration May Reflect Pathogenetic Mechanism. Clinical Infectious Diseases, 61, 1092-1098. https://doi.org/10.1093/cid/civ473

  4. 4. Daba, M., Kang, P.B., Sladky, J., et al. (2019) Intravenous Immunoglobulin as a Therapeutic Option for Mycoplasma pneumoniae Encephalitis. Journal of Child Neurology, 34, 687-691. https://doi.org/10.1177/0883073819854854

  5. 5. Talukder, N.T., Feezel, A. and Lankford, J.E. (2022) Mild En-cephalitis/Encephalopathy with a Reversible Splenial Lesion Associated with Systemic Mycoplasma pneumoniae Infec-tion in North America: A Case Report. Journal of Medical Case Reports, 16, 74. https://doi.org/10.1186/s13256-022-03299-6

  6. 6. Akbar, A. and Ahmad, S. (2021) Atypical Case of Mild Enceph-alopathy/Encephalitis with Reversible Splenial Lesion of the Corpus Callosum (MERS) Associated with Mycoplasma pneumoniae Infection in a Paediatric Patient. BMJ Case Reports, 14, e242791. https://doi.org/10.1136/bcr-2021-242791

  7. 7. Salloum, S., Goenka, A. and Ey, E. (2019) Mycoplasma pneumonia Associated Transverse Myelitis Presenting as Asymmetric Flaccid Paralysis.Clinics and Practice, 9, 1142. https://doi.org/10.4081/cp.2019.1142

  8. 8. He, C.B., Lee, J.R. and Kahana, M. (2021) Mycoplasma pneumoniae Associated Acute Transverse Myelitis: An Atypical Clinical Presentation in an Adolescent Child. Cureus, 13, e17259. https://doi.org/10.7759/cureus.17259

  9. 9. Meyer Sauteur, P.M., Huizinga, R., Tio-Gillen, A.P., et al. (2018) In-trathecal Antibody Responses to GalC in Guillain- Barré Syndrome Triggered by Mycoplasma pneumoniae. Journal of Neuroimmunology, 314, 13-16. https://doi.org/10.1016/j.jneuroim.2017.11.011

  10. 10. Gaspari, E., Koehorst, J.J., Frey, J., et al. (2021) Galacto-cerebroside Biosynthesis Pathways of Mycoplasma Species: An Antigen Triggering Guillain-Barré-Stohl Syndrome. Microbial Biotechnology, 14, 1201-1211. https://doi.org/10.1111/1751-7915.13794

  11. 11. Jin, X., Zou, Y., Zhai, J., et al. (2018) Refractory Mycoplasma pneumoniae Pneumonia with Concomitant Acute Cerebral Infarction in a Child: A Case Report and Literature Review. Medicine (Baltimore), 97, e0103. https://doi.org/10.1097/MD.0000000000010103

  12. 12. Wang, Y., Xiao, Y., Deng, X., et al. (2021) Cardiac Throm-bus and Stroke in a Child with Mycoplasma pneumoniae Pneumonia: A Case Report. Medicine (Baltimore), 100, e24297. https://doi.org/10.1097/MD.0000000000024297

  13. 13. Kumaravel Kanagavelu, A.S., Nagumantry, S.K., Sagi, S.V., et al. (2022) A Rare Case of Severe Hemolytic Anemia and Pulmonary Embolism Secondary to Mycoplasma pneumoniae Infection. Journal of Medical Cases, 13, 119-124. https://doi.org/10.14740/jmc3866

  14. 14. Wandro, C., Dolatshahi, L. and Blackall, D. (2018) Severe Warm Autoim-mune Hemolytic Anemia in a 7-Month-Old Infant Associated with a Mycoplasma pneumoniae Infection. Journal of Pe-diatric Hematology/Oncology, 40, e439- e441. https://doi.org/10.1097/MPH.0000000000001001

  15. 15. Roshan, S. and Tan, S.W. (2020) A Case Report of Severe Mycoplasma Pneumonia with Autoimmune Haemolytic Anaemia. Medi-cal Journal of Malaysia, 75, 600-602.

