Advances in Clinical Medicine
Vol. 12  No. 06 ( 2022 ), Article ID: 52280 , 8 pages
10.12677/ACM.2022.126738

铁代谢与脑小血管病的研究进展

候雄雄1,冶学兰2*

1青海大学研究生院,青海 西宁

2青海大学附属医院神经内科,青海 西宁

收稿日期:2022年5月8日;录用日期:2022年5月25日;发布日期:2022年6月10日

摘要

近年来,随着人口老龄化的加快、神经影像学技术的普及和广泛应用,具有高隐袭性、高发病率、高致残率的脑小血管病(Cerebral small vessel disease, CSVD)逐渐被发现且被人们所重视,但目前其发病机制尚未明确,既往有研究发现CSVD因血脑屏障破坏及大脑缺血缺氧导致脑铁含量增多,铁过载能通过芬顿反应,产生大量自由基,引起脂质过氧化,导致神经元死亡、认知能力下降。同时,铁元素具有升压作用,且可能是糖尿病的标志性元素,糖尿病患者血清铁蛋白水平明显升高,而高血压、糖尿病,特别是高血压是CSVD及其所致认知障碍的主要危险因素。并且通过铁螯合剂(去铁胺、去铁酮)治疗CSVD可延缓细胞、神经损害及神经退变的发生,取得显著疗效。因此铁代谢紊乱可能与CSVD发生发展有关,然而,目前这方面文献报道较少,现就铁代谢与CSVD的研究进展进行综述。

关键词

脑小血管病,铁代谢,血清铁,铁蛋白,血脑屏障

Research Progress of Iron Metabolism and Cerebral Small Vascular Disease

Xiongxiong Hou1, Xuelan Ye2*

1Graduate School of Qinghai University, Xining Qinghai

2Department of Neurology, Qinghai University Affiliated Hospital, Xining Qinghai

Received: May 8th, 2022; accepted: May 25th, 2022; published: Jun. 10th, 2022

ABSTRACT

In recent years, with the acceleration of the aging of the population, the popularization and wide application of neuroimaging technology, Cerebral small vessel disease (CSVD) with high insidious, high incidence, high disability rate has been gradually discovered and paid attention to, but its pathogenesis has not been clear. Previous studies have found that CSVD results in increased brain iron content due to the destruction of blood-brain barrier and cerebral ischemia and hypoxia. Iron overload can generate a large number of free radicals through fenton reaction, resulting in lipid peroxidation, neuronal death and cognitive decline. At the same time, iron has a hypertensive effect and may be a hallmark element of diabetes. Serum ferritin level in diabetes patients is significantly increased, while hypertension and diabetes, especially hypertension, are the main risk factors for CSVD and the cognitive impairment caused by it. In addition, the treatment of CSVD with iron chelating agent (deferroamine, deferroone) can delay the occurrence of cell and nerve damage and nerve degeneration, and achieve significant curative effect. Therefore, iron metabolism disorder may be related to the occurrence and development of CSVD. However, there are few studies on this aspect at present. This paper reviews the research progress of iron metabolism and CSVD.

Keywords:Cerebrovascular Disease, Iron Metabolism, Serum Iron, Ferritin, Blood-Brain Barrier

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

近年来,随着医学、健康等各方面的快速发展,进而明显延长了人类预期寿命,从而导致人口老龄化问题突出 [1]。因此,与年龄相关的疾病,如糖尿病、高血压、脑卒中等病的日益高发对社会及卫生保健系统带来严峻挑战 [2],其中,随着神经脑血管影像技术的广泛应用,更多的CSVD被识别和发现,其具有高隐袭性、高发病率、高致残率,势必成为认知研究工作者未来的研究重点。但是,对于发病机制目前尚不明确,有研究显示,脑铁代谢紊乱后脑内铁含量的增加可能和脑白质病变相关 [3]。也有研究发现脑梗死后因血脑屏障破坏致使脑脊液铁离子水平高于健康对照组 [4]。另有研究表明大脑缺血缺氧会导致神经元中二价金属离子转运体-1功能增强,从而导致神经元细胞内的铁沉积 [5],并通过Fenton反应产生大量的氧自由基 [6],导致线粒体的破坏,从而致使神经元损伤,同时,过多铁也可能致使α-synuclein寡聚体的异常沉积。外周的铁代谢紊乱,可以通过血脑屏障进入颅内,导致脑铁的代谢紊乱,脑铁代谢紊乱可能参与了CSVD的发生发展。现就铁代谢与CSVD进行综述,为CSVD的发病机制及诊疗提供新思路。

