Advances in Clinical Medicine
Vol. 14  No. 02 ( 2024 ), Article ID: 81363 , 7 pages
10.12677/ACM.2024.142508

脓毒血症相关生物标志物的研究进展

迪力夏提·居马,玉素甫江·牙库甫*

新疆医科大学第一附属医院急诊创伤中心,新疆 乌鲁木齐

收稿日期:2024年1月27日;录用日期:2024年2月21日;发布日期:2024年2月27日

摘要

脓毒血症是由感染引起的危及生命的疾病。随着脓毒血症定义的不断演变,对其如何快速识别,用以及时治疗越发重要。由于脓毒血症机制复杂,临床症状及体征缺乏特异性,快速识别脓毒血症在临床工作中成为一项挑战,因此许多脓毒血症相关生物标志物的研究应运而生,但目前仍未能找到理想的生物标志物用来诊断脓毒血症、指导临床的治疗决策以及评估预后。该综述描述了生物标志物的研究现状,通过对现有脓毒血症生物标志物的深入理解,为其运用在脓毒血症的诊疗工作中提供参考。

关键词

脓毒血症,生物标志物,诊断,预后

The Research Progress of Septic Biomarkers

Dilixiati·Juma, Yusufujiang·Yakufu*

Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Jan. 27th, 2024; accepted: Feb. 21st, 2024; published: Feb. 27th, 2024

ABSTRACT

Sepsis is a life-threatening condition caused by infection. As the definition of sepsis continues to evolve, it is becoming more and more important to identify it quickly for prompt treatment. Due to the complex mechanism of sepsis and the lack of specificity of clinical symptoms and signs, rapid identification of sepsis has become a challenge in clinical work. Therefore, many researches on septic biomarkers have emerged at the right time, but ideal biomarkers have not been found to diagnose sepsis, guide clinical treatment decisions and evaluate prognosis. This review describes the current research status of biomarkers for sepsis, and provides references for their application in the diagnosis and treatment of sepsis through in-depth understanding of the existing biomarkers.

Keywords:Sepsis, Biomarker, Diagnosis, Prognosis

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

脓毒血症是由感染引起的危及生命的疾病,以宿主对感染反应失调和器官功能障碍为特征,是危重症患者导致死亡的主要原因之一 [1] 。脓毒血症不仅威胁人类健康,也给医疗卫生带来巨大经济负担,是一个重要的公共卫生问题。有项研究表明,在我国,从2017年至2019年,脓毒血症的发病率逐渐升高,由2017年342例每十万人到2019年430例每十万人,尤其以老年人为主,而且可能随着人口老龄化大幅度增加 [2] 。在全世界范围内,脓毒血症的发病率仍然是不断增加的,其中约四分之一的患者可能会在住院期间发生死亡 [3] 。虽然对于脓毒血症的探索从未停止,由于其复杂的病理生理过程,但我们对其发病机制知之甚少。脓毒血症的定义演变至今,仍未能提出快速诊断脓毒血症的金标准,对于脓毒血症的诊断是仍然存在一定争议的。脓毒血症3.0的诊断标准可显著提高识别脓毒血症的特异性,但由于其相较于以往的的标准狭窄,可能导致误诊病例增加,从而延误脓毒症患者的治疗 [4] 。目前在临床工作当中,虽然广泛应用脓毒血症3.0定义的感染 + SOFA ≥ 2分为诊断标准,但无论是明确感染的血培养还是评估器官功能障碍的SOFA评分的完善都无法快速完成,导致对患者预后的改善不显著 [5] 。通过对脓毒血症患者快速识别并且及时启动治疗,来改善患者预后是极为重要的。因此寻找生物标志物用以快速诊断脓毒血症成为挑战,生物标志物在临床上的应用可以对脓毒血症的诊断、危险分层、监测及指导治疗上起到重要作用。本文综述总结了近年来主要的生物标志物的研究进展,旨在通过加强对生物标志物的理解,增加在脓毒血症患者的诊治过程中的应用策略,提供进一步研究生物标志物的新思路。

2. 脓毒血症的生物标志物

生物标志物是一种生物学观察指标,它替代并理想地预测难以观察的临床相关终点或中间结果,与直接测量最终临床终点相比,使用临床生物标记物更方便,成本更低,而且测量的时间更短。它们可以用于疾病的筛查、诊断和监测,可以作为预后指标,可以指导个体化的治疗 [6] 。脓毒血症的机制复杂,为更快地评估疾病,近些年来的研究发现了许多脓毒血症的潜在的生物标志物。

