Pure Mathematics
Vol. 12  No. 09 ( 2022 ), Article ID: 55585 , 8 pages
10.12677/PM.2022.129154

Chebyshev总和不等式的加权推广及优美的 积分形式

朱先阳

铜仁学院大数据学院,贵州 铜仁

收稿日期:2022年7月30日;录用日期:2022年8月31日;发布日期:2022年9月7日

摘要

论文用普通的数学方法给出了Chebyshev总和不等式的加权推广,得到几个新的代数不等式,且依据定积分概念建立其优美的积分形式,最后,权函数为特殊函数时,获得了几个相关的应用。

关键词

Chebyshev总和不等式,加权推广,积分形式

Weighted Extension of Chebyshev’s Sum Inequality and Its Integral Forms

Xianyang Zhu

School of Data Science, Tongren University, Tongren Guizhou

Received: Jul. 30th, 2022; accepted: Aug. 31st, 2022; published: Sep. 7th, 2022

ABSTRACT

In this paper, the weighted extension of Chebyshev’s sum inequality is studied by using general mathematical method, some new algebraic inequalities are obtained, and its graceful integral forms are established according to the concept of definite integral. Finally, when the weight function is a special function, several applications are obtained.

Keywords:Chebyshev’s Sum Inequality, Weighted Extension, Integral Forms

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

经典的Chebyshev总和不等式 [1] 是指:设 { a n } , { b n } 是两列从小到大的数组,即 a 1 a 2 a n b 1 b 2 b n ,则

a 1 b 1 + a 2 b 2 + + a n b n n a 1 + a 2 + + a n n b 1 + b 2 + + b n n a 1 b n + a 2 b n 1 + + a n b 1 n (1.1)

当且仅当 a 1 = a 2 = = a n b 1 = b 2 = = b n 时等号成立。其对应的连续情形如下:假设 f , g : [ a , b ] R 是非减函数,那么

1 b a a b f ( x ) g ( x ) d x 1 b a a b f ( x ) d x 1 b a a b g ( x ) d x (1.2)

当且仅当 f ( x ) g ( x ) 中至少一个为常数函数时等号成立。

在文献 [2] [3] 中,(1.1),(1.2)式是作为其中一个不等式的特殊情况。令人惊奇的是,近来的一篇文章 [4] 证明了Chebyshev不等式等价于经典的Jensen不等式。事实上,在某种特殊情况下两个不等式是“对偶的(dual)” [5]。Chebyshev不等式有许多推广 [6] [7] [8] [9] [10],我们也可参考 [11] 以获得有关Chebyshev不等式发展的详细报告。

本文将继续对Chebyshev不等式从权函数的角度进行推广,同时也给出对应于所得定理的应用。

2. 推广

定理1 设 { a n } { b n } 是两列从小到大的数组,即 a 1 a 2 a n b 1 b 2 b n λ i > 0 ( i=1,2,,n ) ,则

i = 1 n λ i i = 1 n λ i a i b i i = 1 n λ i a i i = 1 n λ i b i i = 1 n λ i i = 1 n λ i a i b n i + 1 . (2.1)

当且仅当 a 1 = a 2 = = a n b 1 = b 2 = = b n 时等号成立。

证明:设 f n = i = 1 n λ i i = 1 n λ i a i b i i = 1 n λ i a i i = 1 n λ i b i , n 2 。则

f 2 = λ 1 λ 2 ( a 1 a 2 ) ( b 1 b 2 ) 0.

f n + 1 f n = i = 1 n + 1 λ i i = 1 n + 1 λ i a i b i i = 1 n + 1 λ i a i i = 1 n + 1 λ i b i ( i = 1 n λ i i = 1 n λ i a i b i i = 1 n λ i a i i = 1 n λ i b i ) = ( i = 1 n λ i + λ n + 1 ) ( i = 1 n λ i a i b i + λ n + 1 a n + 1 b n + 1 ) ( i = 1 n λ i a i + λ n + 1 a n + 1 ) ( i = 1 n λ i b i + λ n + 1 b n + 1 ) ( i = 1 n λ i i = 1 n λ i a i b i i = 1 n λ i a i i = 1 n λ i b i ) = λ n + 1 a n + 1 b n + 1 i = 1 n λ i + λ n + 1 i = 1 n λ i a i b i λ n + 1 a n + 1 i = 1 n λ i b i λ n + 1 b n + 1 i = 1 n λ i a i = λ n + 1 i = 1 n λ i ( a i a n + 1 ) ( b i b n + 1 ) 0 (2.2)