2. CSVD概况

2.1. 定义与流行病学

CSVD是指各种病因影响脑内小动脉及其远端分支、微动脉、毛细血管、微静脉和小静脉所导致的一系列临床、影像、病理综合征。CSVD在全球范围内发病率逐年上升,且多好发于60岁以上人群中,现已经是威胁人类健康的重要原因之一 [7],同时,也是老年人群中继阿尔茨海默病后第二大疾病,占脑卒中的25%~30%以上,占老年性痴呆的45%左右 [8]。流行病学数据显示,约80%的65岁以上和所有90岁以上的老年人均有CSVD的临床或放射学表现 [9],约25%的卒中及45%的痴呆可归因于CSVD [10],且CSVD与卒中后抑郁显著相关。西方的CSVD以及腔梗发生率稍低于中国 [11],在我国,CSVD引起的腔梗占缺血性脑卒中的25%~50%,脑微出血占所有类型脑卒中的25%,美国人群中约72%的60岁以上老年人患有程度不一的脑白质病变和脑微出血,并女性发现率明显高于男性。在65岁以上人群中,约90%存在程度不一的脑白质病变,6%~20%出现腔梗,5%~15%出现脑微出血 [10]。另有研究表明老年性相关的CSVD与性别、地理及人种没有明显差异 [12] [13]。

2.2. 高危因素

CSVD高危因素很多,其中高龄、高血压、糖尿病是CSVD的主要危险因素。国内学者封红亮 [14] 研究发现高龄是严重脑白质病的独立危险因素,其机制可能跟随着年龄增长,卵磷脂的减少及血管粥样硬化有关。Ver [15] 等人发现脑微出血数目与年龄存在正相关,年龄越大,其发病率愈高。脑白质病变与年龄也明显相关,并随着年龄增长,发病率逐渐升高。高血压是脑血管病的独立危险因素,P [16] 等人发现高血压与各型CSVD都密切相关,血压愈高,脑部损害愈重。Del [17] 等人发现2型糖尿病与脑白质病变的发生和严重程度相关。同时CSVD与糖化血红蛋白、高同型半胱氨酸、高脂血症 [18]、尿酸及遗传因素均有一定关系。

2.3. 发病机制

CSVD发病机制尚未明确,目前认为可能是由缺血和低灌注损伤、血脑屏障破坏(blood brain barrier, BBB)、炎症反应、血管内皮功能障碍(endothelial dysfunction, ED)、氧化应激及遗传因素 [8] [19] 等机制共同作用所致,其中血脑屏障破坏可能为重要机制之一。血脑屏障破坏使血液成分外渗至血管周围组织及脑实质,继而导致相应的病理生理反应,导致脑小血管病的发生发展;炎症反应也参与CSVD的发生发展,但各型炎症因子具体作用不详。有学者认为抑制炎症反应有可能成为CSVD治疗措施之一 [20]。

2.4. 临床表现

CSVD临床表现差异性较大,可分为急性缺血性病变和慢性隐匿起病性临床综合征。其中急性缺血性CSVD表现为腔隙性脑梗塞,慢性CSVD可无任何临床症状,多根据影像学相关检查确诊。CSVD可以引起突发性脑卒中样反应、容易被忽视的神经症状及体征、进行性认知能力下降、痴呆、抑郁和残疾等。据报道,全世界大约五分之一的卒中是由CSVD所致,它也是导致老年人认知损害、痴呆和日常生活能力下降的主要原因 [21]。

2.5. 诊断

CSVD诊断主要依靠影像学相关检查,表现有五项:腔隙性脑梗死(lacunar infarcts, LI)、脑白质病变 (white matter lesions, WMLs)、脑微出血(cerebral micro bleeds, CMBs)、血管周围间隙(perivascular space, PVS)和脑萎缩 [22]。J等人 [23] 提出一个可以全面综合评估CSVD影像相关改变总负荷的评分表,将LI、WMH、CMBs及EPVS最典型的四项CSVD影像学表现分析,有典型表现即计为1分,总分是4分。总负荷评分考虑更适合于对整体脑功能损害的CSVD患者的评估,并且有利于在确认的风险因素之外进行临床风险预测。所以总负荷评分可能更加适用于评价CSVD的总体表现。根据我国2015年《中国脑小血管病诊治共识》 [24] 中意见:CSVD主要依靠MRI检查,MRI上只要显示至少一个及以上下列征象即可诊断:WMH (Fazekas评分 ≥ 2分)、LI、PVS、CMB。CSVD一般发生在50岁以上患者,主诉可有:头晕、步态异常、焦虑抑郁、记忆力下降或认知能力减退等。

