Pure Mathematics
Vol. 11  No. 01 ( 2021 ), Article ID: 40127 , 12 pages
10.12677/PM.2021.111019

从四面体到N维单形的棱切球心、热尔岗点、奈格尔点及其坐标公式

李兴源

广州一智通供应链管理有限公司,广东 广州

收稿日期:2020年12月21日;录用日期:2021年1月22日;发布日期:2021年1月29日

摘要

四面体存在棱切球的充要条件是该四面体的三组对棱之和相等。对于存在棱切球的四面体,本文给出其棱切球心、热尔岗点、奈格尔点的坐标公式,并将这三者的坐标公式推广至存在棱切超球面的n维单形。

关键词

四面体,棱切球,热尔岗点,奈格尔点,n维单形

Edge-Tangent’s Sphere Center, Gergonne Point, Nagel Point and Their Coordinate Formula from Tetrahedron to N-Simplex

Xingyuan Li

Guangzhou 1ziton Supply Chain Management Co., Ltd., Guangzhou Guangdong

Received: Dec. 21st, 2020; accepted: Jan. 22nd, 2021; published: Jan. 29th, 2021

ABSTRACT

The sufficient and necessary condition for the tetrahedron to have an edge-tangent’s sphere is that the sum of the three groups of opposite sides is equal in the tetrahedron. For a tetrahedron with an edge-tangent’s sphere, the coordinate formula of the edge-tangent’s sphere center, Gergonne Point and Nagel Point is given in this paper, and the coordinate formulas of these three points are extended to n-simplex with an edge-tangent’s hypersphere.

Keywords:Tetrahedron, Edge-Tangent’s Sphere, Gergonne Point, Nagel Point, n-Simplex

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

图1所示,若四面体ABCD存在棱切球,各棱上的切点分别为 M A B M A C M A D M B C M B D M C D 。本文约定O为坐标原点,A、B、C、D四点的坐标分别为 ( x 1 , y 1 , z 1 ) ( x 2 , y 2 , z 2 ) ( x 3 , y 3 , z 3 ) ( x 4 , y 4 , z 4 ) ;设

A M A B = A M A C = A M A D = a , B M A B = B M B C = B M B D = b ,

C M A C = C M B C = C M C D = c , D M A D = D M B D = D M C D = d [1] .

Figure 1. The tangent points on edge-tangent’s sphere of the tetrahedron

图1. 四面体棱切球上的各切点

2. 棱切球心的坐标公式

2.1. 四面体的棱切球心

若四面体ABCD的三组对棱之和相等即存在棱切球,则四面体ABCD的棱切球心坐标为

( F 1 ( a + b ) ( a + c ) ( a + d ) F , F 2 ( a + b ) ( a + c ) ( a + d ) F , F 3 ( a + b ) ( a + c ) ( a + d ) F ) 。其中,

F 1 = | ( O B O A ) ( a O B + b O A ) ( a + b ) ( y 2 y 1 ) ( a + b ) ( z 2 z 1 ) ( O C O A ) ( a O C + c O A ) ( a + c ) ( y 3 y 1 ) ( a + c ) ( z 3 z 1 ) ( O D O A ) ( a O D + d O A ) ( a + d ) ( y 4 y 1 ) ( a + d ) ( z 4 z 1 ) | ,

F 2 = | ( a + b ) ( x 2 x 1 ) ( O B O A ) ( a O B + b O A ) ( a + b ) ( z 2 z 1 ) ( a + c ) ( x 3 x 1 ) ( O C O A ) ( a O C + c O A ) ( a + c ) ( z 3 z 1 ) ( a + d ) ( x 4 x 1 ) ( O D O A ) ( a O D + d O A ) ( a + d ) ( z 4 z 1 ) | ,

F 3 = | ( a + b ) ( x 2 x 1 ) ( a + b ) ( y 2 y 1 ) ( O B O A ) ( a O B + b O A ) ( a + c ) ( x 3 x 1 ) ( a + c ) ( y 3 y 1 ) ( O C O A ) ( a O C + c O A ) ( a + d ) ( x 4 x 1 ) ( a + d ) ( y 4 y 1 ) ( O D O A ) ( a O D + d O A ) | ,

F = | 1 x 1 y 1 z 1 1 x 2 y 2 z 2 1 x 3 y 3 z 3 1 x 4 y 4 z 4 | .