2.1. 急性期反应蛋白

降钙素原(PCT)是降钙素的前体,是由CALC-1基因编码的116个氨基酸蛋白组成 [7] 。PCT主要由甲状腺C细胞合成,也可发生在肝脏、胰腺、肾脏、肺、肠和白细胞中,但是正常生理状态下在这些组织中的合成受到抑制。通常,生理条件血清PCT水平非常低,当机体发生细菌感染时,内毒素或细胞因子(如白介素-6、肿瘤坏死因子-α)作用于各种组织,PCT的合成可迅速增加 [8] 。细菌感染得到控制后,血清PCT水平逐渐下降。有一项研究表明,脓毒症患者血清PCT浓度明显高于无脓毒症患者和健康状态患者,且PCT浓度与SOFA评分呈正相关,因此PCT对脓毒血症具有一定的诊断价值 [9] 。此外,PCT水平在临床工作中对抗生素的管理起到重要作用。应用PCT水平指导抗生素的应用可以缩短抗生素使用时间,降低抗生素应用带来的副作用,可以给予患者提供更加个体化的抗感染治疗方案 [10] 。然而,某些非感染性疾病可导致PCT水平增高,因此单独依靠PCT来诊断脓毒血症缺乏特异性。

C反应蛋白(CRP)是肝脏中生成的急性期反应蛋白,在急性炎症和感染反应中,CRP水平迅速升高,在临床工作中被应用于感染性疾病的诊断、监测和治疗。在健康的人群中,C反应蛋白对结核病患者的筛查具有潜在的实用性,C反应蛋白与结核病的症状相结合可提高识别结核病患者的敏感性,其联合敏感性为60.5% [11] 。在一些C反应蛋白浓度较低的患者中,12小时内C反应蛋白浓度上升速度可以作为识别脓毒血症的一种有效手段 [12] 。有一项研究通过分析ICU脓毒血症患者住院期间不同的CRP水平轨迹表明,虽然初始的CRP无法评估患者预后,但CRP水平轨迹与患者住院死亡率相关。CRP水平对疑似脓毒血症患者的诊断及治疗的价值是较低的 [13] 。虽然CRP作为单一的生物标志物对脓毒血症患者的临床价值并不理想,但是其联合其他生物标志物来协助临床决策有待继续探索。比如,CPR与白蛋白比值(CAR),入院时CAR升高可能与成年脓毒症患者的不良预后有关,治疗前的CAR可能与死亡率有关 [14] 。

胰石蛋白是由reg基因码由胰腺腺泡细胞分泌的急性期反应蛋白,在结构上类似于c型凝集素样蛋白 [15] 。C型凝集素是钙依赖性聚糖结合蛋白,已知具有多种功能,包括稳态和先天免疫中的粘附和信号受体,在炎症反应以及白细胞和血小板运输中起关键作用 [16] 。在一项研究显示,胰石蛋白在健康成人正常值范围为25.0~60.7 ng/ml,在脓毒症患者临界值为290.5 ng/ml,危重患者胰石蛋白水平在诊断脓毒血症前3天逐渐升高,有可能在出现相关体征和临床症状之前发现脓毒症,而且胰石蛋白的对脓毒血症的诊断价值优于CRP与PCT [17] 。此外,胰石蛋白在ICU住院的脓毒血症患者的死亡率是有相关性,有潜在的评估预后的价值 [18] 。胰石蛋白与脓毒症诱导的多器官功能障碍发展之间的潜在相关性 [19] 。

2.2. 炎症细胞因子

白细胞介素6 (IL-6)是一种多效性细胞因子,具有多种功能,包括对急性期反应物通路、B和T淋巴细胞、血脑屏障通透性、滑膜炎症、造血和胚胎发育的影响。这种细胞因子增强了先天性和适应性免疫反应之间的过渡,并有助于将巨噬细胞和淋巴细胞募集到损伤或感染部位 [20] 。有项研究表明,IL-6对脓毒血症诊断及鉴别脓毒性休克有一定的价值,可以区分脓毒症,其曲线下面积为0.89,最佳临界值为IL-6的52.60 pg./mL,其敏感性为97.0%和特异性97.2%,其鉴别脓毒性休克的曲线下面积为0.80,最佳截断值为348.92 pg/mL,敏感性为91.8%,特异性为63.2%。相较于其诊断价值,评估脓毒血症的预后可能会成为其主要的作用,IL-6可以作为脓毒血症28天死亡率的独立危险因素 [21] 。另一项研究表明,血清中IL-6水平与脓毒症患者疾病严重程度相关,对疾病预后的判断也可以起到作用 [22] 。

