Advances in Clinical Medicine
Vol. 13  No. 04 ( 2023 ), Article ID: 64514 , 9 pages
10.12677/ACM.2023.134908

儿童急性B淋巴细胞白血病的分子特征及临床意义

李钰

重庆医科大学儿科学院,重庆

收稿日期:2023年3月24日;录用日期:2023年4月19日;发布日期:2023年4月26日

摘要

儿童急性淋巴细胞白血病是儿童时期最常见的血液恶性肿瘤,虽然病因研究已进行多年,但其在遗传水平上仍是一种异质性疾病。近年来随着测序技术的进步,遗传特征得到更深入的阐述。本文即从儿童急性B淋巴细胞白血病的常见分子特征进行简要概述,并讨论了它们对临床的影响。

关键词

急性淋巴细胞白血病,遗传特征,临床意义

Molecular Characteristics and Clinical Significance of Acute B-Cell Acute Lymphoblastic Leukemia in Children

Yu Li

College of Pediatrics, Chongqing Medical University, Chongqing

Received: Mar. 24th, 2023; accepted: Apr. 19th, 2023; published: Apr. 26th, 2023

ABSTRACT

Acute lymphoblastic leukemia is the most common hematologic malignancy in children. Although the etiology has been studied for a long time, it is still a heterogeneous disease at the genetic level. While with the development of sequencing technology in recent years, genetic characteristics have been further elaborated. In this article, the common molecular characteristics of acute B-cell lymphoblastic leukemia in children are briefly summarized, and their clinical effects are discussed.

Keywords:Acute Lymphoblastic Leukemia, Genetic Characteristics, Clinical Effects

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

儿童急性淋巴细胞白血病(Acute lymphoblastic leukemia, ALL)是一种以不成熟的淋巴细胞异常增殖为特征的恶性血液肿瘤疾病,约占儿童急性白血病的75%~80% [1] 。随着危险程度调整、化疗方案优化、支持治疗积极、干细胞移植及嵌合抗原受体T细胞免疫疗法等的发展,其五年总生存率已接近90% [2] [3] 。虽然在儿科患者中生存率已较前大大提升,但仍有10%~20%的患儿复发 [4] ,复发后则生存率明显降低。目前常规化疗的强度和毒性已达上限,因此,为了提高患儿的生存率及减少不良反应,有必要寻找新的解决途径和方法。病因研究目前包括病毒感染、杀虫剂、苯及衍生物等化学因素、电离辐射、遗传异常等,但在遗传水平上其仍是一种异质性疾病。而近十年来测序技术的进步,使得我们能够检测分子变化,让识别新亚型、做出早期诊断、调整风险分层、进行精准治疗及预后预测成为可能。本文即概述了儿童最常见的急性淋巴细胞白血病–急性B淋巴细胞白血病(B-ALL)的分子特征,并讨论了它们的临床意义。

2. BCR-ABL1融合基因和Ph-like ALL

BCR-ABL1融合基因由9号染色体的ABL1基因(q34区域)和22号染色体的BCR基因(q11区域)易位形成,具有酪氨酸激酶活性,占儿童ALL的3%~5%。因最初在美国费城发现,故发生t (9; 22) (q34; q11)的染色体也被称为费城(Philadephia, Ph)染色体。Ph阳性ALL患者中较常见的伴随遗传改变是IKZF1、PAX5和EBF1、CDKN2A/2B基因的缺失,约占Ph阳性患者的80%、50%、14%、50% [5] [6] [7] [8] 。有研究指出,CDKN2A/B缺失与患者预后较差有关 [8] ,其缺失可能导致耐药。在引入酪氨酸激酶抑制剂(TKIs)治疗之前,Ph阳性ALL患儿预后差、存活率低 [9] ,在首次完全缓解时接受强化化疗,然后进行造血干细胞移植(HSCT),是改善预后的唯一机会。TKIs联合化疗则改变了Ph阳性ALL患者的预后 [10] [11] 。长期使用伊马替尼联合适当的化疗可显著延长EFS和OS,且与单纯使用化疗和TIK相比,联合使用CR1中的HSCT巩固并不能提供更好的生存期。而TKI单药治疗患儿较易出现ABL1激酶结构域的突变(最常见的是T315I),从而诱导TKI耐药 [12] ,因此,TIK联合强化治疗是有必要的,达沙替尼或ABL第二代TKI联合化疗是儿童Ph阳性ALL的有效靶向治疗策略 [13] 。缓解BCR-ABL1 ALL不良预后的治疗方法还包括第三代TKI帕纳替尼和化疗的一线治疗 [14] [15] 。