证明:设四面体ABCD的棱切球心为P,由棱切球的性质可知

P M A B A B , P M A C A C , P M A D A D [2] .

再设平面 π 1 π 2 π 3 分别过 M A B M A C M A D 且分别垂直于AB、AC、AD,则四面体ABCD的棱切球心P即为 π 1 π 2 π 3 这三个平面的交点。

由定比分点公式可得 M A B M A C M A D 三点的坐标分别为 ( a x 2 + b x 1 a + b , a y 2 + b y 1 a + b , a z 2 + b z 1 a + b ) ( a x 3 + c x 1 a + c , a y 3 + c y 1 a + c , a z 3 + c z 1 a + c ) ( a x 4 + d x 1 a + d , a y 4 + d y 1 a + d , a z 4 + d z 1 a + d )

则平面 π 1 的方程为:

( x 2 x 1 ) ( x a x 2 + b x 1 a + b ) + ( y 2 y 1 ) ( y a y 2 + b y 1 a + b ) + ( z 2 z 1 ) ( z a z 2 + b z 1 a + b ) = 0 .

整理可得:

( a + b ) [ ( x 2 x 1 ) x + ( y 2 y 1 ) y + ( z 2 z 1 ) z ] = ( x 2 x 1 ) ( a x 2 + b x 1 ) + ( y 2 y 1 ) ( a y 2 + b y 1 ) + ( z 2 z 1 ) ( a z 2 + b z 1 ) = ( O B O A ) ( a O B + b O A ) . ①

同理平面 π 2 π 3 的方程分别为:

( a + c ) [ ( x 3 x 1 ) x + ( y 3 y 1 ) y + ( z 3 z 1 ) z ] = ( O C O A ) ( a O C + c O A ) . ②

( a + d ) [ ( x 4 x 1 ) x + ( y 4 y 1 ) y + ( z 4 z 1 ) z ] = ( O D O A ) ( a O D + d O A ) . ③

联立① ② ③所组成的线性方程组,并运用克拉姆法则解得 [3]:

x = | ( O B O A ) ( a O B + b O A ) ( a + b ) ( y 2 y 1 ) ( a + b ) ( z 2 z 1 ) ( O C O A ) ( a O C + c O A ) ( a + c ) ( y 3 y 1 ) ( a + c ) ( z 3 z 1 ) ( O D O A ) ( a O D + d O A ) ( a + d ) ( y 4 y 1 ) ( a + d ) ( z 4 z 1 ) | ( a + b ) ( a + c ) ( a + d ) | x 2 x 1 y 2 y 1 z 2 z 1 x 3 x 1 y 3 y 1 z 3 z 1 x 4 x 1 y 4 y 1 z 4 z 1 | = | ( O B O A ) ( a O B + b O A ) ( a + b ) ( y 2 y 1 ) ( a + b ) ( z 2 z 1 ) ( O C O A ) ( a O C + c O A ) ( a + c ) ( y 3 y 1 ) ( a + c ) ( z 3 z 1 ) ( O D O A ) ( a O D + d O A ) ( a + d ) ( y 4 y 1 ) ( a + d ) ( z 4 z 1 ) | ( a + b ) ( a + c ) ( a + d ) | 1 x 1 y 1 z 1 1 x 2 y 2 z 2 1 x 3 y 3 z 3 1 x 4 y 4 z 4 | ,