所以 f n + 1 f n , f n f 2 0 ( n 2 ) 。这就证明了(2.1)左边不等式,类似可证(2.1)右边不等式。

注a) 在(2.1)取 λ i = 1 ( i = 1 , 2 , , n ) ,就得到Chebyshev总和不等式(1.1),且证明(2.1)式的递推方法也就给了(1.1)式的一种证明思路。

b) 由(2.2)可推知

f n = i = 1 n λ i i = 1 n λ i a i b i i = 1 n λ i a i i = 1 n λ i b i = 1 i < j n n λ i λ j ( a i a j ) ( b i b j ) 0.

(2.1)的左边不等式可推广为:

定理2 设 { a n } , { b n } , { c n } , , { l n } m列从小到大的正项数组,即 a 1 a 2 a n b 1 b 2 b n c 1 c 2 c n l 1 l 2 l n λ i > 0 ( i = 1 , 2 , , n ) ,则

( i = 1 n λ i ) m 1 i = 1 n λ i a i b i c i l i i = 1 n λ i a i i = 1 n λ i b i i = 1 n λ i c i i = 1 n λ i l i (2.3)

证明:由于 { a n } , { b n } , { c n } , , { l n } m列从小到大的正项数组,从已知

a 1 a 2 a n b 1 b 2 b n c 1 c 2 c n l 1 l 2 l n

可得

b 1 c 1 l 1 b 2 c 2 l 2 b n c n l n , c 1 l 1 c 2 l 2 c n l n , ,

反复运用(2.1)中的左边不等式,得

( i = 1 n λ i ) m 1 i = 1 n λ i a i b i c i l i i = 1 n λ i a i ( i = 1 n λ i ) m 2 i = 1 n λ i b i c i l i i = 1 n λ i a i i = 1 n λ i b i ( i = 1 n λ i ) m 2 i = 1 n λ i c i l i i = 1 n λ i a i i = 1 n λ i b i i = 1 n λ i c i i = 1 n λ i l i .

特别地,令 a i = x i α 1 , b i = x i α 2 , c i = x i α 3 , , l i = x i α m ,可得如下不等式:设 x i R + λ i > 0 α i > 0 ( i=1,2,,n ) ,则

i = 1 n λ i x i α 1 + α 2 + α 3 + + α m 1 ( i = 1 n λ i ) m 1 i = 1 n λ i x i α 1 i = 1 n λ i x i α 2 i = 1 n λ i x i α 3 i = 1 n λ i x i α m

3. 应用

例1 设 y i R + ( i = 1 , 2 , , n ) ,且 x 1 y 1 x 2 y 2 x n y n z 1 y 1 z 2 y 2 z n y n ,则

i = 1 n x i z i y i i = 1 n x i i = 1 n z i i = 1 n y i i = 1 n x i z n i + 1 y n i + 1

当且仅当 x 1 = x 2 = = x n z 1 = z 2 = = z n 时等号成立。

证明:在不等式(2.1)中令 a i = x i y i , b i = z i y i ( i = 1 , 2 , , n ) ,得

i = 1 n λ i i = 1 n λ i x i y i z i y i i = 1 n λ i x i y i i = 1 n λ i z i y i i = 1 n λ i i = 1 n λ i x i y i z n i y n i .

再令 λ i = y i ( i = 1 , 2 , , n ) ,可得

i = 1 n y i i = 1 n y i x i y i z i y i i = 1 n y i x i y i i = 1 n y i z i y i i = 1 n y i i = 1 n y i x i y i z n i y n i .

i = 1 n x i z i y i i = 1 n x i i = 1 n z i i = 1 n y i i = 1 n x i z n i + 1 y n i + 1

当且仅当 a 1 = a 2 = = a n b 1 = b 2 = = b n ,即 x 1 = x 2 = = x n z 1 = z 2 = = z n 时等号成立。

