Hans Journal of Biomedicine
Vol. 11  No. 01 ( 2021 ), Article ID: 39866 , 6 pages
10.12677/HJBM.2021.111002

YAP/TAZ蛋白调控病毒侵染与免疫的 研究进展

邹丰,苟洪伟,黄金华,李晨辉,赵铁军*

浙江师范大学化学与生命科学学院,浙江 金华

收稿日期:2020年12月25日;录用日期:2021年1月8日;发布日期:2021年1月20日

摘要

YAP/TAZ介导的Hippo信号通路在生命进程中扮演重要角色,它主要调控器官大小,胚胎发育,细胞增殖以及肿瘤发生等。最新研究发现Hippo信号通路关键蛋白YAP/TAZ在调控人类病毒侵染及免疫反应中发挥非常重要的作用。文章总结了YAP/TAZ蛋白的病理学特征,重点介绍YAP/TAZ蛋白在调控人类病毒侵染、复制、诱发疾病以及免疫调控中的功能及其机理,以期为病毒致病机制研究及治疗手段开发提供新的见解和思路。

关键词

YAP/TAZ蛋白,Hippo信号通路,病毒侵染,免疫,发病机理

Research Progress of YAP/TAZ Protein Regulating Virus Infection and Immunity

Feng Zou, Hongwei Gou, Jinhua Huang, Chenhui Li, Tiejun Zhao*

College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua Zhejiang

Received: Dec. 25th, 2020; accepted: Jan. 8th, 2021; published: Jan. 20th, 2021

ABSTRACT

Accumulating evidence showed that YAP/TAZ mediated Hippo pathway plays a critical role in biological processes, including the control of organ size, embryonic development, cell proliferation, and cancer development. The Hippo signaling pathway key protein YAP/TAZ has been found to play a very important role in human virus infection and immunity. This paper summarizes the pathologic characteristics of YAP/TAZ protein, and focuses on the functions and mechanisms of YAP/TAZ protein in the regulation of human virus infection, replication, disease induction and immune regulation. It might give new insights into the research of viral disease and its therapy.

Keywords:YAP/TAZ, Hippo Signaling Pathway, Virus Infection, Immunity, Pathogenesis

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

大量研究表明Hippo通路参与调控细胞增殖,器官大小 [1] [2]。近年来,Hippo信号通路在疾病调控中发挥着越来越重要的作用,尤其是YAP/TAZ蛋白对病毒侵染及免疫反应的调控受到广泛关注。研究报道Hippo/YAP通路在调节一种表达CXCR2的髓源性抑制细胞(MDSCs)的C-X-C基序趋化因子配体5 (CXCL5)时具有非自主功能。当癌细胞中YAP过度活化时,CXCL5分泌增强,进而募集更多MDSCs,促进肿瘤发生。在胰腺导管腺癌中,YAP促进MDSCs分化积累,调节免疫抑制;而当YAP或MDSCs缺失时,免疫反应增强 [3]。另有研究表明,YAP能够引导肿瘤相关巨噬细胞TAMs向免疫抑制/亲肿瘤M2表型分化。在小鼠肝脏肿瘤模型中,单个肿瘤起始细胞可通过YAP诱导CCL2和CSF1表达,促进髓源性抑制细胞和M2巨噬细胞的招募,进而促进肿瘤发生 [4]。文章总结了YAP/TAZ蛋白对病毒侵染的调控机制,同时综述了YAP/TAZ与免疫调控的研究进展。