y = | ( a + b ) ( x 2 x 1 ) ( O B O A ) ( a O B + b O A ) ( a + b ) ( z 2 z 1 ) ( a + c ) ( x 3 x 1 ) ( O C O A ) ( a O C + c O A ) ( a + c ) ( z 3 z 1 ) ( a + d ) ( x 4 x 1 ) ( O D O A ) ( a O D + d O A ) ( a + d ) ( z 4 z 1 ) | ( a + b ) ( a + c ) ( a + d ) | x 2 x 1 y 2 y 1 z 2 z 1 x 3 x 1 y 3 y 1 z 3 z 1 x 4 x 1 y 4 y 1 z 4 z 1 | = | ( a + b ) ( x 2 x 1 ) ( O B O A ) ( a O B + b O A ) ( a + b ) ( z 2 z 1 ) ( a + c ) ( x 3 x 1 ) ( O C O A ) ( a O C + c O A ) ( a + c ) ( z 3 z 1 ) ( a + d ) ( x 4 x 1 ) ( O D O A ) ( a O D + d O A ) ( a + d ) ( z 4 z 1 ) | ( a + b ) ( a + c ) ( a + d ) | 1 x 1 y 1 z 1 1 x 2 y 2 z 2 1 x 3 y 3 z 3 1 x 4 y 4 z 4 | ,

z = | ( a + b ) ( x 2 x 1 ) ( a + b ) ( y 2 y 1 ) ( O B O A ) ( a O B + b O A ) ( a + c ) ( x 3 x 1 ) ( a + c ) ( y 3 y 1 ) ( O C O A ) ( a O C + c O A ) ( a + d ) ( x 4 x 1 ) ( a + d ) ( y 4 y 1 ) ( O D O A ) ( a O D + d O A ) | ( a + b ) ( a + c ) ( a + d ) | x 2 x 1 y 2 y 1 z 2 z 1 x 3 x 1 y 3 y 1 z 3 z 1 x 4 x 1 y 4 y 1 z 4 z 1 |

= | ( a + b ) ( x 2 x 1 ) ( a + b ) ( y 2 y 1 ) ( O B O A ) ( a O B + b O A ) ( a + c ) ( x 3 x 1 ) ( a + c ) ( y 3 y 1 ) ( O C O A ) ( a O C + c O A ) ( a + d ) ( x 4 x 1 ) ( a + d ) ( y 4 y 1 ) ( O D O A ) ( a O D + d O A ) | ( a + b ) ( a + c ) ( a + d ) | 1 x 1 y 1 z 1 1 x 2 y 2 z 2 1 x 3 y 3 z 3 1 x 4 y 4 z 4 | .

2.2. N维单形的棱切球心

由文献 [4] 可知,n维单形 A 0 A 1 A n 存在棱切超球的充要条件是其各棱长满足:

A i A j = a i + a j , ( 0 i j n , a i , a j R + ).

A i 的坐标为 ( x i , 1 , x i , 2 , , x i , n ) ,参照前面的方法可以求出n维单形 A 0 A 1 A n 的棱切超球球心坐标为 ( F 1 F i = 1 n ( a 0 + a i ) , F 2 F i = 1 n ( a 0 + a i ) , , F n F i = 1 n ( a 0 + a i ) ) 。其中,

F 1 = | ( O A 1 O A 0 ) ( a 0 O A 1 + a 1 O A 0 ) ( a 0 + a 1 ) ( x 1 , 2 x 0 , 2 ) ( a 0 + a 1 ) ( x 1 , n x 0 , n ) ( O A 2 O A 0 ) ( a 0 O A 2 + a 2 O A 0 ) ( a 0 + a 2 ) ( x 2 , 2 x 0 , 2 ) ( a 0 + a 2 ) ( x 2 , n x 0 , n ) ( O A n O A 0 ) ( a 0 O A n + a n O A 0 ) ( a 0 + a n ) ( x n , 2 x 0 , 2 ) ( a 0 + a n ) ( x n , n x 0 , n ) | ,