例2 设 x i , y i R + ( i = 1 , 2 , , n ) , α > 0 , k Z + ,且满足 k α + 1 ,那么

i = 1 n x i α + 1 y i α ( i = 1 n x i ) k ( i = 1 n y i ) k i = 1 n x i α + 1 k y i α k

等号当且仅当 x 1 y 1 = x 2 y 2 = = x n y n 时成立。

证明:在(2.1)式中令 a i = x i y i , b i = x i α y i α , λ i = y i ( i = 1 , 2 , , n ) ,则成立

i = 1 n y i i = 1 n x i α + 1 y i α i = 1 n x i i = 1 n x i α y i α 1 i = 1 n y i i = 1 n x i x n i + 1 α y n i + 1 α

i = 1 n x i α + 1 y i α i = 1 n x i i = 1 n y i i = 1 n x i α y i α 1 i = 1 n x i x n i + 1 α y n i + 1 α

反复运用上式中的最左边的不等式,即可得证。

例3 设 a i , λ i R + ( i = 1 , 2 , , n ) , s = i = 1 n λ i a i , p s , k N * ,则

i = 1 n λ i a i k + 1 p a i s 2 ( i = 1 n λ i ) p s i = 1 n λ i a i k

证明:不妨设 a 1 a 2 a n ,则 0 < 1 p a 1 1 p a 2 1 p a n a 1 p a 1 a 2 p a 2 a n p a n ,运用不等式(2.1),得

i = 1 n λ i a i k + 1 p a i i = 1 n λ i a i p a i a i k i = 1 n λ i a i p a i i = 1 n λ i a i k i = 1 n λ i a i i = 1 n λ i 1 p a i i = 1 n λ i a i k

根据柯西不等式,得

i = 1 n λ i 1 p a i i = 1 n ( p λ i λ i a i ) = i = 1 n λ i 2 p λ i λ i a i i = 1 n ( p λ i λ i a i ) [ i = 1 n λ i 2 p λ i λ i a i ( p λ i λ i a i ) ] 2 = ( i = 1 n λ i ) 2

所以, i = 1 n λ i a i k + 1 p a i s ( i = 1 n λ i ) 2 i = 1 n ( p λ i λ i a i ) i = 1 n λ i a i k = ( i = 1 n λ i ) 2 s ( i = 1 n λ i ) p s i = 1 n λ i a i k

例4 设 a i , λ i R + ( i = 1 , 2 , , n ) , k N * ,则

( i = 1 n a i λ i a i ) 1 i = 1 n λ i a i ( i = 1 n a i λ i ) 1 i = 1 n λ i ( i = 1 n a n i + 1 λ i a i ) 1 i = 1 n λ i a i

证明:不妨设 a 1 a 2 a n ,则 ln a 1 ln a 2 ln a n ,在不等式(2.1)中取 b i = ln a i ( i = 1 , 2 , , n ) ,可得

i = 1 n λ i i = 1 n λ i a i ln a i i = 1 n λ i a i i = 1 n λ i ln a i i = 1 n λ i i = 1 n λ i a i ln a n i + 1 .

化简即得

( i = 1 n a i λ i a i ) 1 i = 1 n λ i a i ( i = 1 n a i λ i ) 1 i = 1 n λ i ( i = 1 n a n i + 1 λ i a i ) 1 i = 1 n λ i a i

4. 积分形式

这里将对不等式作进一步的推广,获得了Chebyshev总和不等式的三个优美的积分形式。

定理3 假设函数 f ( x ) g ( x ) [ a , b ] 上是同时可积递增的(或是同时可积递减的),且 p ( x ) > 0 ,那么

a x p ( x ) d x a x p ( x ) f ( x ) g ( x ) d x a x p ( x ) f ( x ) d x a x p ( x ) g ( x ) d x , x [ a , b ] (4.1)

当且仅当 f ( x ) g ( x ) 中至少一个为常数函数时等号成立。

证明:若函数 f ( x ) g ( x ) [ a , b ] 上是同时可积递增的,记 x k = a + k n ( x a ) ,依据加权的Chebyshev不等式可得到下式,

i = 1 n p ( x i ) Δ x i i = 1 n p ( x i ) f ( x i ) g ( x i ) Δ x i i = 1 n p ( x i ) f ( x i ) Δ x i i = 1 n p ( x i ) g ( x i ) Δ x i