Ph-like ALL缺乏BCR-ABL1基因融合,但显示出与BCR-ABL1 ALL相似的基因表达特征,在儿童ALL中发生率约为10% [16] 。患儿诱导失败风险较高,MRD阳性,复发率较高,总生存率较低。IKZF1高频率改变(70%至80%)在Ph样ALL中也不少见,包括整个位点、外显子亚群或上游基因的缺失等异常,使其获得干细胞特性,导致异常白血病细胞粘附,并诱导TKI耐药。大约30%的Ph-like B-ALL患者中存在PAX5基因改变,并常与IKZF1突变同时发生 [17] 。CRLF2重排同样常见于Ph样B-ALL患者中,由于重排导致的CRLF2过表达与不良预后相关 [18] [19] [20] 。即使MRD水平较低,CRLF2过表达伴IKZF1缺失也与复发风险增加相关。Ph-like ALL的大量周期性重排,主要导致激酶编码基因与伴侣基因的融合 [16] [21] 。大量相关基因涉及JAK-STAT通路、ABL类融合、Ras通路突变等改变,可激活细胞因子受体和激酶信号通路。因Ph-like ALL的异质性基因组改变和不同的可靶向激酶激活改变需要精确的治疗管理,常规化疗通常效果不佳,致使患儿的最佳治疗方法仍未确定。但激酶通路的一致激活意味着激酶抑制剂可能是这类患者的一种治疗选择。ABL重排患者最常用ABL1抑制剂伊马替尼和ABL1/SRC双抑制剂达沙替尼治疗 [16] [22] [23] 。变异型ATF7IP-PDGFRB融合患者,其预后较差,达沙替尼也可成功治疗 [24] [25] 。JAK1/JAK2抑制剂鲁索利替尼治疗耐受性良好,可诱导形态学缓解,被认为是治疗JAK-STAT激活突变最有效的方法 [22] 。JAK2抑制剂也可用于治疗CRLF2重排患者 [26] 。因此,JAK抑制剂联合化疗可改善这种高危ALL亚型患者的预后。如推广前瞻性筛查策略,识别高危患者,早期实施基于TKI的干预,有望改善Ph-like ALL患儿的结局。

3. ETV6/RUNX1融合基因和ETV6-RUNX1-Like ALL

T (12; 21) (p13; q22)易位形成ETS转录因子6 (ETV6,又称TEL)与Runt相关转录因子1 (RUNX1,也称为AML1)的基因融合,在儿童ALL患儿中约占20%~25% [27] [28] ,是儿童B-ALL中最常见的易位,通常与良好预后相关 [29] 。ETV6和RUNX1都具有编码转录因子的能力,在造血中都起着至关重要的作用。二者融合之后,AML1由转录活化因子转变为抑制因子是此类白血病的分子基础。脐带血中ETV6-RUNX1融合的存在表明这种改变可能起源于产前 [28] ,是白血病发生过程中的首次打击,而诱导白血病发生需要较长的潜伏期和继发性遗传畸变,因为在健康儿童中也可检测到这种改变 [30] [31] 。二次打击除PAX5、ATF7IP、KMT2A畸变等改变外,还包括ETV6非易位等位基因的12p的缺失等 [32] 。在21三体患者中,正常21号染色体的复制会导致一个额外的RUNX1等位基因,可见于78%的复发患者和15%的初诊患者,表明RUNX1的额外拷贝以及21号染色体的重复可能与较差的预后相关。ETV6-RUNX1融合属于有利风险遗传学组,具有良好的疗效 [33] 。但也有研究指出ETV6-RUNX1重排的儿童ALL与常见的晚期复发有关 [34] ,然而复发后针对第二次完全缓解的治疗是有效的,甚至疗效更高。有研究表明,ETV6-RUNX1重排ALL 患者良好的初始MRD反应和减量治疗强调了良好的结果,使其可能受益于化疗强度的降低,而较长的疗程可能被认为是决定预后的最重要因素之一,因为大多数复发发生在治疗后 [35] 。

近期,有研究指出ETV6-RUNX1-like ALL这种新的亚型,其发生率约为ALL患儿的2%~3%。尽管缺乏ETV6-RUNX1基因融合,但它具有相似的基因表达谱和免疫表型(CD27阳性,CD44低至阴性)。先前的研究表明ETV6-RUNX1-like亚型具有相对较好的预后,很少有复发报道 [36] 。但近期研究证明其由于MRD水平高和无事件生存率差,预后不良 [37] 。ETV6-RUNX1-like亚型可能受益于更高强度的治疗 [38] 。但由于该类型ALL患者数量较少,该领域仍需更多研究。

4. KMT2A重排(MLL)

赖氨酸甲基转移酶2A (KMT2A,既往被称为混合谱系白血病-MLL)基因位于染色体11q23上,其相关易位导致KMT2A与超过90个不同的伴侣基因融合 [39] ,在ALL患儿中发生率为5%,但在婴儿白血病中发生率却能达到70%~80%。T (4; 11) (q21; q23)易位形成KMT2A-AFF1(以前称为KMT2A-AF4),约占KMT2A重排ALL婴儿的41%,预后很差;次常见的是t (11; 19) (q23; p13.3)易位形成的KMT2A-MLLT1 (以前为KMT2A-ENL),第三常见的是t (9; 11) (p22; q23)易位形成的KMT2A-MLLT3 (以前称为KMT2A-AF9) [40] 。婴儿ALL中的其他主要伴侣基因还包括MLLT10 (原AF10)和MLLT4 (原AF6)等。研究表明,内含子11中存在KMT2A断点的患者预后较差,KMT2A重排的婴儿预后特别差。尽管婴儿ALL患者协同突变的总体数量较低,但酪氨酸激酶、PI3K、RAS信号通路的突变频率较高,包括KRAS和NRAS中的复发性突变,以及FLT3、NF1和PTPN11中的非复发性突变 [41] 。且在婴儿中,KMT2A重排急性白血病更有可能伴有高白细胞和中枢神经系统疾病 [42] 。小鼠遗传模型显示Dot1L (端粒沉默干扰体1)在KMT2A重排ALL的启动和维持中起着重要作用。可能包括AF9、ENL和AF10在内的KMT2A易位伙伴的表达,依赖于将过多的DOT1L活性招募到它们的目标位点,因此使用Dot1L抑制剂可能是一种有前途的靶向治疗方法 [43] 。其他潜在的治疗靶点包括溴结构域、menin、BCL-2抑制剂等 [39] [43] [44] 。