F 2 = | ( a 0 + a 1 ) ( x 1 , 1 x 0 , 1 ) ( O A 1 O A 0 ) ( a 0 O A 1 + a 1 O A 0 ) ( a 0 + a 1 ) ( x 1 , 3 x 0 , 3 ) ( a 0 + a 1 ) ( x 1 , n x 0 , n ) ( a 0 + a 2 ) ( x 2 , 1 x 0 , 1 ) ( O A 2 O A 0 ) ( a 0 O A 2 + a 2 O A 0 ) ( a 0 + a 2 ) ( x 2 , 3 x 0 , 3 ) ( a 0 + a 2 ) ( x 2 , n x 0 , n ) ( a 0 + a n ) ( x n , 1 x 0 , 1 ) ( O A n O A 0 ) ( a 0 O A n + a n O A 0 ) ( a 0 + a n ) ( x n , 3 x 0 , 3 ) ( a 0 + a n ) ( x n , n x 0 , n ) | , ,

F n = | ( a 0 + a 1 ) ( x 1 , 1 x 0 , 1 ) ( a 0 + a 1 ) ( x 1 , n 1 x 0 , n 1 ) ( O A 1 O A 0 ) ( a 0 O A 1 + a 1 O A 0 ) ( a 0 + a 2 ) ( x 2 , 1 x 0 , 1 ) ( a 0 + a 2 ) ( x 2 , n 1 x 0 , n 1 ) ( O A 2 O A 0 ) ( a 0 O A 2 + a 2 O A 0 ) ( a 0 + a n ) ( x n , 1 x 0 , 1 ) ( a 0 + a n ) ( x n , n 1 x 0 , n 1 ) ( O A n O A 0 ) ( a 0 O A n + a n O A 0 ) | ,

F = | 1 x 0 , 1 x 0 , n 1 x 1 , 1 x 1 , n 1 x n , 1 x n , n | .

3. 热尔岗(Gergonne)点的坐标公式

对于图1所示的四面体ABCD,设在A、B、C、D四点所对之面上的热尔岗点分别为 G 1 G 2 G 3 G 4

3.1. 三角形的热尔岗(Gergonne)点

图2所示,对于图1所示四面体ABCD中的三角形ABC:A、B、C分别与三角形ABC的内切圆在对边上的切点 M B C M A C M A B 的连线 A M B C B M A C C M A B 三线相交的热尔岗点为 G 4 。由前面引言可知

A B = a + b , B C = b + c , A C = a + c .

G 4 的坐标为

O G 4 = 1 a O A + 1 b O B + 1 c O C 1 a + 1 b + 1 c = b c O A + a c O B + a b O C b c + a c + a b .

Figure 2. Gergonne points in triangle (Gergonne point)

图2. 三角形的切心(热尔岗点)

证明:由定比分点公式,有

O M B C = b O C + c O B b + c , O M A C = a O C + c O A a + c , O M A B = a O B + b O A a + b .

A G 4 G 4 M B C = λ 1 , B G 4 G 4 M A C = λ 2 , C G 4 G 4 M A B = λ 3 ,

O G 4 有以下三种表示:

O G 4 = O A + λ 1 O M B C 1 + λ 1 = ( b + c ) O A + c λ 1 O B + b λ 1 O C ( b + c ) ( 1 + λ 1 ) ,

O G 4 = O B + λ 2 O M A C 1 + λ 2 = ( a + c ) O B + a λ 2 O C + c λ 2 O A ( a + c ) ( 1 + λ 2 ) ,

O G 4 = O C + λ 3 O M A B 1 + λ 3 = ( a + b ) O C + b λ 3 O A + a λ 3 O B ( a + b ) ( 1 + λ 3 ) .

对上面三式的 O A O B O C 的系数分别进行比较,可得

1 1 + λ 1 = c λ 2 ( a + c ) ( 1 + λ 2 ) = b λ 3 ( a + b ) ( 1 + λ 3 ) , ①

1 1 + λ 2 = a λ 3 ( a + b ) ( 1 + λ 3 ) = c λ 1 ( b + c ) ( 1 + λ 1 ) , ②

1 1 + λ 3 = b λ 1 ( b + c ) ( 1 + λ 1 ) = a λ 2 ( a + c ) ( 1 + λ 2 ) , ③

把上面三式相乘并整理可得

λ 1 λ 2 λ 3 = ( a + c ) ( a + b ) ( b + c ) a b c ;

再分别把① ② ③中的任意两式相乘并整理可得

λ 1 λ 2 = ( a + c ) ( b + c ) c 2 , λ 1 λ 3 = ( a + b ) ( b + c ) b 2 , λ 2 λ 3 = ( a + b ) ( a + c ) a 2 .