2.3. 细胞膜受体及可溶性受体

CD64也称为Fc受体1 (FcR1),是一种存在于中性粒细胞上的高亲和力受体,是免疫球蛋白G (IgG)重链中Fc部分的受体。通常情况下,中性粒细胞CD64表现为低表达,当受到感染刺激后其表达上调,48小时达到顶峰,当刺激因素得到控制后第七天恢复到基线水平 [23] 。有一项研究表明,相较于血培养,CD64有希望成为快速诊断脓毒症的有价值的生物标志物 [24] 。CD64的诊断价值优于降钙素原及C反应蛋白,CD64诊断脓毒症的敏感性、特异性和AUC分别为0.88 (95% CI, 0.81~0.92)、0.88 (95% CI, 0.83~0.91)和0.94 (95% CI, 0.91~0.96) [25] 。CD64不仅可以用于诊断脓毒血症,还在评估脓毒血症预后有一定价值。另外一项研究显示,脓毒性休克患者CD64表达水平明显高于脓毒血症患者,入院时的CD64水平与SOFA评分正相关,监测入院后48小时内CD64的变化有助于预测脓毒症患者的预后 [26] 。

Presepsin是由可溶性CD14亚型。据报道,当血液中的中性粒细胞胞外陷阱(NETs)水平因脓毒症而升高时,单核细胞/巨噬细胞会吞噬NETs导致细胞表面CD14水平高表达,CD14被单核细胞/巨噬细胞中的中性粒细胞弹性酶降解产生Presepsin [27] 。一项研究表明,Presepsin对脓毒血症的诊断价值优于PCT、CRP及白细胞,其敏感性为87%、特异性86%、精确性为87%,此外还可以用于区分脓毒血症和脓毒性休克 [28] 。Presepsin值通常被解释为当小于200 pg/ ml可以排除脓毒症,当小于300 pg/ml不可能发生全身感染,当其范围在300 pg/ ml~500 pg/ml考虑脓毒症可能,当其范围在500 pg/ ml~1000 pg/ml有发展为严重脓毒症的显著风险,当大于1000 pg/ml发展为严重脓毒症/脓毒症休克的高风险相当于SOFA ≥ 8 [29] 。Presepsin不仅对脓毒症严重程度的预测具有良好的敏感性和特异性,还被证明是一个非常强大的脓毒症患者死亡率预测因子 [30] 。

2.4. miRNA

近年来,miRNA被认为是脓毒血症发病机制中的重要参与者。miRNA是长度约为21~26个核苷酸的内源性非编码RNA分子。许多miRNA分子通过影响TLR4/NFκB通路参与炎症反应的调节 [31] [32] 。无论在成人还是儿童,miRNA均可以作为区分脓毒血症患者与健康人的潜在生物标志物,尤其是miR223 [33] [34] 。所有miRNA均可以作为脓毒血症早期诊断的检测指标,其中miR15b、miR378a、miR23a、miR16a、miR451都是很有前途的新生儿败血症生物标志物 [35] [36] [37] 。氧化应激在脓毒血症发病过程当中起重要作用,其中miRNA-27a参与到氧化应激的过程,因此也被认为是潜在的生物标志物,有研究表明因脓毒血症死亡患者其水平明显高于存活患者,miRNA-27a水平预测脓毒症的ROC曲线下面积(AUC)为0.717,28天死亡率为0.739 [38] 。miRNA表达水平易受个体差异的影响,在脓毒血症中诊断、监测及评估预后的价值还需进一步研究。

