Advances in Clinical Medicine
Vol. 13  No. 07 ( 2023 ), Article ID: 68406 , 7 pages
10.12677/ACM.2023.1371503

UCP3基因新突变致非综合征性肥胖的 特征分析

汪澍1*,贾明睿2*,左玲1#

1山东第一医科大学附属省立医院疼痛科,山东 济南

2山东大学第二医院疼痛科,山东 济南

收稿日期:2023年6月6日;录用日期:2023年7月1日;发布日期:2023年7月7日

摘要

目的:单基因非综合征性肥胖(MNSO)是一类独立于环境因素并由单一基因突变引起的个体肥胖,明确其病因与临床特征具有重要意义。方法:患者因腰椎间盘突出在我科住院治疗,收集病史及各项检查结果,因高度肥胖行全外显子组测序,明确病因并对致病基因突变进行生物信息学分析。结果:患者自10岁开始体重明显增加,入院时体重指数(BMI) 39.81,同时合并糖尿病与高血压,经基因检测在UCP3基因的3号外显子上发现变异(c.208C>T, p.R70W),导致UCP3蛋白的第70个氨基酸Arg被Trp替代。Mutation Taster和Revel软件均预测该基因变异具有致病性。蛋白质3D模型显示突变主要发生在缬氨酸(Val)和精氨酸(Arg),而且UCP3基因突变还可以增加2型糖尿病的发病风险。结论:UCP3基因突变是单基因非综合征性肥胖和2型糖尿病重要遗传因素。

关键词

基因突变,单基因非综合征性肥胖,UCP3

Characteristic Analysis of Non-Syndromic Obesity Caused by a New Mutation in the UCP3 Gene

Shu Wang1*, Mingrui Jia2*, Ling Zuo1#

1Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan Shandong

2Department of Pain Management, The Second Hospital of Shandong University, Jinan Shandong

Received: Jun. 6th, 2023; accepted: Jul. 1st, 2023; published: Jul. 7th, 2023

ABSTRACT

Objective: Monogenic non-syndromic obesity (MNSO) is a type of individual obesity that is independent of environmental factors and caused by a single gene mutation. It is of great significance to clarify its etiology and clinical characteristics. Methods: The patients were hospitalized in our department due to lumbar disc herniation. The medical history and various examination results were collected. The whole Exon group was sequenced due to high obesity. The etiology was identified and the pathogenic gene mutation was analyzed by bioinformatics. Results: The patient’s weight increased significantly since he was 10 years old. At admission, his body mass index (BMI) was 39.81. At the same time, he was complicated with diabetes and hypertension. Through Genetic testing, a mutation was found in exon 3 of UCP3 gene (c.208C>T, p.R70W), resulting in the replacement of Arg, the 70th amino acid of UCP3 protein, by Trp. Mutation Taster and Revel software both predict the pathogenicity of this gene variant. The protein 3D model showed that mutations mainly occurred in Valine (Val) and arginine (Arg), and UCP3 gene mutations could also increase the risk of type 2 diabetes. Conclusions: Mutation of UCP3 is an important genetic factor for monogenic non-syndromic obesity and type 2 diabetes.

Keywords:Gene Mutation, Monogenic Nonsyndromic Obesity, UCP3

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肥胖是以体内脂肪细胞的体积和数量增加,导致体脂占体重的百分比异常增高,并在某些局部过多沉积脂肪为特点的临床表现,肥胖会对健康产生不良影响,并缩短预期寿命 [1] 。据报道,发达国家的肥胖流行率很高,而在近些年发展中国家的流行率也出现上升趋势。2014年,全球39%的成年人超重,13%的人肥胖 [2] 。到2020年,全球肥胖患者的数量几乎增加了3倍 [3] 。肥胖引起的并发症已成为全球最常见的死亡原因 [4] 。肥胖是一种复杂性多因素疾病,由环境因素和遗传因素共同作用,当摄入过量食物并且能量消耗不足时便会导致该病发生,同样在此过程中遗传因素也发挥着重要作用。与此同时,基因不仅会导致肥胖,还会影响基于药物遗传学和精准医学的减肥治疗计划。然而,由于缺乏关于其遗传性的信息,肥胖的遗传学在很大程度上仍然未知。