3. 脑铁代谢与CSVD

3.1. 脑铁代谢

很多机体重要生命活动都需要铁参与,如氧气输送、细胞呼吸、免疫反应、DNA合成及一氧化氮代谢等 [25]。铁在保持大脑相应的形态、神经化学及生物能量代谢中均扮演重要角色。铁也参与维持单胺能系统和谷氨酸、γ氨基丁酸的稳态情况,还是酪氨酸羟化酶和色氨酸羟化酶的辅助因子,这两种酶分别负责多巴胺和血清素的合成。若出生后脑铁低下或缺乏会造成神经递质的合成障碍,导致言语、活动等行为的发育延迟。相反,脑内铁的过载,在多种神经退行性疾病(Neurodegenerative disease, NDs)常见,比如帕金森、阿尔茨海默病等患者脑内铁异常沉积。过量的铁会和细胞内过氧化氢反应生成羟基等一些活性氧自由基(Reactive oxygen species, ROS),这些自由基能够引起一系列的连锁反应,损坏细胞的磷脂膜、蛋白质和核酸等结构,从而引起细胞病变,甚至死亡 [26],从而导致神经元的异常凋亡。现有的研究表明,脑铁的异常沉积是一些nDs神经元死亡的开始原因之一 [27]。所以,机体对颅内铁水平调控是非常严格的。

3.2. 脑铁代谢与CSVD

正常机体脑铁含量相对处于稳定状态,脑铁的过度沉积或缺乏都会引起相应的临床症状,有研究表明铁不仅沉积于黑质纹状体中 [28],还广泛沉积于皮质、额叶、小脑、脑桥等重要部位 [29] [30]。同时有研究表明 [31] 在人体生长发育过程中铁在大脑中分布有着明显的优先性,龋齿类动物当于人类(6~12个月大),在短时间喂食低铁饮食后,皮层、纹状体和后脑的铁含量显着下降25%,而丘脑显示仅减少5%,并且在断奶后缺铁期间,丘脑对膳食铁变得更加敏感。婴幼儿早期发育过程中缺铁会导致脑髓鞘合成障碍和行为异常。铁缺乏是全球最普遍的单一营养缺乏症,会导致贫血、免疫功能下降、儿童智力落后、生长迟缓、神经系统发育不良和体温调节受损等 [32] [33]。

CSVD因血脑屏障破坏及大脑缺血缺氧会导致脑内铁含量增多,铁过载能通过芬顿反应,产生大量自由基,引起脂质过氧化,导致神经元死亡、认知能力下降等。Gebri等 [34] 研究发现过量的铁会导致大量氧自由基的产生,从而促使脑白质病变的发生发展。脑铁过载是神经退行性疾病的共性。大脑中的铁含量随着年龄的增长而增加 [35],且有大量证据表明,不仅衰老会导致氧化应激增加 [35] [36],而且铁含量增加也会促进活性氧的产生,导致细胞和组织损伤。如,线粒体的老化会导致ROS的升高及抗氧化防御机制的降低,从而促进各种组织的损伤,这已经被证实主要发生在受疾病影响的大脑区域,包括阿尔茨海默病、帕金森病和亨廷顿病等。铁过载导致的神经元损伤可能会在出生后和衰老期间发生,因为铁流入大脑的速度在生命的早期和晚期都会增加。铁过载已被清楚地证实会破坏神经递质稳态。也有研究发现,在小鼠出生后发育生长过程中,铁过载对学习和记忆缺陷也有一定的影响 [37] [38],然而,仅有少数研究描述了铁负荷对情绪行为的影响,比如,铁失衡会增加大鼠焦虑、恐惧感,并对贫血女性的铁补充剂可以改善情绪行为,例如焦虑或抑郁 [39]。

铁作为机体生命活动中各种酶的重要组成成分,参与了颅脑中很多重要的过程,如柠檬酸循环、氧化磷酸化、髓鞘合成及相关神经递质的合成 [40]。大脑利用75%左右能量去维持神经元电活动,其余能量用于维持细胞的“管家”功能,这些细胞主要有星形胶质细胞、少突胶质细胞和小胶质细胞的 [41]。铁是细胞色素和细胞氧化链中铁硫复合物重要辅助因子,同时在ATP的产生过程中起着至关重要的作用 [42]。

也有大量研究证实脑铁沉积与许多nDs相关,比如阿尔茨海默病 [43]、帕金森病 [44]、多发性硬化 [45]。Liu等 [46] 发现皮质下缺血性血管性痴呆与脑铁异常沉积有关的。Li [47] 等人发现CSVD患者的脑铁增加和认知障碍有关。因此CSVD发病机制与脑铁沉积可能存在一定关系。脑内铁代谢异常是导致nDs病变发病机制的重要原因之一,并随着研究不断挖掘,尤其对铁代谢蛋白相关基因突变的研究,为探索脑内铁代谢具体机制提供了很好的入口。