2.5. 单核细胞分布宽度

近些年来,单核细胞分布宽度(MDW)已成为一种很有前途的脓毒症生物标志物,尤其是在急诊科和重症监护室中。单核细胞分布宽度是通过基于单核细胞特征的数学公式计算得出的。单核细胞作为机体抵御病原微生物的第一道防线,在病原微生物入侵时被激活。据报道,单核细胞分布宽度正常值区间(未去除离群值或去除离群值后)分别为16.19~23.24和16.43~22.93,且未发现显著的性别或年龄相关性 [39] 。一项荟萃分析表明,单核细胞分布宽度的合并敏感性为84%,合并特异性为68%,曲线下面积为0.85,对成人患者脓毒症具有很高的诊断价值。由于其高敏感性,可以作为一种筛查工具,以排除疑似患者发生脓毒症的可能性 [40] 。

3. 生物标志物的联合应用

虽然所有的生物标志物在脓毒血症中的价值是被肯定的,但是由于每一种标志物都存在局限性,且脓毒血症机制复杂,单靠一种生物标志物仍不现实。通过联合应用生物标志物成为现在的解决方式。与单一标志物相比,降钙素原、C反应蛋白和血清淀粉样蛋白A的生物标志物联合应用对严重多发性创伤患者脓毒症的预测性更强 [41] 。此外,髓样细胞上表达的可溶性触发受体-2 (sTREM-2)联合可溶性致瘤性抑制1 (sST2)联合检测也可能更有利于脓毒症的诊断和预后 [42] 。降钙素原、血栓弹力图和血小板计数的联合测量成为预测高危脓毒性休克患者疾病发展的一种手段 [43] 。MDW与WBC联合诊断脓毒症具有较高的准确性,特别是对患脓毒血症概率较低的患者中进行评估时 [44] 。此外,生物标志物结合评分系统来提高对脓毒血症的灵敏度和特异性也成为另一种解决方式。改良早期预警评分与白细胞计数、单核细胞分布宽度、中性粒细胞与淋巴细胞比值相结合,在老年患者中可以更有效地诊断脓毒血症 [45] 。

4. 总结与展望

近些年来,对脓毒血症的研究越来越多,不断有新的生物标志物在被挖掘。由于脓毒血症机制的复杂,没有任何一个理想的生物标志物,导致脓毒血症诊断、治疗、监测及评估预后较为困难。随着检测技术的发展及对脓毒血症机制的认识逐渐增加,对新的生物标志物的研究已经向基因组学、转录组学、蛋白质组学和代谢组学领域迈步。此外,生物标志物之间及生物标志物与评分系统之间的结合应用可能将成为发展趋势,来弥补彼此的不足,提高诊断及评估预后的能力。生物标志物的价值最终均发挥在临床工作中,因此,其检测的成本、时间以及便捷性也可能成为研究方向,以便于快速准确地诊断、及时提供个体化治疗,改善患者预后。

文章引用

迪力夏提·居马,玉素甫江·牙库甫. 脓毒血症相关生物标志物的研究进展
The Research Progress of Septic Biomarkers[J]. 临床医学进展, 2024, 14(02): 3641-3647. https://doi.org/10.12677/ACM.2024.142508

参考文献

  1. 1. Singer, M., Deutschman, C.S., Seymour, C.W., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. https://doi.org/10.1001/jama.2016.0287

  2. 2. Weng, L., Xu, Y., Yin, P., et al. (2023) National Incidence and Mortality of Hospitalized Sepsis in China. Critical Care, 27, Article No. 84. https://doi.org/10.1186/s13054-023-04385-x

  3. 3. Fleischmann-Struzek, C., Mellhammar, L., Rose, N., et al. (2020) Incidence and Mortality of Hospital- and ICU- Treated Sepsis: Results from an Updated and Expanded Systematic Review and Meta-Analysis. Intensive Care Medicine, 46, 1552-1562. https://doi.org/10.1007/s00134-020-06151-x

  4. 4. Song, Q. and Fei, W. (2023) Evaluation of Sepsis-1 and Sep-sis-3 Diagnostic Criteria in Patients with Sepsis in Intensive Care Unit. Journal of Healthcare Engineering, 2023, Article ID: 3794886. https://doi.org/10.1155/2023/3794886

  5. 5. Lippi, G. (2019) Sepsis Biomarkers: Past, Present and Future. Clinical Chemistry and Laboratory Medicine, 57, 1281- 1283. https://doi.org/10.1515/cclm-2018-1347

  6. 6. Aronson, J.K. and Ferner, R.E. (2017) Biomarkers—A General Re-view. Current Protocols in Pharmacology, 76. https://doi.org/10.1002/cpph.19