在上式中令 n ,即得欲证不等式。

a x p ( x ) d x a x p ( x ) f ( x ) g ( x ) d x a x p ( x ) f ( x ) d x a x p ( x ) g ( x ) d x , x [ a , b ]

若函数 f ( x ) g ( x ) [ a , b ] 上是同时可积递减的,则函数 f ( x ) g ( x ) [ a , b ] 上就是同时可积递增的,依据上面已证明的结论,我们有下式成立,

a x p ( x ) d x a x p ( x ) [ f ( x ) ] [ g ( x ) ] d x a x p ( x ) [ f ( x ) ] d x a x p ( x ) [ g ( x ) ] d x , x [ a , b ]

a x p ( x ) d x a x p ( x ) f ( x ) g ( x ) d x a x p ( x ) f ( x ) d x a x p ( x ) g ( x ) d x , x [ a , b ] .

定理4 设函数 f ( x ) g ( x ) [ a , b ] 上分别是可积递增的、可积递减的,且 p ( x ) > 0 ,那么

a x p ( x ) d x a x p ( x ) f ( x ) g ( x ) d x a x p ( x ) f ( x ) d x a x p ( x ) g ( x ) d x , x [ a , b ] (4.2)

当且仅当 f ( x ) g ( x ) 中至少一个为常数函数时等号成立。

证明:由条件可知,函数 f ( x ) g ( x ) [ a , b ] 上是同时可积递增的,应用定理3,立即得证。

不等式(2.3)的积分形式:

定理5 设函数 f i ( x ) ( i = 1 , 2 , , n ) [ a , b ] 上是同时可积递增的,且 p ( x ) > 0 ,那么

( a x p ( x ) d x ) n 1 a x p ( x ) ( i = 1 n f i ( x ) ) d x i = 1 n ( a x p ( x ) f i ( x ) d x ) , x [ a , b ] (4.3)

证明:连续运用定理3中的不等式(4.1),(4.3)式立即可得。

下面在定理3、4、5中,其积分形式的被积函数选取为特殊函数时,将获得一些新的积分不等式。

1) 在定理1中取 p ( x ) = 1 ,可得

设函数 f ( x ) g ( x ) [ a , b ] 上是同时可积递增的(或是同时可积递减的),那么

( b a ) a b f ( x ) g ( x ) d x a b f ( x ) d x a b g ( x ) d x (4.4)

当且仅当 f ( x ) g ( x ) 中至少一个为常数函数时等号成立。

在(4.4)中令 g ( x ) = x ,可得

( b a ) a b x f ( x ) d x b 2 a 2 2 a b f ( x ) d x

化简可得优美的积分不等式

a b x f ( x ) d x ( a + b 2 ) a b f ( x ) d x (4.5)

在(4.5)中再取 f ( x ) = 1 x ,得对数不等式 a b ( a + b 2 ) ( ln a ln b ) ln a b 2 ( a b ) a + b

在定理5中令 p ( x ) = 1 ,可得(4.4)的推广形式:

假设函数 f i ( x ) ( i = 1 , 2 , , n ) [ a , b ] 上都是同时可积递增的,那么

( b a ) n 1 a b ( i = 1 n f i ( x ) ) d x i = 1 n ( a b f i ( x ) d x )

2) 在定理3中令 p ( x ) = x r ( r 1 , x > 0 ) g ( x ) = x q ( q , x > 0 ) ,由(4.1)可得

a b x r d x a b x r + q f ( x ) d x a b x r f ( x ) d x a b x r + q d x

( b r + 1 a r + 1 r + 1 ) a b x r + q f ( x ) d x ( b r + q + 1 a r + q + 1 r + q + 1 ) a b x r f ( x ) d x

稍加计算化简,所以对可积递增函数 f ( x ) ,我们得到

a b x r + q f ( x ) d x r + 1 r + q + 1 ( b r + q + 1 a r + q + 1 b r + 1 a r + 1 ) a b x r f ( x ) d x

3) 在定理3中取 f ( x ) = x p ( x ) = g ( x ) ,可得

a b g ( x ) d x a b x g 2 ( x ) d x a b x g ( x ) d x a b g 2 ( x ) d x

稍加计算化简,则对可积正值递增函数 g ( x ) ,我们得到

a b g 2 ( x ) d x a b g ( x ) d x a b x g 2 ( x ) d x a b x g ( x ) d x .