3.3. 铁代谢相关指标与CSVD

微量元素对血压、血糖都具有调控作用,可以通过调节心脑血管,进而影响血调相关激素等途径实现对血压的调控,通过影响胰岛素活性及糖代谢途径来实现对血糖的调控 [48] [49]。铁具有升压作用,并可能是糖尿病的标志性元素 [50],糖尿病患者的铁蛋白水平明显升高 [51],而高血压、糖尿病,特别是高血压是CSVD及其所致认知障碍的主要危险因素,因此铁代谢必然在CSVD病发生发展过程中起着关键作用。国内学者江艳柳等 [52] 研究发现CSVD患者铁蛋白水平明显高于正常健康人群,且铁蛋白与CSVD独立相关。徐武平团队 [53] 研究发现血管性痴呆患者红细胞内铁含量显著升高。国内也有学者通过对血管性痴呆小鼠的研究发现血清和脑组织内铁含量明显升高。李 [54] 等人研究发现血红蛋白水平与血管性认知障碍严重程度呈负相关,是血管性认知障碍的危险因素之一。

脑内铁代谢相关环节,如摄取、转运、输出等都受到非常严格调控机制,并各种各样的铁代谢相关蛋白一起协作共同维持着颅脑内铁稳定环境。如果铜蓝蛋白缺失或不足就会造成颅脑铁稳态失衡,说明中枢神经系统中为了免受铁介导的自由基损害,铜蓝蛋白起着不可或缺的作用。如果人为的降低血清中铜蓝蛋白水平,就会发现帕金森病患者的黑质处铁沉积加重 [55]。有实验表明,若将铜蓝蛋白相关基因敲除,小鼠的大脑皮层中铁的含量明显是增加的,并提高了神经元缺血性损伤的敏感性 [56],这些均能够说明铜蓝蛋白其中之一的功能是将脑铁释放到外周血清中。铁的存储蛋白是主要是铁蛋白,正常状况下,血清铁如果增加,就会导致铁蛋白的增加,颅内铁蛋白相应增加。转铁蛋白是铁运输的主要载体,能高效的支配游离铁的水平,同时转铁蛋白是能够通过血脑屏障将外周铁转运至颅脑内的主要转运体 [57]。与此同时,高血压、糖尿病发生发展均与铁相关,而且均是血管粥样硬化的高危因素。因此铁代谢相关指标(铜蓝蛋白、血清铁、铁蛋白、转铁蛋白)可能参与CSVD的发生发展。

4. 治疗方案

CSVD发病机制尚不明确,且病理机制复杂,因此对于不同的患者应给予不同的治疗方案。目前治疗CSVD的常规方法有:降压、降脂、抗血小板聚集及抗凝治疗。然而针对CSVD铁超载,有研究发现:铁螯合剂能将铁清除,主要是通过和铁发生结合,从而减少组织中的过量铁,延缓细胞、神经元损坏及神经退性变的发生发展 [58]。另外,铁螯合剂通过对抗ROS直接发挥抗氧化作用,从而减轻氧化应激反应对脑细胞的损伤 [59]。其中去铁胺是当前研究较多的一种铁螯合剂,主要是通过螯合非转铁蛋白铁清除自由基并防止脂质过氧化,对于脑基底节区铁沉积有针对性,从而起到缓解效果,但当前无法通过外周给药的方法作用在人体上 [60];去铁胺属于羟肟酸络合剂,羟肟酸基团能和游离或蛋白结合的3价铁(Fe3+)和铝(Al3+)形成稳定的、无毒的水溶性铁胺和铝胺复合物(在酸性pH条件下结合作用加强),由尿排出,同时能清除铁蛋白和含铁血黄素中的铁离子,但对转铁蛋白中的铁离子清除作用弱,更不能清除血红蛋白、肌球蛋白和细胞色素中的铁离子,因此,主用于急性铁中毒的解救药,由于其在胃肠道中吸收甚少,可通过皮下、肌肉或静脉注射吸收,并迅速分布到各组织,在血浆组织中很快被酶代谢掉。去铁酮可以通过直接和血清铁离子结合而发挥祛铁作用,去铁酮在逆转脑铁毒性方面具有突出作用,并能提高治疗效果 [61],在治疗nDs取得重要进展。铁死亡抑制剂-1也可以抵抗神经细胞的受损或死亡 [62],以减轻神经炎症反应和损伤,能提高远期认知能力和行为 [63]。N,N-二(2-羟基苯基)亚乙基二胺-N,N'-二乙酸盐酸盐是供氢体和羟自由基抑制剂,通过直接穿过BBB和线粒体膜后,与亚铁离子结合,并将亚铁离子转化成铁离子,从而减轻亚铁离子导致的脑功能损害。但目前针对CSVD铁过载治疗的研究甚少,且有众多不足之处,如衡量预后改善情况的观察指标太少,临床研究病例数量不足及副作用不明确等。所以,铁清除剂在全面应用于临床时,需要更多更有力的实验研究和临床试验结果。