5. TCF3重排

转录因子3,又称TCF3或E2A,在淋巴细胞生成中起着重要作用,是T和B淋巴细胞正常发育和分化所必需的。T (1; 19) (q23; p13.3)易位,在成人和儿童B-ALL患者中总发生率为5%~6%,会产生TCF3-PBX1基因融合,产生嵌合蛋白,干预造血调控过程 [45] [46] 。研究发现与其他B-ALL亚型相比,t (1; 19) B-ALL细胞中ROR1和Wnt16b过表达,表明Wnt16b-ROR1在这些细胞中可能存在共同的信号通路 [47] 。恶性B细胞中ROR1高表达,通过自分泌或旁分泌结合Wnt5a,与非典型Wnt通路的激活有关,可调节细胞增殖、趋化性和存活。在TCF3-PBX1细胞中过表达ROR1可能是一种有前景的靶向治疗策略,以减少对正常B淋巴细胞的细胞毒性作用 [48] 。由于中枢神经系统受累和复发较高 [47] [49] ,TCF3-PBX1融合被认为是预后不好的标志。但由于化疗方案的调整,患儿预后较前改善 [50] [51] ,因此,该亚型现在被认为是有利或中间型。TCF3-PBX1融合基因阳性的小鼠白血病表现出肿瘤抑制基因(PAX5和CDKN2A/2B)的持续缺失和点突变后(JAK/STAT, RAS/MAPK)信号通路的激活,表明达沙替尼、鲁索利替尼、帕纳替尼靶向治疗的可能性 [48] 。T (17; 19) (q22; p13)易位会引发TCF3-HLF融合,在儿童B-ALL中发生率不足1%。其预后极差,尽管进行强化治疗和HSCT,但失败率很高,通常会复发且在诊断后两年内死亡 [52] 。预后差,病例少,导致这些患者缺乏特定的化疗方案。BCL20抑制剂维奈托克可作为潜在的治疗因子 [52] ,甲基化分析提示KBTBD11可能是其潜在靶点 [53] ,CAR-T疗法也似乎是改善缓解率的一种有前途的治疗方式 [54] 。

6. 其他

IKZF1位于7号染色体的p12.2,转录后能产生不同大小的IKAROS蛋白异构体,与DNA高效结合,对淋巴系细胞特别是B淋巴细胞的增殖分化等起着关键作用 [55] [56] 。B-ALL患儿中IKZF1缺失频率估计为16%~27%。IKAROS缺陷则抑制前体B淋巴细胞,使其易于恶性转化 [57] 。目前发现,IKZF1的改变常见于BCR-ABL1阳性ALL和BCR-ABL1样ALL中。BCR-ABL1阳性ALL的改变可能导致对酪氨酸激酶抑制剂治疗的耐药性,并导致治疗结果较差 [58] 。相比之下,在TCF3重排和ETV6-RUNX1阳性B-ALL中很少检测到IKZF1缺失 [59] 。IKZF1异常的B-ALL患者5年EFS和总生存期降低,复发风险更高 [60] 。最近,IKZF1 plus亚型也被发现,其特征是在没有ERG缺失的情况下,IKZF1缺失与CDKN2A、CDKN2B、PAX5或PAR1中的缺失共存。较IKZF1缺失型患者,IKZF1 plus有更差的预后 [60] 。IKZF1功能障碍也可能导致PI3K、AKT、mTOR通路的激活,进而促进对ALL患者基本治疗药物糖皮质激素的耐药 [61] 。因此,IKZF1基因改变在儿童B-ALL的发病机制和不良预后中都有重要作用,应纳入儿童B-ALL治疗早期风险分层的研究中。

PAX5位于9p13染色体上,通过激活B细胞特异性基因诱导B细胞分化,是B细胞发育早期阶段的关键调节因子。此外,它还负责通过PD-1和NOTCH1转录因子的负调控和M-CSFR抑制从而抑制向其他细胞系的进展。PAX5局限在B细胞中表达,其表达的任何变化都可能导致白血病发生并引发恶性肿瘤 [62] 。作为儿童B-ALL体细胞突变最重要的靶点,其突变被认为是B-ALL最常见的遗传变异之一。PAX5alt存在于7%~10%的儿童B-ALL病例中,包括重排、局灶性/基因内扩增或突变等不同的改变,是高危风险指标之一 [36] 。PAX5 P80R在儿童患者中发生率则为3%~4%,可能伴随着CDKN2A的双等位基因缺失、表观遗传因子SETD2的突变失活以及野生型PAX5等位基因的失活。而PAX P80R与包括Ras、JAK/STAT、FLT3在内的信号通路共突变的存在,则为靶向治疗创造了可能 [63] 。由于基因的高度异质性,PAX驱动的亚型可能需要不同的治疗药物,如化疗和多种抑制剂的组合,以及免疫治疗 [64] 。

CDKN2A (细胞周期蛋白依赖性激酶抑制物2A)基因,也称为INK4A或P16-INK4A,位于9号染色体p21.3,其最常见的基因变化是缺失,可见于约25%的ALL患者。过去研究大多认为CDKN2A缺失是儿童ALL预后的不良因素 [65] [66] [67] ,但少数研究也认为CDKN2A可能是良好的预后指标 [68] 。由于反复出现的9p缺失,它们通常与PAX5缺失同时发生 [69] 。在Ph阳性和Ph样ALL患者中也可发现,而在ETV6-RUNX1中则较少发现。在B-ALL中,杂合子和纯合子CDKN2A缺失似乎以相近的频率发生 [17] [70] [71] 。然而,基于聚合酶链反应(PCR)和免疫细胞化学等方法进行缺失检测,则无法检测出杂合缺失。一些研究表明双等位基因和单等位基因突变都会影响患者的预后 [70] 。然而,一些研究表明,只有纯合子缺失才会对患者的监测产生临床影响 [72] 。INK4蛋白调节功能的破坏可导致CDK4/CDK6活性增加,导致不受控制的增殖。目前进行的CDK4/CDK6药物抑制剂的临床试验,如帕博西尼、瑞博西尼和阿贝西利,它们可以阻断G1期的细胞周期,并可能防止白血病进展 [73] [74] [75] 。