2. Hippo通路及YAP/TAZ蛋白

Hippo通路是一条首先在果蝇中被发现的信号通路。Hippo通路在哺乳动物中同样高度保守,调节细胞接触抑制及肿瘤发生 [5] [6]。在哺乳动物细胞中,Hippo通路由TAOK1-3激酶磷酸化,进而激活MST1/2起始 [7]。随后,MST1/2通过与调节蛋白SAV1互作从而激活LATS1/2激酶活性 [8]。此外,MST1/2还可促进MOB1与LATS1/2互作,而MOB1的磷酸化可导致LATS1/2被完全激活 [9]。研究发现,神经纤维肿瘤抑制因子NF2通过MST1/2-SAV1复合物促进LATS1/2磷酸化 [10]。同样MAP4K家族、环腺苷酸(cAMP)也能激活LATS1/2活性,而LPA和S1P会抑制LATS1/2活性 [11] [12] [13]。LATS1/2激活可以直接磷酸化YAP和TAZ,使其滞留在胞浆中,从而抑制下游靶基因表达。LATS1/2激酶可以磷酸化YAP五个关键位点(TAZ四个),其中,YAPSer127/381位,TAZSer89/311位与蛋白入核及蛋白降解密切相关 [1]。YAPSer127/TAZS89位磷酸化后与14-3-3蛋白结合,使YAP蛋白定位在细胞质中。而YAPS381/TAZS311位磷酸化引起酪蛋白激酶1(CK1δ/ε)诱导的进一步磷酸化,从而使YAP/TAZ招募SCFβ-TRCP E3连接酶,从而走向泛素化及蛋白酶体依赖的降解途径 [14]。相反,当激酶模块失活时,低磷酸化的YAP/TAZ可以穿梭到细胞核,并通过与转录因子TEAD相互作用而充当转录共激活因子。TEAD是哺乳动物Hippo信号通路中关键的转录激活因子,而YAP被认为是TEAD的转录共激活因子,二者在细胞核内互作,诱导与细胞增殖,分化,发育和凋亡相关的下游靶基因表达,如结缔组织生长因子(CTGF)、富半胱氨酸诱导因子61(CYR61)、神经肽-1(NRP1)等 [15],最终影响细胞生长,增殖及迁移(见图1)。

Figure 1. The Hippo signaling pathway and its key protein YAP/TAZ

图1. Hippo信号通路及其关键蛋白YAP/TAZ

3. YAP/TAZ病理学功能

YAP/TAZ蛋白异常调控会影响细胞增殖,凋亡,迁移和分化,从而导致包括癌症在内的多种疾病产生。在肝癌,食道癌,胃癌,前列腺癌,结肠癌,肺癌,乳腺癌等人类癌症中,检测到癌细胞中YAP/TAZ过表达及其在细胞核内定位 [16] [17] [18]。在肝癌,结肠癌,食道癌,卵巢癌病人中,YAP/TAZ过表达与患者不良预后密切相关 [19] [20]。在癌症发生过程中,Hippo信号通路异常调控主要是通过影响上游激酶LATS1/2和MST1/2的活性,从而导致YAP/TAZ低磷酸化及其富集于核内 [16]。

在哺乳动物中,YAP/TAZ蛋白也调控一些非肿瘤型疾病。例如,在一个长期神经受损的动物模型中,研究发现YAP/TAZ主要聚集在核内,由此导致外周神经损伤水平上升。研究发现在特异性缺失YAP/TAZ的小鼠心脏模型中,小鼠会表现出心脏发育缺陷的生理现象。此外,YAP过表达会激活心肌细胞增殖,而成年小鼠心脏中缺失SAV则会增强YAP表达,从而激活心肌细胞增殖 [21]。