解得

λ 1 = a ( b + c ) b c , λ 2 = b ( a + c ) a c , λ 3 = c ( a + b ) a b .

因此

O G 4 = 1 a O A + 1 b O B + 1 c O C 1 a + 1 b + 1 c = b c O A + a c O B + a b O C b c + a c + a b .

3.2. 四面体的热尔岗(Gergonne)点

对于图1所示的四面体ABCD,由文献 [5] 可知, A G 1 B G 2 C G 3 D G 4 这四条直线在四面体ABCD内交于一点,设该点为G即四面体ABCD的热尔岗(Gergonne)点。

由前面引言可知

A B = a + b , B C = b + c , A C = a + c , A D = a + d , B D = b + d , C D = c + d .

则G的坐标为

O G = 1 a O A + 1 b O B + 1 c O C + 1 d O D 1 a + 1 b + 1 c + 1 d = b c d O A + a c d O B + a b d O C + a b c O D b c d + a c d + a b d + a b c .

证明:由于

O G 4 = 1 a O A + 1 b O B + 1 c O C 1 a + 1 b + 1 c ;

同理

O G 1 = 1 b O B + 1 c O C + 1 d O D 1 b + 1 c + 1 d ,

O G 2 = 1 a O A + 1 c O C + 1 d O D 1 a + 1 c + 1 d ,

O G 3 = 1 a O A + 1 b O B + 1 d O D 1 a + 1 b + 1 d .

因为点G为 A G 1 B G 2 C G 3 D G 4 这四条直线的交点,设

A G G G 1 = λ 1 , B G G G 2 = λ 2 , C G G G 3 = λ 3 , D G G G 4 = λ 4 .

O G 有以下四种表示:

O G = O A + λ 1 O G 1 1 + λ 1 = ( 1 b + 1 c + 1 d ) O A + λ 1 ( 1 b O B + 1 c O C + 1 d O D ) ( 1 b + 1 c + 1 d ) ( 1 + λ 1 ) ,

O G = O B + λ 2 O G 2 1 + λ 2 = ( 1 a + 1 c + 1 d ) O B + λ 2 ( 1 a O A + 1 c O C + 1 d O D ) ( 1 a + 1 c + 1 d ) ( 1 + λ 2 ) ,

O G = O C + λ 3 O G 3 1 + λ 3 = ( 1 a + 1 b + 1 d ) O C + λ 3 ( 1 a O A + 1 b O B + 1 d O D ) ( 1 a + 1 b + 1 d ) ( 1 + λ 3 ) ,

O G = O D + λ 4 O G 4 1 + λ 4 = ( 1 a + 1 b + 1 c ) O D + λ 4 ( 1 a O A + 1 b O B + 1 c O C ) ( 1 a + 1 b + 1 c ) ( 1 + λ 4 ) .

对上面四式的 O A O B O C O D 的系数分别进行比较,可得

1 1 + λ 1 = 1 a λ 2 ( 1 a + 1 c + 1 d ) ( 1 + λ 2 ) = 1 a λ 3 ( 1 a + 1 b + 1 d ) ( 1 + λ 3 ) = 1 a λ 4 ( 1 a + 1 b + 1 c ) ( 1 + λ 4 ) ,

1 1 + λ 2 = 1 b λ 3 ( 1 a + 1 b + 1 d ) ( 1 + λ 3 ) = 1 b λ 4 ( 1 a + 1 b + 1 c ) ( 1 + λ 4 ) = 1 b λ 1 ( 1 b + 1 c + 1 d ) ( 1 + λ 1 ) ,