  7. 7. Chambliss, A.B., Patel, K., Colón-Franco, J.M., et al. (2023) AACC Guid-ance Document on the Clinical Use of Procalcitonin. The Journal of Applied Laboratory Medicine, 8, 598-634. https://doi.org/10.1093/jalm/jfad007

  8. 8. Duan, S., Gu, X., Fan, G., et al. (2021) C-Reactive Protein or Procalcitonin Combined with Rhinorrhea for Discrimination of Viral from Bacterial Infections in Hospitalized Adults in Non-Intensive Care Units with Lower Respiratory Tract Infections. BMC Pulmonary Medicine, 21, Article No. 308. https://doi.org/10.1186/s12890-021-01672-7

  9. 9. Maigari, I.M., Jibrin, Y.B., Gwalabe, S.A., et al. (2023) Diag-nostic Usefulness of Serum Procalcitonin in Patients with Bacterial Sepsis. Nigerian Journal of Clinical Practice, 26, 1436-1443. https://doi.org/10.4103/njcp.njcp_250_22

  10. 10. Schuetz, P. (2022) How to Best Use Procalcitonin to Diagnose Infections and Manage Antibiotic Treatment. Clinical Chemistry and Laboratory Medicine, 61, 822-828. https://doi.org/10.1515/cclm-2022-1072

  11. 11. Chanda, D., Kasanga, M., Chanda, R. and Cobelens, F. (2023) C-Reactive Protein: Another Addition to our Armamentarium against Tuberculosis? The Lancet Global Health, 11, E636-E637. https://doi.org/10.1016/S2214-109X(23)00175-4

  12. 12. Feigin, E., Levinson, T., Witztum, T., et al. (2023) Early Signaling of Bacteremia in Patients Who Present to the Department of Emergency Medicine with Relatively Low C-Reactive Protein (CRP) Concentrations. Clinica Chimica Acta, 547, Article ID: 117451. https://doi.org/10.1016/j.cca.2023.117451

  13. 13. Athan, S., Athan, D., Wong, M., et al. (2023) Pathology Stew-ardship in Emergency Departments: A Single-Site, Retrospective, Cohort Study of the Value of C-Reactive Protein in Patients with Suspected Sepsis. Pathology, 55, 673- 679. https://doi.org/10.1016/j.pathol.2023.03.004

  14. 14. Liu, Y.M., Gao, Y., Liang, B.M. and Liang, Z.G. (2023) The Prognostic Value of C-Reactive Protein to Albumin Ratio in Patients with Sepsis: A Systematic Review and Meta-Analysis. The Aging Male, 26, Article ID: 2261540. https://doi.org/10.1080/13685538.2023.2261540

  15. 15. Jin, C.X., Hayakawa, T., Ko, S.B.H., et al. (2011) Pancreatic Stone Protein/Regenerating Protein Family in Pancreatic and Gastrointestinal Diseases. Internal Medicine, 50, 1507-1516. https://doi.org/10.2169/internalmedicine.50.5362

  16. 16. Brown, G.D., Willment, J.A. and Whitehead, L. (2018) C-Type Lectins in Immunity and Homeostasis. Nature Reviews Immunology, 18, 374-389. https://doi.org/10.1038/s41577-018-0004-8

  17. 17. Pugin, J., Daix, T., Pagani, J.L., et al. (2021) Serial Measurement of Pancreatic Stone Protein for the Early Detection of Sepsis in Intensive Care Unit Patients: A Prospective Multicentric Study. Critical Care, 25, Article No. 151. https://doi.org/10.1186/s13054-021-03576-8

  18. 18. De Guadiana-Romualdo, L.G., Albaladejo-Otón, M.D., Berger, M., et al. (2019) Prognostic Performance of Pancreatic Stone Protein in Critically Ill Patients with Sepsis. Biomarkers in Medicine, 13, 1469-1480. https://doi.org/10.2217/bmm-2019-0174

  19. 19. Hu, P., Lu, Y, Hua., Deng, W., et al. (2023) The Critical Role of Pancreatic Stone Protein/Regenerating Protein in Sepsis-Related Multiorgan Failure. Frontiers in Medicine, 10, Article 1172529. https://doi.org/10.3389/fmed.2023.1172529

  20. 20. Grebenciucova, E. and VanHaerents, S. (2023) Interleukin 6: At the Interface of Human Health and Disease. Frontiers in Immunology, 14, Article 1255533. https://doi.org/10.3389/fimmu.2023.1255533