越来越多研究表明,Hippo通路YAP/TAZ蛋白在调控人类病毒侵染诱导的肿瘤疾病、调控免疫反应等方面发挥关键作用。

4. YAP/TAZ蛋白对病毒侵染的调控作用

常见的人类病毒,例如HBV、HPV、KSHV、EBV、ZIKV等,均能通过调控Hippo信号通路,尤其通过调控YAP/TAZ蛋白的表达、磷酸化水平及影响其核定位从而促进疾病的发生。首先,病毒侵染后可通过其编码蛋白直接影响YAP/TAZ的表达,促进肿瘤发生。如HBV编码的HBx蛋白与CREB结合激活YAP启动子促进YAP表达。除了影响启动子活力外,HBx蛋白也能通过下调miRNA-375促进YAP表达 [22],preS2蛋白则通过抑制miRNA-338-3p促进TAZ蛋白表达,从而促进肝癌细胞的增殖及迁移 [23]。此外,HBx互作蛋白HBXIP还通过激活转录因子c-Myb上调肝癌细胞中YAP的表达,促进肝癌发生 [24]。EBV病毒感染通过其编码的LMP1蛋白促进TAZ表达,从而调控鼻咽癌发生 [25]。然而,在ZIKV感染模型中沉默YAP/TAZ表达,则可抑制ZIKV复制、增值,最终影响疾病发生 [26]。其次,病毒也能通过影响YAP磷酸化水平从而调控疾病发生。如HPV编码E6蛋白可下调YAPS397位磷酸化水平,从而促进宫颈癌发生 [27]。研究表明YAP/TAZ最终发挥功能一般通过入核后激活下游靶基因表达,从而促进肿瘤发生。如HPV编码的E6蛋白与PDZ结构蛋白互作后调控YAP的核定位,从而影响宫颈癌发生 [28]。这样的调控机制同样发生在EBV病毒上。EBV病毒编码的LMP1蛋白通过与凝溶胶蛋白相互作用抑制LATS1/2磷酸化,从而稳定了YAP/TAZ并促进其核转移,最终诱发鼻咽癌 [25]。最后,病毒也通过影响Hippo通路上游激酶活性进而影响YAP/TAZ活力,从而促进肿瘤疾病发生。例如KSHV编码的vGPCR蛋白通过抑制LATS1/2激酶活性,从而激活YAP/TAZ,最终促进肿瘤细胞增殖和转化 [29]。

综上,常见人类病毒主要通过其编码的病毒蛋白调控YAP/TAZ蛋白表达、上游激酶及自身磷酸化水平、以及YAP/TAZ蛋白的核定位等促进肿瘤等疾病的发生。

5. YAP/TAZ蛋白与免疫

天然免疫系统通过区别自身和非自身,构成对抗病毒侵染的第一道防线。研究表明Hippo通路中YAP蛋白负调控天然抗病毒免疫且YAP对天然免疫的调控独立于上游激酶。天然免疫细胞可通过细胞内受体识别病毒,如RIG-I,cGAS等。病毒侵染后,胞内受体RIG-I和cGAS可激活IKKε及TBK1激酶,进而招募IRF3,促进IRF3磷酸化、二聚化及入核,从而诱导其效应基因IFNs表达。而YAP通过抑制IRF3二聚化及其核定位负调控抗病毒天然免疫。研究表明,当YAP被敲除后,天然免疫增强,病毒载量下降 [30]。此外,病毒侵染宿主后,宿主也能通过IKKε影响YAP磷酸化,下调YAP表达,进而增强天然抗病毒免疫反应 [31]。研究表明,YAP/TAZ也能与TBK1直接作用,抑制TBK1第63位赖氨酸泛素化,消除病毒诱导TBK1激活,从而抑制天然免疫 [2]。

此外,YAP蛋白在抗肿瘤免疫中也发挥重要作用。YAP能直接调控PD-L1转录,使得PD-L1与免疫识别受体PD-1相互作用,避免免疫监视。YAP也能通过促进肿瘤分泌因子的表达,进而促进免疫抑制细胞的招募,抑制免疫反应对肿瘤细胞的调控;此外,YAP通过激活CAFs促进肿瘤免疫抑制。研究表明CAFs通过释放大量的免疫抑制细胞因子,促进免疫逃避。综上,YAP负调控天然抗病毒免疫及抗肿瘤免疫 [32]。

6. 展望

文章概括了Hippo信号通路YAP/TAZ蛋白在控制细胞增殖,肿瘤发生以及病毒诱导疾病、影响免疫反应等方面的作用。文章旨在阐明病毒诱导肿瘤与Hippo通路YAP/TAZ蛋白之间的联系,推广Hippo通路YAP/TAZ参与调控的肿瘤发病机理,从而为寻找治疗疾病靶点提供一些参考,以便研发相关药物,加快临床治疗进程。