在遗传学上,肥胖可分为非综合征型肥胖和综合征型肥胖 [5] 。前者是指一类独立于环境因素并由单一基因突变引起的个体肥胖,其特征是早发性肥胖。该个体在出生后2~3周开始表现出过度进食和体重显著增加,成年后体重指数(body mass index, BMI)通常 > 40 kg/m2 [6] [7] (根据世界卫生组织推荐BMI:25~29.9 kg/m2为超重,30~39 kg/m2为肥胖,40 kg/m2及以上为病态肥胖 [8] )。后者具有复杂的表型,肥胖仅作为该综合征表型的一部分出现,其特征是延迟性肥胖,BMI在30~40 kg/m2之间,并伴有智力缺陷、体型或器官异常 [5] [6] 。单基因非综合征性肥胖(MNSO)主要由LEP、LEPR、MC4R、POMC、PCSK1、SIM1、BDNF、SH2B1、MRAP2的常见突变以及UCP3、NR0B2、和PPARG的一些罕见突变引起 [5] 。

我们通过全外显子组测序(whole-exonsequencing, WES)明确肥胖患者的致病基因与变异,并对基因变异的致病性进行生物信息学分析,为MNSO的精准诊断与治疗提供科学依据。

2. 方法

2.1. 伦理声明

该研究得到了山东省立医院伦理委员会的批准,并在收集数据之前获得了所有受试者知情同意,并签署书面知情同意书。

2.2. 研究设计

对该患者进行WES,并收集病史及各项检查结果。然后对突变进行生物信息学分析。最后,我们总结检测到的突变热点。

2.3. 研究方法

患者的体格检查、实验室检查、肥胖及其进展的详细病史以及其他并发症均在山东第一医科大学附属山东省立医院完成。

以kg和m为单位测量体重和身高,BMI用体重(kg)除以身高(m)的平方计算。禁食6 h后,采集患者的外周血样本进行遗传信息分析。采用葡萄糖氧化酶法测定空腹血糖(fasting plasma glucose, FPG)。使用ADVIA-1650自动分析仪,对甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)和高密度脂蛋白胆固醇(HDL-C)进行脂质谱分析。

基因检测:使用基因组DNA试剂盒(天根生物技术,中国北京)从患者的外周血白细胞中提取基因组DNA。使用WES对患者的外周血基因组DNA进行测序。一旦基因组DNA被片段化和连接,就进行了扩增和纯化程序。所有人类外显子均用SeqCap EZ MedExome靶向富集试剂盒(Roche NimbleGen, USA)捕获。利用Illumina HiSeq测序平台,在捕获后扩增和纯化后对DNA进行测序。为了确保基因编码序列的完全覆盖,当在常染色体显性基因中发现致病性或疑似致病性变异时,将进行二代测序(Next-generation sequencing, NGS)和/或Sanger测序。

生物信息学分析:通过HGMD数据库和PubMed进行基因突变检索。Mutation Taster和Revel预测突变的潜在危害。使用Jalview软件(18.0)比较突变的保守性。UCP3的三级结构模型从AlphaFold蛋白质结构数据库下载,而突变蛋白质的空间结构是由PyMOL软件(1.3版)预测。

3. 结果

3.1. 临床分析

该患者男性,38岁,因“右下肢疼痛、麻木21天”入住我科,入院后完善相关辅助检查,多次测血压180/120 mmHg以上,血糖升高,糖化血红蛋白12.20%,诊断为“1. 腰椎间盘突出症;2. 2型糖尿病;3. 高血压病;4. 肥胖症”,给予降压及降糖治疗,血压、血糖控制稳定后行“椎间盘微创消融术”,术后患者右下肢放射痛消失,麻木程度减轻,范围缩小。

追问病史,患者否认既往高血压病、糖尿病病史。患者10岁时开始体重增加,随着时间推移,体重逐渐达到130 kg。腰痛病史17年,并曾行“腰椎间盘激光消融减压术”。其父母均患有糖尿病和高血压病,母亲自幼肥胖。患者入院时其血脂、胰岛功能如表1

3.2. 突变分析

结果发现,在UCP3基因的外显子3中携带突变(c.208C>T),导致蛋白质的第70个氨基酸Arg被Trp替代,如图1

Table 1. Lipid and islet function in the patient

表1. 患者的脂质和胰岛功能

BMI:体重指数;TG:甘油三酯;TC:总胆固醇;HDL-C:高密度脂蛋白胆固醇;LDL-C:低密度脂蛋白胆固醇。

Figure 1. Sequence diagram of the patient’s mutated gene and the position in exons. UCP3 has a total of seven exons, with the mutation located in exon 3