目前,随着治疗水平的提高和新技术的发展,我们已发现越来越多的新亚型,且测序技术的进一步发展,使我们有望检测出新的遗传标记,从而更好地理解其分子基础、进行危险度分层调整、检测疾病进程、协助判断预后并尽可能降低化疗毒副作用。同时,分子水平的研究也对研发新的靶向治疗和细胞免疫疗法等新治疗方法提供可能。全面了解遗传缺陷特征,为儿童ALL的精准医疗提供了更广阔的前景。然而,是否对白血病遗传易感性进行广泛筛查值得商榷,因为一些带有ALL特定基因变异的儿童并不会发展为临床ALL,潜在假阳性预测值较大。

文章引用

李 钰. 儿童急性B淋巴细胞白血病的分子特征及临床意义
Molecular Characteristics and Clinical Significance of Acute B-Cell Acute Lymphoblastic Leukemia in Children[J]. 临床医学进展, 2023, 13(04): 6469-6477. https://doi.org/10.12677/ACM.2023.134908

参考文献

  1. 1. 王凯玲, 梅妍妍, 崔蕾, 高超, 刘飞飞, 赵晓曦, 等. 两种化疗方案对于TEL-AML1融合基因阳性儿童急性淋巴细胞白血病的疗效比较[J]. 中国实验血液学杂志, 2014, 22(2): 285-290.

  2. 2. Capria, S., Molica, M., Mohamed, S., et al. (2020) A Review of Current Induction Strategies and Emerging Prognostic Factors in the Management of Children and Adolescents with Acute Lymphoblastic Leukemia. Expert Review of Hematology, 13, 755-769. https://doi.org/10.1080/17474086.2020.1770591

  3. 3. Inaba, H. and Pui, C.-H. (2021) Advances in the Diagnosis and Treatment of Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Medicine, 10, 1926. https://doi.org/10.3390/jcm10091926

  4. 4. Abdelmabood, S., Fouda, A.E., Boujettif, F. and Mansour, A. (2020) Treatment Outcomes of Children with Acute Lymphoblastic Leukemia in a Middle-Income Developing Country: High Mortalities, Early Relapses, and Poor Survival. The Journal of Pediatrics (Rio J), 96, 108-116. https://doi.org/10.1016/j.jped.2018.07.013

  5. 5. Bernt, K.M. and Hunger, S.P. (2014) Current Concepts in Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Frontiers in Oncology, 4, 54. https://doi.org/10.3389/fonc.2014.00054

  6. 6. Mullighan, C.G., Miller, C.B., Radtke, I., Phillips, L.A., Dalton, J., Ma, J., et al. (2008) BCR-ABL1 Lymphoblastic Leukaemia Is Characterized by the Deletion of Ikaros. Nature, 453, 110-114. https://doi.org/10.1038/nature06866

  7. 7. Iacobucci, I., Lonetti, A., Paoloni, F., et al. (2010) The PAX5 Gene Is Frequently Rearranged in BCR-ABL1-Positive Acute Lymphoblastic Leukemia but Is Not Associated with Outcome. A Report on Behalf of the GIMEMA Acute Leukemia Working Party. Haematologica, 95, 1683-1690. https://doi.org/10.3324/haematol.2009.020792

  8. 8. Notta, F., Mullighan, C.G., Wang, J.C.Y., Poeppl, A., Dou-latov, S., Phillips, L.A., et al. (2011) Evolution of Human BCR-ABL1 Lymphoblastic Leukaemia-Initiating Cells. Nature, 469, 362-367. https://doi.org/10.1038/nature09733

  9. 9. Churchman, M.L. and Mullighan, C.G. (2017) Ikaros: Ex-ploiting and Targeting the Hematopoietic Stem Cell Niche in B-Progenitor Acute Lymphoblastic Leukemia. Experimental Hematology, 46, 1-8. https://doi.org/10.1016/j.exphem.2016.11.002

  10. 10. Mizuta, S., Matsuo, K., Yagasaki, F., Yujiri, T., Hatta, Y., Ki-mura, Y., et al. (2011) Pre-Transplant Imatinib-Based Therapy Improves the Outcome of Allogeneic Hematopoietic Stem Cell Transplantation for BCR-ABL-Positive Acute Lymphoblastic Leukemia. Leukemia, 25, 41-47. https://doi.org/10.1038/leu.2010.228

  11. 11. Jing, Y., Chen, H.R., Liu, M.J., et al. (2014) Susceptibility of Ph-Positive All to TKI Therapy Associated with Bcr-Abl Rearrangement Patterns: A Retrospective Analysis. PLOS ONE, 9, e110431. https://doi.org/10.1371/journal.pone.0110431

  12. 12. Chang, B.H., Willis, S.G., Stork, L., Hunger, S.P., Carroll, W.L., Camitta, B.M., et al. (2012) Imatinib Resistant BCR-ABL1 Mutations at Relapse in Children with Ph+ ALL: A Children’s Oncology Group (COG) Study. British Journal of Haematology, 157, 507-510. https://doi.org/10.1111/j.1365-2141.2012.09039.x

  13. 13. Cerchione, C., Locatelli, F. and Martinelli, G. (2021) Da-satinib in the Management of Pediatric Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Frontiers in Oncology, 11, Article ID: 632231. https://doi.org/10.3389/fonc.2021.632231

  14. 14. Dalle, I.A., Jabbour, E., Short, N.J. and Ravandi, F. (2019) Treat-ment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Current Treatment Options in Oncology, 20, 4. https://doi.org/10.1007/s11864-019-0603-z

  15. 15. 曹文静, 李硕敏. BCR-ABL1激酶抑制剂的疗效与耐药机制研究进展[J]. 肿瘤药学, 2020, 10(6): 641-648.