  21. 21. Song, J., Park, D.W., Moon, S., et al. (2019) Diagnostic and Prognostic Value of Interleukin-6, Pentraxin 3, and Procalcitonin Levels among Sepsis and Septic Shock Patients: A Prospective Controlled Study according to the Sepsis-3 Definitions. BMC Infectious Diseases, 19, Article No. 968. https://doi.org/10.1186/s12879-019-4618-7

  22. 22. Li, Q., Yan, W., Liu, S. and Li, H. (2023) Study on the Correla-tion and Clinical Significance of T-Lymphocyte Subsets, IL-6 and PCT in the Severity of Patients with Sepsis. Pakistan Journal of Medical Sciences, 39, 227. https://doi.org/10.12669/pjms.39.1.5711

  23. 23. Schiff, D.E., Rae, J., Martin, T.R., Davis, B.H. and Curnutte, J.T. (1997) Increased Phagocyte FcγRI Expression and Improved Fcγ-Receptor—Mediated Phagocytosis after in Vivo Re-combinant Human Interferon-γ Treatment of Normal Human Subjects. Blood, 90, 3187-3194. https://doi.org/10.1182/blood.V90.8.3187

  24. 24. Goswami, D.G., Garcia, L.F., Dodoo, C., et al. (2021) Evaluating the Timeliness and Specificity of CD69, CD64, and CD25 as Biomarkers of Sepsis in Mice. Shock, 55, 507-518. https://doi.org/10.1097/SHK.0000000000001650

  25. 25. Cong, S., Ma, T.G., Di, X., et al. (2021) Diagnostic Value of Neutrophil CD64, Procalcitonin, and Interleukin-6 in Sepsis: A Meta-Analysis. BMC Infectious Diseases, 21, Article No. 384. https://doi.org/10.1186/s12879-021-06064-0

  26. 26. Pham, H.M., Nguyen, D.L.M., Duong, M.C., et al. (2023) Neutrophil CD64—A Prognostic Marker of Sepsis in Intensive Care Unit: A Prospective Cohort Study. Fron-tiers in Medicine, 10, Article 1251221. https://doi.org/10.3389/fmed.2023.1251221

  27. 27. Ikegame, A., Kondo, A., Kitaguchi, K., Sasa, K. and Miyoshi, M. (2022) Presepsin Production in Monocyte/Macro- phage-Mediated Phagocytosis of Neutrophil Extracellular Traps. Scientific Reports, 12, Article No. 5978. https://doi.org/10.1038/s41598-022-09926-y

  28. 28. Yamamoto, T., Nishimura, T., Kaga, S., et al. (2019) Diagnostic Accuracy of Presepsin for Sepsis by the New Sepsis-3 Definitions. The American Journal of Emergency Medicine, 37, 1936-1941. https://doi.org/10.1016/j.ajem.2019.01.025

  29. 29. Chenevier-Gobeaux, C., Borderie, D., Weiss, N., Mallet-Coste, T. and Claessens Y.E., (2015) Presepsin (SCD14-ST), an Innate Immune Response Marker in Sepsis. Clinica Chimica Acta, 450, 97-103. https://doi.org/10.1016/j.cca.2015.06.026

  30. 30. Drăgoescu, A.N., et al. (2020) Presepsin as a Potential Prognostic Marker for Sepsis According to Actual Practice Guidelines. Journal of Personalized Medicine, 11, Article 2. https://doi.org/10.3390/jpm11010002

  31. 31. Hashemian, S.M., Pourhanifeh, M.H., Fadaei, S., et al. (2020) Non-Coding RNAs and Exosomes: Their Role in the Pathogenesis of Sepsis. Nucleic Acids, 21, 51-74. https://doi.org/10.1016/j.omtn.2020.05.012

  32. 32. Sygitowicz, G. and Sitkiewicz, D. (2020) Molecular Mechanisms of Organ Damage in Sepsis: An Overview. The Brazilian Journal of Infectious Diseases, 24, 552-560. https://doi.org/10.1016/j.bjid.2020.09.004

  33. 33. Shen, X., Zhang, J., Huang, Y., et al. (2020) Accuracy of Circu-lating MicroRNAs in Diagnosis of Sepsis: A Systematic Review and Meta-Analysis. Journal of Intensive Care, 8, Ar-ticle No. 84. https://doi.org/10.1186/s40560-020-00497-6

  34. 34. Nour, Z., El-Hamamsy, K., Ehsan, I., et al. (2022) MicroRNAs as Potential Diagnostic New Biomarkers in Diagnosis of Sepsis in Pediatric Patients. Reports of Biochem-istry & Molecular Biology, 11, 327-335.