图1. 患者突变基因的序列图及其在外显子中的位置。UCP3共有7个外显子,突变位于外显子3

3.3. 生物信息分析

为了了解其致病性,我们对突变基因进行了生物信息学分析。多序列比对显示,70位精氨酸在各物种间高度保守,错义突变c.208C>T影响了不同物种中高度保守的氨基酸,表明具有高度致病作用(图2)。使用三种生物信息学软件Mutation Taster和Revel预测UCP3的突变c.208C>T (p.R70W)具有致病性,见表2

Table 2. Pathogenicity analysis of mutation gene

表2. 突变基因的致病性分析

Figure 2. Conservation of genes among multiple species; conservation of the UCP3 mutation site

图2. 多个物种之间的基因保护;UCP3突变位点的保护

3.4. 三维蛋白质模型中UCP3的变异和突变分布

在蛋白质的3D模型中,总结了基因突变引起的氨基酸变化(图3)。UCP3主要包括7个错义突变,这些突变主要与肥胖和2型糖尿病有关。突变主要发生在缬氨酸(Val)和精氨酸(Arg)中,三个solcar结构域的分布没有显著差异,而突变p.R70W位于第一个solcar蛋白结构域中。

Figure 3. Schematic representation of UCP3 protein and the mutation of amino acid sites. It shows the substitution of Arg by Trp at the 70th amino acid of the protein. Arg: arginine; Trp: tryptophan

图3. UCP3蛋白和氨基酸位点突变的示意图。在蛋白质的第70个氨基酸处,Arg被Trp取代。Arg:精氨酸;Trp:色氨酸

4. 讨论

肥胖是全球主要的健康问题之一。根据世界卫生组织(WHO)的数据,在过去45年中,全球肥胖患者的数量几乎增加了两倍,导致肥胖相关并发症的发病率增加,包括心血管疾病和糖尿病。这些并发症是全世界最常见的死亡原因 [8] [9] 。人类从食物中获得能量并在基础代谢功能、活动和产热过程中消耗。在稳定状态下,机体摄入能量等于能量输出的总和,然而当能量摄入超过能量消耗时,60%~80%的剩余能量被储存为脂肪,因此为了保持健康体重,需要在能量摄入和能量消耗之间保持平衡 [10] 。能量摄入相对大于消耗的能量失衡会导致肥胖,肥胖被定义为成人体重指数(BMI) ≥ 30 kg/m2,5岁以上或5岁以下儿童体重指数(SD) ≥ 2或3 [8] 。肥胖是一种复杂的多因素疾病,由环境和遗传因素相互作用引起 [11] [12] 。5%~10%的严重和/或早发性肥胖患者可以确定存在潜在的遗传因素 [12] - [17] 。单基因或多基因的缺陷会导致肥胖的发生,肥胖可以孤立存在(非综合征性肥胖),也可以呈现出更复杂的临床表现,即除肥胖之外,其他器官系统也会受到影响(综合征性肥胖症)。

单基因非综合征性肥胖(MNSO)通常是瘦素–黑皮质素途径缺陷的结果 [18] 。该途径在能量稳态中起着至关重要的作用。来自外周组织的信号在下丘脑中处理,调节食物摄入,从而影响体重。参与该通路的大多数基因已被广泛研究,包括黑皮质素-4受体(MC4R)、瘦素受体(LEPR)、前阿片黑皮质素(POMC)、前蛋白转化酶枯草溶菌素1 (PCSK1)和专一性(单意)同源物1 (SIM1) [19] [20] [21] [22] 。

线粒体解偶联蛋白3 (UCP3)是由UCP3基因编码的蛋白。它是线粒体阴离子载体蛋白较大家族的成员。该基因含有7个外显子,并在线粒体内膜上表达。UCP3将阴离子从线粒体内膜转移到线粒体外膜,从而将氧化磷酸化与ATP的合成分离开来,并将储存在线粒体膜中的能量以热量的形式耗散掉 [23] 。UCP3基因主要在骨骼肌中表达,该基因的突变会导致骨骼肌的能量消耗减少,从而导致肥胖 [24] 。