  16. 16. Han, C., Zhang, T., Zheng, J., et al. (2022) Analysis of the Risk Factors and Clinical Features of Mycoplasma pneumoniae Pneumonia with Embolism in Children: A Retrospective Study. Italian Journal of Pediatrics, 48, 153. https://doi.org/10.1186/s13052-022-01344-0

  17. 17. Liu, J., He, R., Wu, R., et al. (2020) Mycoplasma pneumoniae Pneumonia Associated Thrombosis at Beijing Children’s Hospital. BMC Infectious Diseases, 20, 51. https://doi.org/10.1186/s12879-020-4774-9

  18. 18. Liu, J. and Li, Y. (2021) Thrombosis Associated with Mycoplas-ma pneumoniae Infection (Review). Experimental and Therapeutic Medicine, 22, 967. https://doi.org/10.3892/etm.2021.10399

  19. 19. Meyer Sauteur, P.M., Theiler, M., Buettcher, M., et al. (2020) Fre-quency and Clinical Presentation of Mucocutaneous Disease Due to Mycoplasma pneumoniae Infection in Children with Community-Acquired Pneumonia. JAMA Dermatology, 156, 144-150. https://doi.org/10.1001/jamadermatol.2019.3602

  20. 20. Canavan, T.N., Mathes, E.F., Frieden, I., et al. (2015) Myco-plasma pneumoniae-Induced Rash and Mucositis as a Syndrome Distinct from Stevens-Johnson Syndrome and Erythe-ma Multiforme: A Systematic Review. Journal of the American Academy of Dermatology, 72, 239-245. https://doi.org/10.1016/j.jaad.2014.06.026

  21. 21. Bi, Y., Ma, Y., Zhuo, J., et al. (2021) Risk of Mycoplasma pneumoniae-Related Hepatitis in MP Pneumonia Pediatric Patients: A Predictive Model Construction and Assessment. BMC Pediatrics, 21, 287. https://doi.org/10.1186/s12887-021-02732-x

  22. 22. Poddighe, D. (2020) Mycoplasma pneumoniae-Related Hepatitis in Children. Microbial Pathogenesis, 139, Article ID: 103863. https://doi.org/10.1016/j.micpath.2019.103863

  23. 23. Graf, G., Vassalli, G.A.M., Kottanattu, L., et al. (2022) Acute Pancreatitis Associated with Atypical Bacterial Pneumonia: Systematic Literature Review. Journal of Clinical Medicine, 11, 7248. https://doi.org/10.3390/jcm11237248

  24. 24. Valdés Lacasa, T., Duarte Borges, M.A., García Marín, A., et al. (2017) Acute Pancreatitis Caused by Mycoplasma pneumoniae: An Unusual Etiology. Clinical Journal of Gastroen-terology, 10, 279-282. https://doi.org/10.1007/s12328-017-0733-4

  25. 25. Khan, H.R.A., Singh, A., Usman, O., et al. (2022) Acute Pancre-atitis: An Unusual Extrapulmonary Manifestation of Mycoplasma pneumoniae. Cureus, 14, e25052. https://doi.org/10.7759/cureus.25052

  26. 26. Mărginean, C.O., Georgescu, A.M. and Meliţ, L.E. (2021) Arthritis Associated with Mycoplasma pneumoniae in a Pediatric Patient: A Case Report. Medicine (Baltimore), 100, e24316. https://doi.org/10.1097/MD.0000000000024316

  27. 27. Chen, Y., Huang, Z., Fang, X., et al. (2020) Diagnosis and Treatment of Mycoplasmal Septic Arthritis: A Systematic Review. International Orthopaedics, 44, 199-213. https://doi.org/10.1007/s00264-019-04451-6

  28. 28. Kc, O., Dahal, P.H., Koirala, M., et al. (2021) Rhabdomyolysis and Neurological Manifestation with Progressive Weakness in a Young Adult: A Rare Extrapulmonary Presentation of Mycoplasma pneumoniae. Cureus, 13, e20552. https://doi.org/10.7759/cureus.20552

  29. 29. Szugye, H.S. (2020) Pediatric Rhabdomyolysis. Pediatrics in Review, 41, 265-275. https://doi.org/10.1542/pir.2018-0300