4) 因为 0 π 2 sin x d x = cos x | 0 π 2 = 1 0 π 4 tan x d x = ln | cos x | | 0 π 4 = 1 ,所以在定理3中选择函数 p ( x ) = sin x ,或 p ( x ) = tan x ,可得三角型积分不等式:

a) 设函数 f ( x ) g ( x ) [ 0 , π 2 ] 上是同时可积递增的,那么

0 π 2 ( sin x ) f ( x ) g ( x ) d x 0 π 2 ( sin x ) f ( x ) d x 0 π 2 ( sin x ) g ( x ) d x

b) 设函数 f ( x ) g ( x ) [ 0 , π 4 ] 上是同时可积递增的,那么

0 π 4 ( tan x ) f ( x ) g ( x ) d x 0 π 4 ( tan x ) f ( x ) d x 0 π 4 ( tan x ) g ( x ) d x

5) 在定理5中,取 p ( x ) = e x ,可得

设函数 f i ( x ) ( i = 1 , 2 , , n ) [ a , b ] 上是同时可积递增的,那么

( e b e a ) n 1 a b e x ( i = 1 n f i ( x ) ) d x i = 1 n ( a b e x f i ( x ) d x )

6) 在定理5中,取 p ( x ) = e x ,且计算有 1 e ln x d x = ( x ln x x ) | 1 e = 1 ,因此

设函数 f i ( x ) ( i = 1 , 2 , , n ) [ a , b ] 上是同时可积递增的,那么

a b ln x ( i = 1 n f i ( x ) ) d x i = 1 n ( a b ( ln x ) f i ( x ) d x )

基金项目

国家自然科学基金资助项目(10801140);江西省自然科学基金资助项目(2010GZC0115)。

文章引用

朱先阳. Chebyshev总和不等式的加权推广及优美的积分形式
Weighted Extension of Chebyshev’s Sum Inequality and Its Integral Forms[J]. 理论数学, 2022, 12(09): 1411-1418. https://doi.org/10.12677/PM.2022.129154

参考文献

  1. 1. 匡继昌. 常用不等式[M]. 第三版. 济南: 山东科学技术出版社, 2004: 61-65.

  2. 2. Esary, F., Proschan, J. and Walkup, D.J. (1967) Association of Random Variables with Applications. The Annals of Mathematical Statistics, 38, 1466-1474. https://doi.org/10.1214/aoms/1177698701

  3. 3. Bulinski, A. and Shashkin, A. (2007) Limit Theorems for Associated Random Fields and Related Systems. World Scientific Publishing, Singapore. https://doi.org/10.1142/6555

  4. 4. Niculescu, C.P. and Pecaric, J. (2010) The Equivalence of Chebyshev’s Ine-quality to the Hermite-Hadamard Inequality. Mathematical Reports, 12, 145-156.

  5. 5. Niulescu, C.P. and Persson, L.E. (2006) Convex Functions and Applications. A Contemporary Approach. In: Convex Functions and Their Applications. CMS Books in Mathematics, Vol. 23, Springer-Verlag, New York. https://doi.org/10.1007/0-387-31077-0_2

  6. 6. Ng, C.T. (1998) On Midconvex Functions with Minconcave Bounds. Proceedings of the American Mathematical Society, 102, 538-540. https://doi.org/10.1090/S0002-9939-1988-0928975-7

  7. 7. 李世杰. 对函数几何凸性若干问题的理论研究[J]. 浙江万里学院学报(自然科学版), 2005, 18(2): 76-82.

  8. 8. 李世杰, 李盛. 不等式探秘[M]. 哈尔滨: 哈尔滨工业大学出版社, 2017.

  9. 9. 王向东, 苏化明, 王芳汉. 不等式理论方法[M]. 开封: 河南教育出版社, 1994.

  10. 10. 曾志红, 时统业, 曹俊飞. 2类凸函数的Hermite-Hadamard-Fejer型不等式[J]. 吉首大学学报(自然科学版), 2019, 40(1): 1-6.

  11. 11. Mitrinovic, J.E., Percaric, D.S. and Fink, A.M. (1993) Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dordrecht.

期刊菜单