在本研究中,发现了UCP3基因突变导致的肥胖患者。UCP3存在于染色体11q13上,位于与肥胖和高胰岛素血症相关的区域 [23] 。UCP3是一种线粒体转运蛋白,将阴离子游离脂肪酸(free fatty acids, FFA)转移到线粒体外,在线粒体外添加质子,并作为中性FFA返回线粒体基质。通过这种方式,脂肪酸可以在线粒体基质和胞质中以不同的方式分布,这可能会对脂肪酸氧化产生影响 [24] [25] 。已有研究证明,在线粒体中UCP3蛋白对长链脂肪酸代谢以及抑制胞浆甘油三酯储存起着重要作用 [23] 。根据HGMD数据库,先天存在的UCP3相关突变大多与肥胖有关,并且发现UCP3的c.208C>T突变在生物体中高度保守,具有致病性。此前,在一名患有严重肥胖和2型糖尿病的中国青少年(BMI为51.0 kg/m2)中报告了类似的c.208C>T突变病例,其父亲也是c.208C>T突变的纯合子,并且患有2型糖尿病,BMI为24.1 kg/m2,但母亲没有UCP3突变 [26] 。遗憾的是,在我们的研究中未能获取患者父母的血液样本,从而无法确定他们是否也携带了突变。除此之外,我们发现具有c.208C>T突变的患者和之前报道的患者都患有2型糖尿病,并且已经有研究证实,在糖尿病患者的肌肉组织中UCP3 mRNA和蛋白质表达降低 [23] [27] ,因此我们推测UCP3的突变也可能增加2型糖尿病的风险。

总之,由于缺乏关于肥胖遗传性的信息,肥胖的遗传学在很大程度上仍然未知。突变基因的发病率、基因生物信息学分析、基因型表型分析和热点突变总结提高了对MNSO的认识,为准确的临床诊断和治疗提供了科学依据。

文章引用

汪 澍,贾明睿,左 玲. UCP3基因新突变致非综合征性肥胖的特征分析
Characteristic Analysis of Non-Syndromic Obesity Caused by a New Mutation in the UCP3 Gene[J]. 临床医学进展, 2023, 13(07): 10758-10764. https://doi.org/10.12677/ACM.2023.1371503

参考文献

  1. 1. Fontaine, K.R., Redden, D.T., Wang, C., et al. (2003) Years of Life Lost Due to Obesity. JAMA, 289, 187-193. https://doi.org/10.1001/jama.289.2.187

  2. 2. (2000) Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. World Health Organization Technical Report Series, 894, 1-253.

  3. 3. Loos, R.J.F. and Yeo, G.S.H. (2022) The Genetics of Obesity: From Discovery to Biology. Nature Reviews Genetics, 23, 120-133. https://doi.org/10.1038/s41576-021-00414-z

  4. 4. Peeters, A., Barendregt, J.J., Willekens, F., et al. (2003) Obesity in Adulthood and Its Consequences for Life Expectancy: A Life-Table Analysis. Annals of Internal Medicine, 138, 24-32. https://doi.org/10.7326/0003-4819-138-1-200301070-00008

  5. 5. Pigeyre, M., Yazdi, F.T., Kaur, Y. and Meyre, D. (2016) Recent Progress in Genetics, Epigenetics and Metagenomics Unveils the Pathophysiology of Human Obesity. Clinical Science, 130, 943-986. https://doi.org/10.1042/CS20160136

  6. 6. Xia, Q. and Grant, S.F. (2013) The Ge-netics of Human Obesity. Annals of the New York Academy of Sciences, 1281, 178-190. https://doi.org/10.1111/nyas.12020

  7. 7. Mahmoud, R., Kimonis, V. and Butler, M.G. (2022) Genetics of Obesity in Humans: A Clinical Review. International Journal of Molecular Sciences, 23, Article 11005. https://doi.org/10.3390/ijms231911005

  8. 8. WHO (2020) WHO Obesity and Overweight. WHO.

  9. 9. WHO (2018) WHO The Top 10 Causes of Death. WHO.

  10. 10. Oussaada, S.M., van Galen, K.A., Cooiman, M.I., et al. (2019) The Pathogenesis of Obesity. Metabolism, 92, 26-36. https://doi.org/10.1016/j.metabol.2018.12.012

  11. 11. Bray, G.A., Kim, K.K., Wilding, J.P.H., on Behalf of the World Obesity Federation (2017) Obesity: A Chronic Relapsing Progressive Disease Process. A Position Statement of the World Obesity Federation. Obesity Reviews, 18, 715-723. https://doi.org/10.1111/obr.12551

  12. 12. Kleinendorst, L., Massink, M.P.G., Cooiman, M.I., et al. (2018) Genetic Obesity: Next-Generation Sequencing Results of 1230 Patients with Obesity. Journal of Medical Genetics, 55, 578-586. https://doi.org/10.1136/jmedgenet-2018-105315