5. 展望

由于人口老龄化的加剧,CSVD发病率逐年升高,但其病理机制复杂,发病机制尚不明确。既往研究显示铁代谢与CSVD的发生发展密切相关,铁代谢指标的测定(如血清铁、铁蛋白、转铁蛋白饱和度)可能对CSVD的预防、诊断、疗效的判断提供一定的参考价值。但是目前对于CSVD与铁代谢的相关研究仍然处于起步阶段,相关文献较少,并存在很多疑点,未来需要更多实验性研究及临床研究去进一步探索证实。

文章引用

候雄雄,冶学兰. 铁代谢与脑小血管病的研究进展
Research Progress of Iron Metabolism and Cerebral Small Vascular Disease[J]. 临床医学进展, 2022, 12(06): 5094-5101. https://doi.org/10.12677/ACM.2022.126738

参考文献

  1. 1. Ortman, J.M., Velkoff, V.A. and Hogan, H. (2014) An Aging Nation: The Older Population in the United States. In: Current Population Reports, U.S. Census Bureau, Washington DC, 25-1140.

  2. 2. Kontis, V., Bennett, J.E., Mathers, C.D., et al. (2017) Future Life Expectancy in 35 Industrialised Countries: Projections with a Bayesian Model Ensemble. The Lancet, 389, 1323-1335. https://doi.org/10.1016/S0140-6736(16)32381-9

  3. 3. Teng, Z., Dong, Y., Zhang, D., et al. (2017) Cerebral Small Vessel Disease and Post-Stroke Cognitive Impairment. International Journal of Neurosci-ence, 127, 824-830. https://doi.org/10.1080/00207454.2016.1261291

  4. 4. 孙瑞霞, 苏永祥, 孙剑辉. 原子吸收光谱法测定脑血管病患者脑脊液中微量元素[J]. 光谱学与光谱分析, 2006(4): 720-722.

  5. 5. Im, D.S., Jeon, J.W., Lee, J.S., et al. (2012) Role of the NMDA Receptor and Iron on Free Radical Production and Brain Damage Following Transient Middle Cerebral Artery Occlusion. Brain Research, 1455, 114-123. https://doi.org/10.1016/j.brainres.2012.03.025

  6. 6. Thomas, C., Mackey, M.M., Diaz, A.A., et al. (2009) Hydrox-yl Radical Is Produced via the Fenton Reaction in Submitochondrial Particles under Oxidative Stress: Implications for Diseases Associated with Iron Accumulation. Redox Report, 14, 102-108. https://doi.org/10.1179/135100009X392566

  7. 7. Pantoni, L. (2010) Cerebral Small Vessel Disease: From Patho-genesis and Clinical Characteristics to Therapeutic Challenges. The Lancet Neurology, 9, 689-701. https://doi.org/10.1016/S1474-4422(10)70104-6

  8. 8. Schmidt, R., Seiler, S. and Loitfelder, M. (2016) Longitudi-nal Change of Small-Vessel Disease-Related Brain Abnormalities. Journal of Cerebral Blood Flow & Metabolism, 36, 26-39. https://doi.org/10.1038/jcbfm.2015.72

  9. 9. Haffner, C., Malik, R. and Dichgans, M. (2016) Genetic Factors in Cerebral Small Vessel Disease and Their Impact on Stroke and Dementia. Journal of Cerebral Blood Flow & Metabo-lism, 36, 158-171. https://doi.org/10.1038/jcbfm.2015.71

  10. 10. Cannistraro, R.J., Badi, M., Eidelman, B.H., et al. (2019) CNS Small Vessel Disease: A Clinical Review. Neurology, 92, 1146-1156. https://doi.org/10.1212/WNL.0000000000007654

  11. 11. Hilal, S., Mok, V., Youn, Y.C., et al. (2017) Prevalence, Risk Factors and Consequences of Cerebral Small Vessel Diseases: Data from Three Asian Countries. Journal of Neu-rology, Neurosurgery & Psychiatry, 88, 669-674. https://doi.org/10.1136/jnnp-2016-315324