  16. 16. Roberts, K.G., Li, Y.J., Payne-Turner, D., Harvey, R.C., Yang, Y.-L., Pei, D.Q., et al. (2014) Targetable Kinase-Activating Lesions in Ph-Like Acute Lymphoblastic Leukemia. The New England Journal of Medicine, 371, 1005-1015. https://doi.org/10.1056/NEJMoa1403088

  17. 17. Ou, Z.S., Sherer, M., Casey, J., Bakos, H.A., Vitullo, K., Hu, J., et al. (2016) The Genomic Landscape of PAX5, IKZF1, and CDKN2A/B Alterations in B-Cell Precursor Acute Lympho-blastic Leukemia. Cytogenetic and Genome Research, 150, 242-252. https://doi.org/10.1159/000456572

  18. 18. Roberts, K.G., Pei, D., Campana, D., Payne-Turner, D., Li, Y.J., Cheng, C., et al. (2014) Outcomes of Children with BCR-ABL1-Like Acute Lymphoblastic Leukemia Treated with Risk-Directed Therapy Based on the Levels of Minimal Residual Disease. Journal of Clinical Oncology, 32, 3012-3020. https://doi.org/10.1200/JCO.2014.55.4105

  19. 19. Heatley, S.L., Sadras, T., Kok, C.H., Nievergall, E., Quek, K., Dang, P., et al. (2017) High Prevalence of Relapse in Children with Philadelphia-Like Acute Lymphoblastic Leukemia Despite Risk-Adapted Treatment. Haematologica, 102, e490-e493. https://doi.org/10.3324/haematol.2016.162925

  20. 20. 张钰, 吴秉毅. CRLF2基因在B系急性淋巴细胞白血病中的研究进展[J]. 广东医学, 2017, 38(S1): 292-294.

  21. 21. Roberts, K.G., Morin, R.D., Zhang, J.H., Hirst, M., Zhao, Y.J., Su, X.P., et al. (2012) Genetic Alterations Activating Kinase and Cytokine Receptor Signaling in High-Risk Acute Lymphoblastic Leukemia. Cancer Cell, 22, 153-166. https://doi.org/10.1016/j.ccr.2012.06.005

  22. 22. Roberts, K.G., Yang, Y.-L., Payne-Turner, D., Lin, W.W., Files, J.K., Dickerson, K., et al. (2017) Oncogenic Role and Therapeutic Targeting of ABL-Class and JAK-STAT Activating Kinase Alterations in Ph-Like ALL. Blood Advances, 1, 1657-1671.

  23. 23. Iacobucci, I., Li, Y.J., Roberts, K.G., Dobson, S.M., Kim, J.C., Payne-Turner, D., et al. (2016) Truncating Erythropoietin Receptor Rearrangements in Acute Lympho-blastic Leukemia. Cancer Cell, 29, 186-200. https://doi.org/10.1016/j.ccell.2015.12.013

  24. 24. Kobayashi, K., Miyagawa, N., Mitsui, K., Matsuoka, M., Kojima, Y., Takahashi, H., et al. (2015) TKI Dasatinib Monotherapy for a Patient with Ph-Like ALL Bearing ATF7IP/PDGFRB Translocation. Pediatric Blood & Cancer, 62, 1058-1060. https://doi.org/10.1002/pbc.25327

  25. 25. Zhang, G., Zhang, Y.L., Wu, J.R., Chen, Y. and Ma, Z.G. (2017) Acute Lymphoblastic Leukemia Patient with Variant ATF7IP/PDGFRB Fusion and Favorable Response to Tyrosine Kinase Inhibitor Treatment: A Case Report. American Journal of Case Re-ports, 18, 1204-1208. https://doi.org/10.12659/AJCR.906300

  26. 26. Reshmi, S.C., Harvey, R.C., Roberts, K.G., et al. (2017) Targetable Kinase Gene Fusions in High-Risk B-ALL: A Study from the Children’s Oncology Group. Blood, 129, 3352-3361. https://doi.org/10.1182/blood-2016-12-758979

  27. 27. Sundaresh, A. and Williams, O. (2017) Mechanism of ETV6-RUNX1 Leukemia. Advances in Experimental Medicine and Biology, 962, 201-216. https://doi.org/10.1007/978-981-10-3233-2_13

  28. 28. Shurtleff, S.A., Buijs, A., Behm, F.G., Rubnitz, J.E., Raimon-di, S.C., Hancock, M.L., et al. (1995) TEL/AML1 Fusion Resulting from a Cryptic t(12;21) Is the Most Common Ge-netic Lesion in Pediatric ALL and Defines a Subgroup of Patients with an Excellent Prognosis. Leukemia, 9, 1985-1989.