  13. 13. Bell, C.G., Walley A.J. and Froguel, P. (2005) The Genetics of Human Obesity. Nature Reviews Genetics, 6, 221-234. https://doi.org/10.1038/nrg1556

  14. 14. Nordang, G.B.N., Busk, Ø.L., Tveten, K., et al. (2017) Next-Generation Se-quencing of the Monogenic Obesity Genes LEP, LEPR, MC4R, PCSK1 and POMC in a Norwegian Cohort of Patients with Morbid Obesity and Normal Weight Controls. Molecular Genetics and Metabolism, 121, 51-56. https://doi.org/10.1016/j.ymgme.2017.03.007

  15. 15. Saeed, S., Bonnefond, A., Manzoor, J., et al. (2015) Genetic Variants in LEP, LEPR and MC4R Explain 30% of Severe Obesity in Children from a Consanguineous Population. Obe-sity, 23, 1687-1695. https://doi.org/10.1002/oby.21142

  16. 16. Akıncı, A., Türkkahraman, D., Tekedereli, İ., et al. (2019) Novel Mutations in Obesity-Related Genes in Turkish Children with Non-Syndromic Early Onset Severe Obesity: A Multicentre Study. Journal of Clinical Research in Pediatric Endocrinology, 11, 341-349. https://doi.org/10.4274/jcrpe.galenos.2019.2019.0021

  17. 17. Hill, J.O., Wyatt, H.R. and Peters, J.C. (2012) Energy Balance and Obesity. Circulation, 126, 126-132. https://doi.org/10.1161/CIRCULATIONAHA.111.087213

  18. 18. Paolacci, S., Pompucci, G., Paolini, B., et al. (2019) Mendelian Non-Syndromic Obesity. Acta Biomedica Atenei Parmensis, 90, 87-89.

  19. 19. Crowley, V.E. (2008) Overview of Human Obesity and Central Mechanisms Regulating Energy Homeostasis. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, 45, 245-255. https://doi.org/10.1258/acb.2007.007193

  20. 20. Farooqi, I.S. and O’Rahilly, S. (2008) Mutations in Ligands and Receptors of the Leptin-Melanocortin Pathway that Lead to Obesity. Nature Clinical Practice Endocrinology & Metabo-lism, 4, 569-577. https://doi.org/10.1038/ncpendmet0966

  21. 21. Farooqi, S. and O’Rahilly, S. (2006) Genetics of Obesity in Humans. Endocrine Reviews, 27, 710-718. https://doi.org/10.1210/er.2006-0040

  22. 22. Mutch, D.M. and Clément, K. (2006) Unraveling the Genetics of Human Obesity. PLOS Genetics, 2, e188. https://doi.org/10.1371/journal.pgen.0020188

  23. 23. Musa, C.V., Mancini, A., Alfieri, A., et al. (2012) Four Novel UCP3 Gene Variants Associated with Childhood Obesity: Effect on Fatty Acid Oxidation and on Prevention of Triglyc-eride Storage. International Journal of Obesity, 36, 207-217. https://doi.org/10.1038/ijo.2011.81

  24. 24. Argyropoulos, G., Brown, A.M., Willi, S.M., et al. (1998) Effects of Mu-tations in the Human Uncoupling Protein 3 Gene on the Respiratory Quotient and Fat Oxidation in Severe Obesity and Type 2 Diabetes. Journal of Clinical Investigation, 102, 1345-1351. https://doi.org/10.1172/JCI4115

  25. 25. Jia, J.J., Zhang, X., Ge, C.R. and Jois, M. (2009) The Polymorphisms of UCP2 and UCP3 Genes Associated with Fat Metabo-lism, Obesity and Diabetes. Obesity Reviews, 10, 519-526. https://doi.org/10.1111/j.1467-789X.2009.00569.x

  26. 26. Brown, A.M., Dolan, J.W., Willi, S.M., et al. (1999) En-dogenous Mutations in Human Uncoupling Protein 3 Alter Its Functional Properties. FEBS LettERS, 464, 189-193. https://doi.org/10.1016/S0014-5793(99)01708-1

  27. 27. Sugimoto, K., Qi, N.R., Kazdová, L., et al. (2006) Telmisar-tan but Not Valsartan Increases Caloric Expenditure and Protects against Weight Gain and Hepatic Steatosis. Hyperten-sion, 47, 1003-1009. https://doi.org/10.1161/01.HYP.0000215181.60228.f7

  28. NOTES

    *共同第一作者。

    #通讯作者。

期刊菜单