  12. 12. Wardlaw, J.M. (2001) Prevalence of Cerebral White Matter Lesions in Elderly People: A Population Based Magnetic Resonance Imaging Study: The Rotterdam Scan Study. Journal of Neu-rology, Neurosurgery & Psychiatry, 70, 2-3. https://doi.org/10.1136/jnnp.70.1.2

  13. 13. Poels, M.M., Vernooij, M.W., Ikram, M.A., et al. (2010) Prevalence and Risk Factors of Cerebral Microbleeds: An Update of the Rotterdam Scan Study. Stroke, 41, S103-S106. https://doi.org/10.1161/STROKEAHA.110.595181

  14. 14. 封红亮, 张帅美, 罗征进, 等. 严重脑白质疏松症相关因素的病例对照研究[J]. 中风与神经疾病杂志, 2017, 34(4): 324-327.

  15. 15. Vernooij, M.W., Van Der Lugt, A., Ikram, M.A., et al. (2008) Prevalence and Risk Factors of Cerebral Microbleeds: The Rotterdam Scan Study. Neurology, 12, 1208-1214. https://doi.org/10.1212/01.wnl.0000307750.41970.d9

  16. 16. Klarenbeek, P., Van Oostenbrugge, R.J., Rouhl, R.P., et al. (2013) Ambulatory Blood Pressure in Patients with Lacunar Stroke: Association with Total MRI Bur-den of Cerebral Small Vessel Disease. Stroke, 44, 2995-2999. https://doi.org/10.1161/STROKEAHA.113.002545

  17. 17. Del Bene, A., Ciolli, L., Borgheresi, L., et al. (2015) Is Type 2 Diabetes Related to Leukoaraiosis? An Updated Review. Acta Neurologica Scandinavica, 132, 147-155. https://doi.org/10.1111/ane.12398

  18. 18. 杜鹃. 血脂、肾小球滤过率和颈动脉斑块与脑小血管病相关性的多因素分析研究[J]. 中国实验诊断学, 2012, 16(6): 1008-1012.

  19. 19. 蒋胶胶, 杨改清, 徐志强, 等. 脑小血管病发病机制研究进展[J]. 国际脑血管病杂志, 2018, 26(8): 628-631.

  20. 20. Khoshnam, S.E., Winlow, W., Farbood, Y., et al. (2017) Emerging Roles of microRNAs in Ischemic Stroke: As Possible Therapeutic Agents. Journal of Stroke, 19, 166-187. https://doi.org/10.5853/jos.2016.01368

  21. 21. He, W., Goodkind, D. and Kowal, P. (2016) An Aging World: 2015. International Population Reports. Last Modified March, 31.

  22. 22. Wardlaw, J.M., Smith, E.E., Biessels, G.J., et al. (2013) Neuroimaging Standards for Research into Small Vessel Disease and Its Contribution to Ageing and Neurodegeneration. The Lancet Neurology, 12, 822-838. https://doi.org/10.1016/S1474-4422(13)70124-8

  23. 23. Staals, J., Makin, S.D., Doubal, F.N., et al. (2014) Stroke Subtype, Vascular Risk Factors, and Total MRI Brain Small-Vessel Disease Burden. Neurology, 83, 1228-1234. https://doi.org/10.1212/WNL.0000000000000837

  24. 24. 黄一宁. 中国脑小血管病诊治共识[J]. 中华神经科杂志, 2015, 48(10): 838-844.

  25. 25. Bogdan, A.R., Miyazawa, M., Hashimoto, K., et al. (2016) Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease. Trends in Biochemical Sciences, 41, 274-286. https://doi.org/10.1016/j.tibs.2015.11.012

  26. 26. Gaasch, J.A., Lockman, P.R., Geldenhuys, W.J., et al. (2007) Brain Iron Toxicity: Differential Responses of Astrocytes, Neurons, and Endothelial Cells. Neurochemical Research, 32, 1196-1208. https://doi.org/10.1007/s11064-007-9290-4

  27. 27. Oshiro, S., Morioka, M.S. and Kikuchi, M. (2011) Dysregulation of Iron Metabolism in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis. Advances in Pharmacological and Pharmaceutical Sciences, 2011, Article ID: 378278. https://doi.org/10.1155/2011/378278

  28. 28. Pietracupa, S., Martin-Bastida, A. and Piccini, P. (2017) Iron Metabo-lism and Its Detection through MRI in Parkinsonian Disorders: A Systematic Review. Neurological Sciences, 38, 2095-2101. https://doi.org/10.1007/s10072-017-3099-y

  29. 29. Acosta-Cabronero, J., Cardenas-Blanco, A., Betts, M.J., et al. (2017) The Whole-Brain Pattern of Magnetic Susceptibility Perturbations in Parkinson’s Disease. Brain, 140, 118-131. https://doi.org/10.1093/brain/aww278