  30. 30. Simoni, C., Camozzi, P., Faré, P.B., et al. (2020) Myositis and Acute Kidney Injury in Bacterial Atypical Pneumonia: Systematic Literature Review. Journal of Infection and Public Health, 13, 2020-2024. https://doi.org/10.1016/j.jiph.2020.10.007

  31. 31. Brazel, D., Kulp, B., Bautista, G., et al. (2021) Rash and Mucositis Associated with Mycoplasma pneumoniae and Chlamydophila pneumoniae: A Recurrence of MIRM? Journal of the Pe-diatric Infectious Diseases Society, 10, 220-224. https://doi.org/10.1093/jpids/piaa028

  32. 32. Curtiss, P., Melnick, L., Sicco, K.L., et al. (2018) Mycoplasma pneu-moniae, More than a Lung Disease. Dermatology Online Journal, 24, Article No. 21. https://doi.org/10.5070/D3246040695

  33. 33. Lofgren, D. and Lenkeit, C. (2021) Mycoplasma pneumoniae-Induced Rash and Mucositis: A Systematic Review of the Literature. Spartan Medical Research Journal, 6, 25284. https://doi.org/10.51894/001c.25284

  34. 34. Olson, D., Watkins, L.K., Demirjian, A., et al. (2015) Outbreak of My-coplasma pneumoniae-Associated Stevens-Johnson Syndrome. Pediatrics, 136, e386-e394. https://doi.org/10.1542/peds.2015-0278

  35. 35. Campagna, C., Tassinari, D., Neri, I., et al. (2013) Mycoplasma pneumoniae-Induced Recurrent Stevens-Johnson Syndrome in Children: A Case Report. Pediatric Dermatology, 30, 624-626. https://doi.org/10.1111/pde.12177

  36. 36. Watkins, L.K.F., Olson, D., Diaz, M.H., et al. (2017) Epidemiol-ogy and Molecular Characteristics of Mycoplasma pneumoniae during an Outbreak of M. pneumoniae-Associated Ste-vens-Johnson Syndrome. The Pediatric Infectious Disease Journal, 36, 564-571. https://doi.org/10.1097/INF.0000000000001476

  37. 37. Amode, R., Ingen-Housz-Oro, S., Ortonne, N., et al. (2018) Clinical and Histologic Features of Mycoplasma pneumoniae-Related Erythema Multiforme: A Single-Center Series of 33 Cases Compared with 100 Cases Induced by Other Causes. Journal of the American Academy of Dermatology, 79, 110-117. https://doi.org/10.1016/j.jaad.2018.03.013

  38. 38. Langley, A., Anooshiravani, N., Kwan, S., et al. (2016) Erythema Multiforme in Children and Mycoplasma pneumoniae Aetiology. Journal of Cutaneous Medicine and Surgery, 20, 453-457. https://doi.org/10.1177/1203475416639018

  39. 39. 陈志敏, 尚云晓, 赵顺英, 等. 儿童肺炎支原体肺炎诊治专家共识(2015年版) [J]. 中华实用儿科临床杂志, 2015, 30(17): 1304-1308.

  40. 40. Waites, K.B., Xiao, L., Liu, Y., et al. (2017) Mycoplasma pneumoniae from the Respiratory Tract and beyond. Clinical Microbiology Reviews, 30, 747-809. https://doi.org/10.1128/CMR.00114-16

  41. 41. Fan, Q., Meng, J., Li, P., et al. (2015) Pathogenesis and Association of Mycoplasma pneumoniae Infection with Cardiac and Hepatic Damage. Microbiology and Immunology, 59, 375-380. https://doi.org/10.1111/1348-0421.12267

  42. 42. Rao, H., Ericson, J.E. and O’hara, C. (2020) Myco-plasma pneumoniae Presenting with Pericardial Tamponade. Clinical Pediatrics (Phila), 59, 198-200. https://doi.org/10.1177/0009922819885662

  43. 43. 李奇蕊, 袁越, 林利, 等. 肺炎支原体肺炎并发心腔内血栓二例[J]. 中华儿科杂志, 2018, 56(12): 950-951.

  44. 44. Aizawa, T., Watanabe, S., Tsugawa, K., et al. (2021) Membranous Nephropathy Associated with Mycoplasma pneumoniae Infection. Pediatrics International, 63, 853-855. https://doi.org/10.1111/ped.14517

期刊菜单