虽然有许多关键问题未被阐明,但我们感兴趣之处在于是否可以通过人为干预Hippo信号通路从而治疗由病毒感染引起的疾病。用药物调控Hippo信号通路组分可能会为预防病毒性疾病提供一些线索。例如VP和VGLL4等药物能够抑制YAP和TEAD之间相互作用。研究表明VP药物对卵巢癌细胞增值呈现时间和剂量抑制作用,并能抑制癌细胞的迁移和侵袭。而VGLL4与YAP直接竞争结合TEAD从而抑制肺癌细胞增值 [33] [34]。因此,我们可以着眼于研发更多靶向YAP/TAZ的药物,通过抑制YAP/TAZ表达、磷酸化修饰,抑制YAP/TAZ与其上下游蛋白的互作,从而阻碍病毒编码蛋白对YAP/TAZ调控,从而实现抑制人类病毒感染、传播及致病的作用,对预防病毒侵染具有重要生理意义。

基金项目

国家自然科学基金项目(31970173);国家级大学生创新创业训练计划(202010345019)。

文章引用

邹 丰,苟洪伟,黄金华,李晨辉,赵铁军. YAP/TAZ蛋白调控病毒侵染与免疫的研究进展
Research Progress of YAP/TAZ Protein Regulating Virus Infection and Immunity[J]. 生物医学, 2021, 11(01): 8-13. https://doi.org/10.12677/HJBM.2021.111002

参考文献

  1. 1. Zhao, B., Li, L., Lei, Q., et al. (2010) The Hippo-YAP Pathway in Organ Size Control and Tumorigenesis: An Updated Version. Genes & Development, 24, 862-874. https://doi.org/10.1101/gad.1909210

  2. 2. Zhang, Q., Meng, F., Chen, S., et al. (2017) Hippo Signalling Governs Cytosolic Nucleic Acid Sensing through YAP/TAZ-Mediated TBK1 Blockade. Nature Cell Biology, 19, 362-374. https://doi.org/10.1038/ncb3496

  3. 3. Hong, L., Li, X., Zhou, D., et al. (2018) Role of Hippo Signaling in Regulating Immunity. Cellular & Molecular Immunology, 15, 1003-1009. https://doi.org/10.1038/s41423-018-0007-1

  4. 4. Taha, Z., van Rensburg, H.J.J. and Yang, X. (2018) The Hippo Pathway: Immunity and Cancer. Cancers (Basel), 10, 94. https://doi.org/10.3390/cancers10040094

  5. 5. Piccolo, S., Dupont, S. and Cordenonsi, M. (2014) The Biology of YAP/TAZ: Hippo Signaling and Beyond. Physiological Reviews, 94, 1287-1312. https://doi.org/10.1152/physrev.00005.2014

  6. 6. Zhao, B., Wei, X., Li, W., et al. (2007) Inactivation of YAP Oncoprotein by the Hippo Pathway Is Involved in Cell Contact Inhibition and Tissue Growth Control. Genes & Development, 21, 2747-2761. https://doi.org/10.1101/gad.1602907

  7. 7. Boggiano, J.C., Vanderzalm, P.J. and Fehon, R.G. (2011) Tao-1 Phosphorylates Hippo/MST Kinases to Regulate the Hippo-Salvador-Warts Tumor Suppressor Pathway. Developmental Cell, 21, 888-895. https://doi.org/10.1016/j.devcel.2011.08.028

  8. 8. Oka, T., Mazack, V. and Sudol, M. (2008) Mst2 and Lats Kinases Regulate Apoptotic Function of Yes Kinase-Associated Protein (YAP). Journal of Biological Chemistry, 283, 27534-27546. https://doi.org/10.1074/jbc.M804380200