  29. 29. Rubnitz, J.E., Wichlan, D., Devidas, M., Shuster, J., Linda, S.B., Kurtzberg, J., et al. (2008) Prospec-tive Analysis of TEL Gene Rearrangements in Childhood Acute Lymphoblastic Leukemia: A Children’s Oncology Group Study. Journal of Clinical Oncology, 26, 2186-2191. https://doi.org/10.1200/JCO.2007.14.3552

  30. 30. Andreasson, P., Schwaller, J., Anastasiadou, E., Aster, J. and Gil-liland, D.G. (2001) The Expression of ETV6/CBFA2 (TEL/AML1) Is Not Sufficient for the Transformation of Hema-topoietic Cell Lines in Vitro or the Induction of Hematologic Disease in Vivo. Cancer Genetics and Cytogenetics, 130, 93-104. https://doi.org/10.1016/S0165-4608(01)00518-0

  31. 31. Morrow, M., Horton, S., Kioussis, D., Brady, H.J.M. and Williams, O. (2004) TEL-AML1 Promotes Development of Specific Hematopoietic Lineages Consistent with Preleuke-mic Activity. Blood, 103, 3890-3896. https://doi.org/10.1182/blood-2003-10-3695

  32. 32. Cavé, H., Cacheux, V., Raynaud, S., Brunie, G., Bakkus, M., Cochaux, P., et al. (1997) ETV6 Is the Target of Chromosome 12p Deletions in t(12;21) Childhood Acute Lymphocytic Leukemia. Leukemia, 11, 1459-1464. https://doi.org/10.1038/sj.leu.2400798

  33. 33. McLean, T.W., Ringold, S., Neuberg, D., Stegmaier, K., Tantravahi, R., Ritz, J., et al. (1996) TEL/AML-1 Dimerizes and Is Associated with a Favorable Outcome in Childhood Acute Lympho-blastic Leukemia. Blood, 88, 4252-4258. https://doi.org/10.1182/blood.V88.11.4252.bloodjournal88114252

  34. 34. 王邢玮, 李本尚, 沈树红, 陈静, 汤静燕, 等. ETV6/RUNX1阳性儿童急性B系淋巴细胞白血病临床预后研究[J]. 临床儿科杂志, 2016, 34(5): 321-325.

  35. 35. Wang, Y., Zeng, H.-M. and Zhang, L.-P. (2018) ETV6/RUNX1-Positive Childhood Acute Lympho-blastic Leukemia in China: Excellent Prognosis with Improved BFM Protocol. Italian Journal of Pediatrics, 44, 94. https://doi.org/10.1186/s13052-018-0541-6

  36. 36. Gu, Z.H., Churchman, M.L., Roberts, K.G., Moore, I., Zhou, X., Nakitandwe, J., et al. (2019) PAX5-Driven Subtypes of B-Progenitor Acute Lymphoblastic Leukemia. Nature Genetics, 51, 296-307. https://doi.org/10.1038/s41588-018-0315-5

  37. 37. Jeha, S., Choi, J., Roberts, K.G., Pei, D.Q., Coustan-Smith, E., Inaba, H., et al. (2021) Clinical Significance of Novel Subtypes of Acute Lymphoblastic Leukemia in the Context of Minimal Residual Disease-Directed Therapy. Blood Cancer Discovery, 2, 326-337. https://doi.org/10.1158/2643-3230.BCD-20-0229

  38. 38. Lee, S.H.R., Li, Z.H., Tai, S.T., Oh, B.L.Z. and Yeoh, A.E.J. (2021) Genetic Alterations in Childhood Acute Lymphoblastic Leukemia: Interactions with Clinical Features and Treatment Response. Cancers (Basel), 13, 4068. https://doi.org/10.3390/cancers13164068

  39. 39. Winters, A.C. and Bernt, K.M. (2017) MLL-Rearranged Leukemi-as—An Update on Science and Clinical Approaches. Frontiers in Pediatrics, 5, 4. https://doi.org/10.3389/fped.2017.00004

  40. 40. Jansen, M.W.J.C., Corral, L., van der Velden, V.H.J., Pan-zer-Grümayer, R., Schrappe, M., Schrauder, A., et al. (2007) Immunobiological Diversity in Infant Acute Lymphoblastic Leukemia Is Related to the Occurrence and Type of MLL Gene Rearrangement. Leukemia, 21, 633-641. https://doi.org/10.1038/sj.leu.2404578

  41. 41. Andersson, A.K., Ma, J., Wang, J.M., Chen, X., Gedman, A.L., Dang, J.J., et al. (2015) The Landscape of Somatic mutations in Infant MLL-Rearranged Acute Lymphoblastic Leukemias. Na-ture Genetics, 47, 330-337. https://doi.org/10.1038/ng.3230

  42. 42. Tauchi, H., Tomizawa, D., Eguchi, M., et al. (2008) Clinical Features and Outcome of MLL Gene Rearranged Acute Lymphoblastic Leukemia in Infants with Additional Chromosomal Abnormal-ities Other than 11q23 Translocation. Leukemia Research, 32, 1523-1529. https://doi.org/10.1016/j.leukres.2008.03.018

  43. 43. Chen, C.-W., Koche, R.P., Sinha, A.U., Deshpande, A.J., Zhu, N., Eng, R., et al. (2015) DOT1L Inhibits SIRT1-Mediated Epigenetic Silencing to Maintain Leukemic Gene Expression in MLL-Rearranged Leukemia. Nature Medicine, 21, 335-343. https://doi.org/10.1038/nm.3832

  44. 44. Klossowski, S., Miao, H.Z., Kempinska, K., Wu, T., Purohit, T., Kim, E., et al. (2020) Menin Inhibitor MI-3454 Induces Remission in MLL1-Rearranged and NPM1-Mutated Models of Leukemia. Journal of Clinical Investigation, 130, 981-997. https://doi.org/10.1172/JCI129126

  45. 45. Aspland, S.E., Bendall, H.H. and Murre, C. (2001) The Role of E2A-PBX1 in Leukemogenesis. Oncogene, 20, 5708- 5717. https://doi.org/10.1038/sj.onc.1204592