  35. 35. Fatmi, A., Rebiahi, S.A., Chabni, N., et al. (2020) MiRNA-23b as a Biomarker of Culture-Positive Neonatal Sepsis. Molecular Medicine, 26, Article No. 94. https://doi.org/10.1186/s10020-020-00217-8

  36. 36. El-Hefnawy, S.M., Mostafa, R.G., Zayat, R.S.E., et al. (2021) Biochemical and Molecular Study on Serum MiRNA- 16a and MiRNA-451 as Neonatal Sepsis Biomarkers. Biochem-istry and Biophysics Reports, 25, Article ID: 100915. https://doi.org/10.1016/j.bbrep.2021.100915

  37. 37. Fouda, E., Midan, D.A.E., Ellaban, R., et al. (2021) The Diag-nostic and Prognostic Role of MiRNA 15b and MiRNA 378a in Neonatal Sepsis. Biochemistry and Biophysics Reports, 26, Article ID: 100988. https://doi.org/10.1016/j.bbrep.2021.100988

  38. 38. Ou, Y., An, R., Wang, H., et al. (2022) Oxidative Stress-Related Circulating MiRNA-27a Is a Potential Biomarker for Diagnosis and Prognosis in Patients with Sepsis. BMC Immunology, 23, Article No. 14. https://doi.org/10.1186/s12865-022-00489-1

  39. 39. Agnello, L., Lo, Sasso, B., Bivona, G., et al. (2020) Reference Interval of Monocyte Distribution Width (MDW) in Healthy Blood Donors. Clinica Chimica Acta, 510, 272-277. https://doi.org/10.1016/j.cca.2020.07.036

  40. 40. Huang, Y.H., Chen, C.J., Shao, S.C., et al. (2023) Comparison of the Diagnostic Accuracies of Monocyte Distribution Width, Procalcitonin, and C-Reactive Protein for Sepsis: A Sys-tematic Review and Meta-Analysis. Critical Care Medicine, 51, e106-e114. https://doi.org/10.1097/CCM.0000000000005820

  41. 41. Li, M., Qin, Y.J., Zhang, X.L., et al. (2024) A Biomarker Panel of C-Reactive Protein, Procalcitonin and Serum Amyloid a Is a Predictor of Sepsis in Severe Trauma Patients. Scientific Reports, 14, Article No. 628. https://doi.org/10.1038/s41598-024-51414-y

  42. 42. Wei, Y., Xiao, P., Wu, B., Chen, F.X. and Shi, X.F. (2023) Significance of STREM-1 and SST2 Combined Diagnosis for Sepsis Detection and Prognosis Prediction. Open Life Sciences, 18, Article ID: 20220639. https://doi.org/10.1515/biol-2022-0639

  43. 43. Zhao, X.S., Meng, Z.L., Zhang, T., et al. (2023) Combining Serum Procalcitonin Level, Thromboelastography, and Platelet Count to Predict Short-Term Development of Septic Shock in Intensive Care Unit. Current Medical Science, 43, 86-92. https://doi.org/10.1007/s11596-022-2689-y

  44. 44. Hausfater, P., Robert Boter, N., Morales Indiano, C., et al. (2021) Monocyte Distribution Width (MDW) Performance as an Early Sepsis Indicator in the Emergency Department: Com-parison with CRP and Procalcitonin in a Multicenter International European Prospective Study. Critical Care, 25, Article No. 227. https://doi.org/10.1186/s13054-021-03622-5

  45. 45. Lin, S.F., Lin, H.A., Pan, Y.H. and Hou, S.K. (2022) A Novel Scoring System Combining Modified Early Warning Score with Biomarkers of Monocyte Distribution Width, White Blood Cell Counts, and Neutrophil-to-Lymphocyte Ratio to Improve Early Sepsis Prediction in Older Adults. Clinical Chemistry and Laboratory Medicine, 61, 162-172. https://doi.org/10.1515/cclm-2022-0656

  46. NOTES

    *通讯作者。

期刊菜单