  9. 9. Ni, L., Zheng, Y., Hara, M., Pan, D. and Luo, X. (2015) Structural Basis for Mob1-Dependent Activation of the Core Mst-Lats Kinase Cascade in Hippo Signaling. Genes & Development, 29, 1416-1431. https://doi.org/10.1101/gad.264929.115

  10. 10. Yin, F., Yu, J., Zheng, Y., et al. (2013) Spatial Organization of Hippo Signaling at the Plasma Membrane Mediated by the Tumor Suppressor Merlin/NF2. Cell, 154, 1342-1355. https://doi.org/10.1016/j.cell.2013.08.025

  11. 11. Yu, F.X., Zhao, B., Panupinthu, N., et al. (2012) Regulation of the Hippo-YAP Pathway by G-Protein-Coupled Receptor Signaling. Cell, 150, 780-791. https://doi.org/10.1016/j.cell.2012.06.037

  12. 12. Yu, F.X., Zhang, Y., Park, H.W., et al. (2013) Protein Kinase A Activates the Hippo Pathway to Modulate Cell Proliferation and Differentiation. Genes & Development, 27, 1223-1232. https://doi.org/10.1101/gad.219402.113

  13. 13. Meng, Z., Moroishi, T., Mottier-Pavie, V., et al. (2015) MAP4K Family Kinases Act in Parallel to MST1/2 to Activate LATS1/2 in the Hippo Pathway. Nature Communications, 6, Article No. 8357. https://doi.org/10.1038/ncomms9357

  14. 14. Zhao, B., Li, L., Tumaneng, K., Wang, C.Y. and Guan, K.L. (2010) A Coordinated Phosphorylation by Lats and CK1 Regulates YAP Stability through SCFβ-TRCP. Genes & Development, 24, 72-85. https://doi.org/10.1101/gad.1843810

  15. 15. Zhao, B., Ye, X., Yu, J., et al. (2008) TEAD Mediates YAP-Dependent Gene Induction and Growth Control. Genes & Development, 22, 1962-1971. https://doi.org/10.1101/gad.1664408

  16. 16. Moroishi, T., Hansen, C.G. and Guan, K.L. (2015) The Emerging Roles of YAP and TAZ in Cancer. Nature Reviews Cancer, 15, 73-79. https://doi.org/10.1038/nrc3876

  17. 17. Kang, W., Cheng, A.S., Yu, J., et al. (2016) Emerging Role of Hippo Pathway in Gastric and Other Gastrointestinal Cancers. World Journal of Gastroenterology, 22, 1279-1288. https://doi.org/10.3748/wjg.v22.i3.1279

  18. 18. Zhang, L., Yang, S., Chen, X., et al. (2015) The Hippo Pathway Effector YAP Regulates Motility, Invasion, and Castration-Resistant Growth of Prostate Cancer Cells. Molecular and Cellular Biology, 35, 1350-1362. https://doi.org/10.1128/MCB.00102-15

  19. 19. Harvey, K.F., Zhang, X. and Thomas, D.M. (2013) The Hippo Pathway and Human Cancer. Nature Reviews Cancer, 13, 246-257. https://doi.org/10.1038/nrc3458

  20. 20. Xia, Y., Chang, T., Wang, Y., et al. (2014) YAP Promotes Ovarian Cancer Cell Tumorigenesis and Is Indicative of a Poor Prognosis for Ovarian Cancer Patients. PLoS One, 9, e91770. https://doi.org/10.1371/journal.pone.0091770

  21. 21. Gomez, M., Gomez, V. and Hergovich, A. (2014) The Hippo Pathway in Disease and Therapy: Cancer and Beyond. Clinical and Translational Medicine, 3, 22. https://doi.org/10.1186/2001-1326-3-22

  22. 22. Zhang, T., Zhang, J., You, X., et al. (2012) Hepatitis B Virus X Protein Modulates Oncogene Yes-Associated Protein by CREB to Promote Growth of Hepatoma Cells. Hepatology, 56, 2051-2059. https://doi.org/10.1002/hep.25899