1 1 + λ 3 = 1 c λ 4 ( 1 a + 1 b + 1 c ) ( 1 + λ 4 ) = 1 c λ 1 ( 1 b + 1 c + 1 d ) ( 1 + λ 1 ) = 1 c λ 2 ( 1 a + 1 c + 1 d ) ( 1 + λ 2 ) ,

1 1 + λ 4 = 1 d λ 1 ( 1 b + 1 c + 1 d ) ( 1 + λ 1 ) = 1 d λ 2 ( 1 a + 1 c + 1 d ) ( 1 + λ 2 ) = 1 d λ 3 ( 1 a + 1 b + 1 d ) ( 1 + λ 3 ) .

对上面四式联立可得

a 1 + λ 1 = b 1 + λ 2 = c 1 + λ 3 = d 1 + λ 4 = λ 1 ( 1 b + 1 c + 1 d ) ( 1 + λ 1 ) = λ 2 ( 1 a + 1 c + 1 d ) ( 1 + λ 2 ) = λ 3 ( 1 a + 1 b + 1 d ) ( 1 + λ 3 ) = λ 4 ( 1 a + 1 b + 1 c ) ( 1 + λ 4 ) .

解得

λ 1 = a ( 1 b + 1 c + 1 d ) , λ 2 = b ( 1 a + 1 c + 1 d ) , λ 3 = c ( 1 a + 1 b + 1 d ) , λ 4 = d ( 1 a + 1 b + 1 c ) .

因此

O G = 1 a O A + 1 b O B + 1 c O C + 1 d O D 1 a + 1 b + 1 c + 1 d = b c d O A + a c d O B + a b d O C + a b c O D b c d + a c d + a b d + a b c .

3.3. N维单形的热尔岗(Gergonne)点

若n维单形 A 0 A 1 A n 存在棱切超球,且各棱长满足:

A i A j = a i + a j , ( 0 i j n , a i , a j R + ).

A 0 A 1 A n 各点在其所对之面上的热尔岗点分别为 G 0 G 1 G n 。则诸直线 A 0 G 0 A 1 G 1 A n G n 在n维单形 A 0 A 1 A n 内交于一点,设该点为G即n维单形 A 0 A 1 A n 的热尔岗点,其坐标为

O G = i = 0 n 1 a i O A i i = 0 n 1 a i .

证明:前面已经证明了当 n = 3 时命题成立。假设当 n = k 时命题同样成立 ( k 3 , k Z ) ,现使用数学归纳法证明当 n = k + 1 时命题依然成立。由归纳假设可得

O G i = j = 0 k + 1 1 a j O A j 1 a i O A i j = 0 k + 1 1 a j 1 a i , 0 i k + 1 .

若点G为 A 0 G 0 A 1 G 1 A k + 1 G k + 1 k + 2 条直线的交点,设

A i G G G i = λ i .

O G = O A i + λ i O G i 1 + λ i = ( j = 0 k + 1 1 a j 1 a i ) O A i + λ i ( j = 0 k + 1 1 a j O A j 1 a i O A i ) ( j = 0 k + 1 1 a j 1 a i ) ( 1 + λ i ) .

对上式中的i分别取0到 k + 1 之间的各个整数值,并对 O A i 的系数分别进行比较,可得

1 1 + λ i = λ j 1 a i ( i = 0 k + 1 1 a i 1 a j ) ( 1 + λ j ) , ( 0 i j k + 1 ) .

对上式中的i、j取遍各种符合条件的取值并联立可得

a i 1 + λ i = λ i ( j = 0 k + 1 1 a j 1 a i ) ( 1 + λ i ) .

解得

λ i = a i ( j = 0 k + 1 1 a j 1 a i ) .