  46. 46. Diakos, C., Xiao, Y.Y., Zheng, S.C., Kager, L., Dworzak, M. and Wiemels, J.L. (2014) Direct and Indirect Targets of the E2A-PBX1 Leukemia-Specific Fusion Protein. PLOS ONE, 9, e87602. https://doi.org/10.1371/journal.pone.0087602

  47. 47. Jeha, S., Pei, D., Raimondi, S.C., Onciu, M., Campana, D., Cheng, C., et al. (2009) Increased Risk for CNS Relapse in Pre-B Cell Leukemia with the t(1;19)/TCF3-PBX1. Leuke-mia, 23, 1406-1409. https://doi.org/10.1038/leu.2009.42

  48. 48. Bicocca, V.T., Chang, B.H., Masouleh, B.K., Mus-chen, M., Loriaux, M.M., Druker, B.J., et al. (2012) Crosstalk between ROR1 and the Pre-B Cell Receptor Promotes Survival of t(1;19) Acute Lymphoblastic Leukemia. Cancer Cell, 22, 656-667. https://doi.org/10.1016/j.ccr.2012.08.027

  49. 49. Crist, W.M., Carroll, A.J., Shuster, J.J., Behm, F.G., Whitehead, M., Vietti, T.J., et al. (1990) Poor Prognosis of Children with pre-B Acute Lymphoblastic Leukemia Is Associated with the t(1;19)(q23;p13): A Pediatric Oncology Group Study. Blood, 76, 117-122. https://doi.org/10.1182/blood.V76.1.117.117

  50. 50. Lin, A., Cheng, F.W.T., Chiang, A.K.S., Luk, C.-W., Li, R.C.H., Ling, A.S.C., et al. (2018) Excellent Outcome of Acute Lymphoblastic Leukaemia with TCF3-PBX1 Rearrangement in Hong Kong. Pediatric Blood & Cancer, 65, e27346. https://doi.org/10.1002/pbc.27346

  51. 51. Wang, Y., Xue, Y.-J., Lu, A.-D., Jia, Y.-P., Zuo, Y.-X., Zhang, L.-P., et al. (2021) Long-Term Results of the Risk- Stratified Treatment of TCF3-PBX1-Positive Pediatric Acute Lymphoblastic Leukemia in China. Clinical Lymphoma, Myeloma and Leukemia, 21, e137-e144. https://doi.org/10.1016/j.clml.2020.09.009

  52. 52. Fischer, U., Forster, M., Rinaldi, A., Risch, T., Sungalee, S., Warnatz, H.-J., et al. (2015) Genomics and Drug Profiling of Fatal TCF3-HLF-Positive Acute Lymphoblastic Leukemia Identifies Recurrent Mutation Patterns and Therapeutic Options. Nature Genetics, 47, 1020-1029. https://doi.org/10.1038/ng.3362

  53. 53. Kachroo, P., Szymczak, S., Heinsen, F.-A., Forster, M., Bethune, J., Hemmrich-Stanisak, G., et al. (2018) NGS-Based Methylation Profiling Differentiates TCF3-HLF and TCF3-PBX1 Positive B-Cell Acute Lymphoblastic Leukemia. Epigenomics, 10, 133-147. https://doi.org/10.2217/epi-2017-0080

  54. 54. Wang, T.Y., Wan, X.Y., Yang, F., Shi, W.H., Liu, R., Ding, L.X., et al. (2021) Successful Treatment of TCF3-HLF- Positive Childhood B-ALL with Chimeric Antigen Receptor T-Cell Therapy. Clinical Lymphoma, Myeloma and Leukemia, 21, 386-392. https://doi.org/10.1016/j.clml.2021.01.014

  55. 55. Stanulla, M., Cavé, H. and Moorman, A.V. (2020) IKZF1 Dele-tions in Pediatric Acute Lymphoblastic Leukemia: Still a Poor Prognostic Marker? Blood, 135, 252-260. https://doi.org/10.1182/blood.2019000813

  56. 56. Marke, R., van Leeuwen, F.N. and Scheijen, B. (2018) The Many Faces of IKZF1 in B-Cell Precursor Acute Lymphoblastic Leukemia. Haematologica, 103, 565-574. https://doi.org/10.3324/haematol.2017.185603

  57. 57. Joshi, I., Yoshida, T., Jena, N., et al. (2014) Loss of Ikaros DNA-Binding Function Confers Integrin-Dependent Survival on pre-B Cells and Progression to Acute Lymphoblastic Leukemia. Nature Immunology, 15, 294-304. https://doi.org/10.1038/ni.2821

  58. 58. van der Veer, A., Zaliova, M., Mottadelli, F., De Lorenzo, P., Te Kronnie, G., Harrison, C.J., et al. (2014) IKZF1 Status as a Prognostic Feature in BCR-ABL1-Positive Childhood All. Blood, 123, 1691-1698. https://doi.org/10.1182/blood-2013-06-509794

  59. 59. Sulong, S., Moorman, A.V., Irving, J.A.E., Strefford, J.C., Konn, Z.J., Case, M.C., et al. (2009) A Comprehensive Analysis of the CDKN2A Gene in Childhood Acute Lympho-blastic Leukemia Reveals Genomic Deletion, Copy Number Neutral Loss of Heterozygosity, and Association with Spe-cific Cytogenetic Subgroups. Blood, 113, 100-107. https://doi.org/10.1182/blood-2008-07-166801

  60. 60. Stanulla, M., Dagdan, E., Zaliova, M., Möricke, A., Palmi, C., Cazzaniga, G., et al. (2018) IKZF1(plus) Defines a New Minimal Residual Disease-Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 36, 1240-1249. https://doi.org/10.1200/JCO.2017.74.3617