  23. 23. Liu, P., Zhang, H., Liang, X., et al. (2015) HBV preS2 Promotes the Expression of TAZ via miRNA-338-3p to Enhance the Tumorigenesis of Hepatocellular Carcinoma. Oncotarget, 6, 29048-29059. https://doi.org/10.18632/oncotarget.4804

  24. 24. Wang, Y., Fang, R., Cui, M., et al. (2017) The Oncoprotein HBXIP Up-Regulates YAP through Activation of Transcription Factor c-Myb to Promote Growth of Liver Cancer. Cancer Letters, 385, 234-242. https://doi.org/10.1016/j.canlet.2016.10.018

  25. 25. He, J., Tang, F., Liu, L., et al. (2017) Positive Regulation of TAZ Expression by EBV-LMP1 Contributes to Cell Proliferation and Epithelial-Mesenchymal Transition in Nasopharyngeal Carcinoma. Oncotarget, 8, 52333-52344. https://doi.org/10.18632/oncotarget.13775

  26. 26. Garcia, G., Paul, S., Beshara, S., et al. (2020) Hippo Signaling Pathway Has a Critical Role in Zika Virus Replication and in the Pathogenesis of Neuroinflammation. The American Journal of Pathology, 190, 844-861. https://doi.org/10.1016/j.ajpath.2019.12.005

  27. 27. He, C., Mao, D., Hua, G., et al. (2015) The Hippo/YAP Pathway Interacts with EGFR Signaling and HPV Oncoproteins to Regulate Cervical Cancer Progression. EMBO Molecular Medicine, 7, 1426-1449. https://doi.org/10.15252/emmm.201404976

  28. 28. Strickland, S.W., Brimer, N., Lyons, C., et al. (2018) Human Papillomavirus E6 Interaction with Cellular PDZ Domain Proteins Modulates YAP Nuclear Localization. Virology, 516, 127-138. https://doi.org/10.1016/j.virol.2018.01.003

  29. 29. Liu, G., Yu, F.X., Kim, Y.C., et al. (2015) Kaposi Sarcoma-Associated Herpesvirus Promotes Tumorigenesis by Modulating the Hippo Pathway. Oncogene, 34, 3536-3546. https://doi.org/10.1038/onc.2014.281

  30. 30. Wang, S., Xie, F., Chu, F., et al. (2017) YAP Antagonizes Innate Antiviral Immunity and Is Targeted for Lysosomal Degradation through IKKɛ-Mediated Phosphorylation. Nature Immunology, 18, 733-743. https://doi.org/10.1038/ni.3744

  31. 31. Kim, N., Park, Y.Y., Joo, C.H. and Kim, H.S. (2018) Relief of YAP-Mediated Inhibition by IKKɛ Promotes Innate Antiviral Immunity. Cellular & Molecular Immunology, 15, 642-644. https://doi.org/10.1038/cmi.2017.97

  32. 32. White, S.M., Murakami, S. and Yi, C. (2019) The Complex Entanglement of Hippo-Yap/Taz Signaling in Tumor Immunity. Oncogene, 38, 2899-2909. https://doi.org/10.1038/s41388-018-0649-6

  33. 33. Feng, J., Gou, J., Jia, J., Yi, T., Cui, T. and Li, Z. (2016) Verteporfin, a Suppressor of YAP-TEAD Complex, Presents Promising Antitumor Properties on Ovarian Cancer. OncoTargets and Therapy, 9, 5371-5381. https://doi.org/10.2147/OTT.S109979

  34. 34. Zhang, W., Gao, Y., Li, P., et al. (2014) VGLL4 Functions as a New Tumor Suppressor in Lung Cancer by Negatively Regulating the YAP-TEAD Transcriptional Complex. Cell Research, 24, 331-343. https://doi.org/10.1038/cr.2014.10

  35. NOTES

    *通讯作者。

期刊菜单