  30. 30. Chen, Q., Chen, Y., Zhang, Y., et al. (2019) Iron Deposition in Par-kinson’s Disease by Quantitative Susceptibility Mapping. BMC Neuroscience, 20, Article No. 23. https://doi.org/10.1186/s12868-019-0505-9

  31. 31. Wang, S.M., Fu, L.J., Duan, X.L., et al. (2010) Role of Hepcidin in Murine Brain Iron Metabolism. Cellular and Molecular Life Sciences, 67, 123-133. https://doi.org/10.1007/s00018-009-0167-3

  32. 32. Beard, J.L. and Connor, J.R. (2003) Iron Status and Neural Func-tioning. Annual Review of Nutrition, 23, 41-58. https://doi.org/10.1146/annurev.nutr.23.020102.075739

  33. 33. Lonzoff, B. and Brittenham, G.M. (1986) Behavioral Aspects of Iron Deficiency. Progress in Hematology, 14, 23-53.

  34. 34. Gebril, O.H., Simpson, J.E., Kirby, J., et al. (2011) Brain Iron Dysregulation and the Risk of Ageing White Matter Lesions. NeuroMolecular Medicine, 13, 289-299. https://doi.org/10.1007/s12017-011-8161-y

  35. 35. Fairweather-Tait, S.J., Wawer, A.A., Gillings, R., et al. (2014) Iron Status in the Elderly. Mechanisms of Ageing and Development, 136-137, 22-28. https://doi.org/10.1016/j.mad.2013.11.005

  36. 36. Harman, D. (1956) Aging: A Theory Based on Free Radical and Radiation Chemistry. Journal of Gerontology, 11, 298-300. https://doi.org/10.1093/geronj/11.3.298

  37. 37. Fredriksson, A., Schroder, N., Eriksson, P., Izquierdo, I. and Archer, T. (2000) Maze Learning and Motor Activity Deficits in Adult Mice Induced by Iron Exposure during a Critical Postnatal Period. Developmental Brain Research, 119, 65-74. https://doi.org/10.1016/S0165-3806(99)00160-1

  38. 38. de Lima, M.N., Presti-Torres, J., Caldana, F., Grazziotin, M.M., Scalco, F.S., et al. (2007) Desferoxamine Reverses Neonatal Iron-Induced Recognition Memory Impairment in Rats. European Journal of Pharmacology, 570, 111-114. https://doi.org/10.1016/j.ejphar.2007.06.002

  39. 39. Li, Y., Kim, J., Buckett, P.D., Bohlke, M., Maher, T.J., et al. (2011) Severe Postnatal Iron Deficiency Alters Emotional Behavior and Dopamine Levels in the Prefrontal Cortex of Young Male Rats. The Journal of Nutrition, 141, 2133-2138. https://doi.org/10.3945/jn.111.145946

  40. 40. Knight, J.A. (2000) The Biochemistry of Aging. Advances in Clinical Chemistry, 35, 1-62. https://doi.org/10.1016/S0065-2423(01)35014-X

  41. 41. Georgieff, M.K. (2017) Iron Assessment to Protect the De-veloping Brain. The American Journal of Clinical Nutrition, 106, 1588s-1593s. https://doi.org/10.3945/ajcn.117.155846

  42. 42. Ward, R.J. and Crichton, R.R. (2019) Ironing out the Brain. In: Es-sential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic, Met Ions Life Sci, 19. https://doi.org/10.1515/9783110527872-004

  43. 43. Manza, P., Wiers, C.E., Shokri-Kojori, E., et al. (2020) Brain Network Segregation and Glucose Energy Utilization: Relevance for Age-Related Differences in Cognitive Function. Cerebral Cortex, 30, 5930-5942. https://doi.org/10.1093/cercor/bhaa167

  44. 44. 李思瑶, 何慧瑾, 冯晓源, 等. 磁敏感加权成像相位值评估阿尔茨海默病脑内铁沉积[J]. 中国医学影像技术, 2011, 27(4): 698-701.

  45. 45. 王波, 戴敏方, 王云勇, 等. 帕金森病脑内铁沉积的SWI定量研究[J]. 放射学实践, 2012, 27(11): 1174-1179.