  61. 61. Piovan, E., Yu, J.Y., Tosello, V., Herranz, D., Ambe-si-Impiombato, A., Carolina Da Silva, A., et al. (2013) Direct Reversal of Glucocorticoid Resistance by AKT Inhibition in Acute Lymphoblastic Leukemia. Cancer Cell, 24, 766-776. https://doi.org/10.1016/j.ccr.2013.10.022

  62. 62. Shahjahani, M., Norozi, F., Ahmadzadeh, A., Shahrabi, S., Tavakoli, F., Asnafi, A.A., et al. (2015) The Role of Pax5 in Leukemia: Diagnosis and Prognosis Significance. Medical Oncology, 32, 360. https://doi.org/10.1007/s12032-014-0360-6

  63. 63. Novakova, M., Zaliova, M., Fiser, K., Vakrmanova, B., Slamova, L., Musilova, A., et al. (2021) DUX4r, ZNF384r and PAX5-P80R Mutated B-Cell Precursor Acute Lymphoblastic Leukemia Frequently Undergo Monocytic Switch. Haematologica, 106, 2066-2075. https://doi.org/10.3324/haematol.2020.250423

  64. 64. Li, J.F., Dai, Y.T., Wu, L., Zhang, M., Ouyang, W., Huang, J.Y., et al. (2021) Emerging Molecular Subtypes and Therapeutic Targets in B-Cell Precursor Acute Lymphoblastic Leu-kemia. Frontiers in Medicine, 15, 347-371. https://doi.org/10.1007/s11684-020-0821-6

  65. 65. Zhang, W.H., Kuang, P. and Liu, T. (2019) Prognostic Signifi-cance of CDKN2A/B Deletions in Acute Lymphoblastic Leukaemia: A Meta-Analysis. Annals of Medicine, 51, 28-40. https://doi.org/10.1080/07853890.2018.1564359

  66. 66. Agarwal, M., Bakhshi, S., Dwivedi, S.N., et al. (2018) Cy-clin Dependent Kinase Inhibitor 2A/B Gene Deletions Are Markers of Poor Prognosis in Indian Children with Acute Lymphoblastic Leukemia. Pediatric Blood & Cancer, 65, e27001. https://doi.org/10.1002/pbc.27001

  67. 67. Kathiravan, M., Singh, M., Bhatia, P., Trehan, A., Varma, N., Sachdeva, M.S., et al. (2019) Deletion of CDKN2A/B Is Associated with Inferior Relapse Free Survival in Pediatric B Cell Acute Lymphoblastic Leukemia. Leukemia & Lymphoma, 60, 433-441. https://doi.org/10.1080/10428194.2018.1482542

  68. 68. Karrman, K., Castor, A., Behrendtz, M., et al. (2015) Deep Sequencing and SNP Array Analyses of Pediatric T-Cell Acute Lymphoblastic Leukemia Reveal NOTCH1 Mutations in Minor Subclones and a High Incidence of Uniparental Isodisomies Affecting CDKN2A. Journal of Hematology Oncol-ogy, 8, 42. https://doi.org/10.1186/s13045-015-0138-0

  69. 69. Steeghs, E.M.P., Boer, J.M., Hoogkamer, A.Q., Boeree, A., de Haas, V., de Groot-Kruseman, H.A., et al. (2019) Copy Number Alterations in B-Cell Development Genes, Drug Resistance, and Clinical Outcome in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Scientific Reports, 9, 4634. https://doi.org/10.1038/s41598-019-41078-4

  70. 70. Feng, J., Guo, Y., Yang, W.Y., Zou, Y., Zhang, L., Chen, Y.M., et al. (2022) Childhood Acute B-Lineage Lymphoblastic Leukemia with CDKN2A/B Deletion Is a Distinct Entity with Adverse Genetic Features and Poor Clinical Outcomes. Frontiers in Oncology, 12, Article ID: 878098. https://doi.org/10.3389/fonc.2022.878098

  71. 71. Kim, M.Y., Yim, S.-H., Cho, N.-S., Kang, S.-H., Ko, D.-H., Oh, B., et al. (2009) Homozygous Deletion of CDKN2A (p16, p14) and CDKN2B (p15) Genes Is a Poor Prog-nostic Factor in Adult but Not in Childhood B-Lineage Acute Lymphoblastic Leukemia: A Comparative Deletion and Hypermethylation Study. Cancer Genetics and Cytogenetics, 195, 59-65. https://doi.org/10.1016/j.cancergencyto.2009.06.013

  72. 72. Salas, P.C., Fernández, L., Vela, M., Bueno, D., Gonzá-lez, B., Valentín, J., et al. (2016) The Role of CDKN2A/B Deletions in Pediatric Acute Lymphoblastic Leukemia. Pediat-ric Hematology and Oncology, 33, 415-422. https://doi.org/10.1080/08880018.2016.1251518

  73. 73. Sawai, C.M., Freund, J., Oh, P., Ndiaye-Lobry, D., Bretz, J.C, Strikoudis, A., et al. (2012) Therapeutic Targeting of the Cyclin D3:CDK4/6 Complex in T Cell Leukemia. Cancer Cell, 22, 452-465. https://doi.org/10.1016/j.ccr.2012.09.016

  74. 74. Sheppard, K.E. and McArthur, G.A. (2013) The Cell-Cycle Regulator CDK4: An Emerging Therapeutic Target in Melanoma. Clinical Cancer Research, 19, 5320-5328. https://doi.org/10.1158/1078-0432.CCR-13-0259

  75. 75. Dickson, M.A. (2014) Molecular Pathways: CDK4 Inhibi-tors for Cancer Therapy. Clinical Cancer Research, 20, 3379-3383. https://doi.org/10.1158/1078-0432.CCR-13-1551

期刊菜单