因此

O G = i = 0 k + 1 1 a i O A i i = 0 k + 1 1 a i .

n 3 时命题均成立。

4. 奈格尔(Nagel)点的坐标公式

由文献 [6] 可知,若四面体ABCD存在内棱切球,则四面体ABCD在各棱的临棱区均存在侧棱切球。如图3所示,对于同时存在内棱切球和6个侧棱切球的四面体ABCD,其6个侧棱切球在各棱上的切点分别为 M A B M A C M A D M B C M B D M C D

Figure 3. The tangent points of six chamfered edge- tangent’s sphere on each edge of the tetrahedron

图3. 四面体6个侧棱切球在各棱上的切点

4.1. 三角形的奈格尔(Nagel)点

对于图3所示的四面体ABCD,根据侧棱切球的性质可知:直线 B M C D C M B D D M B C 的交点 N 1 为三角形BCD的奈格尔点;直线 A M C D C M A D D M A C 的交点 N 2 为三角形ACD的奈格尔点;直线 A M B D B M A D D M A B 的交点 N 3 为三角形ABD的奈格尔点;直线 A M B C B M A C C M A B 的交点 N 4 为三角形ABC的奈格尔点。根据三角形等距共轭点的性质,设

B M A B = C M A C = D M A D = a , A M A B = C M B C = D M B D = b ,

A M A C = B M B C = D M C D = c , A M A D = B M B D = C M C D = d .

N 1 N 2 N 3 N 4 的坐标分别为

O N 1 = b O B + c O C + d O D b + c + d ,

O N 2 = a O A + c O C + d O D a + c + d ,

O N 3 = a O A + b O B + d O D a + b + d ,

O N 4 = a O A + b O B + c O C a + b + c [7] .

4.2. 四面体的奈格尔(Nagel)点

对于图3所示的四面体ABCD, A N 1 B N 2 C N 3 D N 4 这四条直线在四面体ABCD内交于一点,设该点为N即四面体ABCD的奈格尔(Nagel)点。又

A B = a + b , B C = b + c , A C = a + c , A D = a + d , B D = b + d , C D = c + d .

则N的坐标为

O N = a O A + b O B + c O C + d O D a + b + c + d .

证明从略,可参考前面四面体热尔岗点坐标的计算方法。

4.3. N维单形的奈格尔(Nagel)点

若n维单形 A 0 A 1 A n 存在棱切超球,且各棱长满足:

A i A j = a i + a j , ( 0 i j n , a i , a j R + ).

A 0 A 1 A n 各点在其所对之面上的奈格尔点分别为 N 0 N 1 N n 。则诸直线 A 0 N 0 A 1 N 1 A n N n 在n维单形 A 0 A 1 A n 内交于一点,设该点为N即n维单形 A 0 A 1 A n 的热尔岗点,其坐标为

O N = i = 0 n a i O A i i = 0 n a i .

证明从略,同理可参考前面对n使用数学归纳法进行证明。

文章引用

李兴源. 从四面体到N维单形的棱切球心、热尔岗点、奈格尔点及其坐标公式
Edge-Tangent’s Sphere Center, Gergonne Point, Nagel Point and Their Coordinate Formula from Tetrahedron to N-Simplex[J]. 理论数学, 2021, 11(01): 131-142. https://doi.org/10.12677/PM.2021.111019

参考文献

  1. 1. 贺斌. 四面体存在棱切球的一个充要条件[J]. 中学数学月刊, 1998(3): 46.

  2. 2. 翁玉中. 关于多面体的棱切球的存在性[J]. 中学数学月刊, 1997(8): 14-16.

  3. 3. 赵艳. 克拉姆法则证明的新方法与几何解释[J]. 数学教学研究, 2012, 31(3): 53-54.

  4. 4. 林祖成. n维单形的棱切超球[J]. 数学实践与认识, 1995(4): 90-93.

  5. 5. 曾建国. 四面体的约尔刚(Gergonne)点[J]. 数学通讯, 2009, 12(2): 31-32.

  6. 6. 曾建国. 四面体的侧棱切球与奈格尔(Nagel)点[J]. 中学数学教学, 2010(4): 58-60.

  7. 7. 邓胜. 三角形特殊点的一般坐标公式[J]. 数学通讯, 1998(8): 24-26.

期刊菜单