  46. 46. Liu, C., Li, C., Yang, J., et al. (2015) Char-acterizing Brain Iron Deposition in Subcortical Ischemic Vascular Dementia Using Susceptibility-Weighted Imaging: An in Vivo MR Study. Behavioural Brain Research, 288, 33-38. https://doi.org/10.1016/j.bbr.2015.04.003

  47. 47. Li, J., Nguyen, T.D., Zhang, Q., et al. (2022) Cerebral Microbleeds Are Associated with Increased Brain Iron and Cognitive Impairment in Patients with Cerebral Small Vessel Disease: A Quantitative Susceptibility Mapping Study. Journal of Magnetic Resonance Imaging, Early View. https://doi.org/10.1002/jmri.28092

  48. 48. De La Fuente, M. (2002) Effects of Antioxidants on Immune System Age-ing. European Journal of Clinical Nutrition, 56, S5-S8. https://doi.org/10.1038/sj.ejcn.1601476

  49. 49. 秦俊法. 微量元素与血管性痴呆(1) [J]. 广东微量元素科学, 2015, 22(2): 60-70.

  50. 50. 秦俊法, 李增禧. 微量元素与高血压II. 微量元素在血压调控中的作用及机制[J]. 广东微量元素科学, 2003(8): 1-16.

  51. 51. Guo, L.N., Yang, Y.Z. and Feng, Y.Z. (2018) Serum and Salivary Ferritin and Hepcidin Levels in Patients with Chronic Periodontitis and Type 2 Diabetes Mellitus. BMC Oral Health, 18, Article No. 63. https://doi.org/10.1186/s12903-018-0524-4

  52. 52. 江艳柳, 周农. 脑小血管病血浆铁蛋白及纤维蛋白原与D-二聚体的变化及其意义[J]. 中国基层医药, 2014, 21(10): 1463-1465.

  53. 53. 徐武平, 张新华, 王桂珍, 等. 血管性痴呆患者红细胞内微量元素的变化[J]. 脑与神经疾病杂志, 2000(6): 346-348.

  54. 54. 李周玲, 吕雄胜. 血红蛋白对血管性认知功能障碍患者氧化应激分析[J]. 心脑血管病防治, 2018, 18(2): 152-154.

  55. 55. Jin, L., Wang, J., Zhao, L., et al. (2011) Decreased Serum Ceruloplasmin Levels Characteristically Aggravate Nigral Iron Deposition in Parkinson’s Disease. Brain, 134, 50-58. https://doi.org/10.1093/brain/awq319

  56. 56. Texel, S.J., Zhang, J., Camandola, S., et al. (2011) Ceruloplasmin Deficiency Reduces Levels of Iron and BDNF in the Cortex and Striatum of Young Mice and In-creases Their Vulnerability to Stroke. PLoS One, 6, e25077. https://doi.org/10.1371/journal.pone.0025077

  57. 57. Rhodes, S.L., Buchanan, D.D., Ahmed, I., et al. (2014) Pooled Analysis of Iron-Related Genes in Parkinson’s Disease: Association with Transferrin. Neurobiology of Disease, 62, 172-178. https://doi.org/10.1016/j.nbd.2013.09.019

  58. 58. Daglas, M. and Adlard, P.A. (2018) The Involvement of Iron in Traumatic Brain Injury and Neurodegenerative Disease. Frontiers in Neuroscience, 12, 981. https://doi.org/10.3389/fnins.2018.00981

  59. 59. Khalaf, S., Ahmad, A.S., Chamara, K., et al. (2018) Unique Proper-ties Associated with the Brain Penetrant Iron Chelator HBED Reveal Remarkable Beneficial Effects after Brain Trauma. Journal of Neurotrauma, 36, 43-53. https://doi.org/10.1089/neu.2017.5617

  60. 60. Chen, J., Marks, E., Lai, B., et al. (2013) Iron Accumulates in Hun-tington’s Disease Neurons: Protection by Deferoxamine. PLoS One, 8, e77023. https://doi.org/10.1371/journal.pone.0077023

  61. 61. Sripetchwandee, J., Khamseekaew, J., Svasti, S., et al. (2019) Deferiprone and Efonidipine Mitigated Iron-Overload Induced Neurotoxicity in Wild-Type and Thalassemic Mice. Life Sciences, 239, 116878. https://doi.org/10.1016/j.lfs.2019.116878

  62. 62. Skouta, R., Dixon, S.J., Wang, J., et al. (2014) Ferrostatins Inhibit Oxidative Lipid Damage and Cell Death in Diverse Disease Models. Journal of the American Chemical Society, 136, 4551-4556. https://doi.org/10.1021/ja411006a

  63. 63. Xie, B.S., Wang, Y.Q., Lin, Y., et al. (2019) Inhibition of Fer-roptosis Attenuates Tissue Damage and Improves Long-Term Outcomes after Traumatic Brain Injury in Mice. CNS Neuroscience & Therapeutics, 25, 465-475. https://doi.org/10.1111/cns.13069

  64. NOTES

    *通讯作者。

期刊菜单