Hans Journal of Biomedicine
Vol. 12  No. 01 ( 2022 ), Article ID: 47602 , 9 pages
10.12677/HJBM.2022.121002

非小细胞肺癌驱动基因的研究

曹涤非*,薛佳莹,黄国庆

黑龙江省科学院高技术研究院生物技术研究室,黑龙江 哈尔滨

收稿日期:2021年10月9日;录用日期:2021年12月23日;发布日期:2021年12月30日

摘要

肺癌是我国的高发癌症,非小细胞肺癌占肺癌的80%以上。利用基因组测序技术针对非小细胞肺癌的研究发现,一些基因在非小细胞肺癌中频繁发生突变,这些突变调控细胞的生长与分化,是癌症发生的驱动基因。目前,针对非小细胞肺癌的驱动基因临床上已有部分靶点药物,但疗效不显著,靶点药物还有待开发。因此,本研究将对非小细胞肺癌中的驱动基因的作用机制和临床治疗进行综述,以期为靶点药物的开发提供基础。

关键词

肺癌,非小细胞肺癌,驱动基因,突变

Study on Driver Genes of Non-Small Cell Lung Cancer

Difei Cao*, Jiaying Xue, Guoqing Huang

Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin Heilongjiang

Received: Oct. 9th, 2021; accepted: Dec. 23rd, 2021; published: Dec. 30th, 2021

ABSTRACT

Lung cancer is a high-incidence cancer in China, and non-small cell lung cancer accounts for more than 80% of lung cancers. Research on non-small cell lung cancer using genome sequencing technology has found that some genes frequently undergo mutations in it. These mutations regulate cell growth and differentiation, which are driving genes for cancer. At present, there are some clinically targeted drugs of non-small cell lung cancer, but effect is not significant, so the target drugs have to be developed. Therefore, this study will review the mechanism and clinical treatment of driver genes in non-small cell lung cancer, in order to provide a basis for the development of target drugs.

Keywords:Lung Cancer, NSCLC, Driver-Gene, Mutation

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肺癌是高发的恶性肿瘤之一,非小细胞肺癌(non-small cell lung cancer, NSCLC)占到80%以上 [1],临床针对肺癌的治疗药物较多,多数并不适用于非小细胞肺癌,主要原因是非小细胞肺癌的发病机制一直尚不明确。随着基因组测序技术的发展,对于肿瘤发病原因有了新的认识。针对非小细胞肺癌的大量测序结果证实分子水平上存在基因的突变,这些突变包括EGFR、KRAS、ROS1、BRAF、HER2、RET等是非小细胞肺癌发生的主要原因之一,这些基因被称为驱动基因。临床上针对不同肿瘤的驱动基因已开发对应的靶向药物,非小细胞肺癌是高发的恶性肿瘤,但针对非小细胞肺癌驱动基因的研究一直较少,本文将对非小细胞肺癌中关键的驱动基因进行综述,以期对临床药物开发提供研究基础。

2. 驱动基因的研究概述

2.1. EGFR

EGFR是人类表皮生长因子(HER)家族的四个成员之一,每个HER受体是一种非活性单体,可与相同类型的受体或与HER家族的相应配体结合,激活复杂的下游信号网络,从而诱导细胞复制 [2]。下游受体功能失调或EGFR功能缺失可导致细胞转化成恶性肿瘤。EGFR经常在不同种类的肿瘤中发生突变和/或过表达,是目前临床多种肿瘤疗法的靶标 [3]。1963年发现EGF途径,迄今为止EGFR的功能不断的被发掘 [4]。EGFR的经典功能是配体与激酶作用下的“EGFR信号通路”,主要是与配体发生同源或异源二聚化反应,激活下游信号通路,由细胞表面传递到细胞内直至细胞核,从而调控细胞生长、分化、转移以及血管生成 [5] [6] [7]。EGFR的主要功能决定在临床研究应用中的价值,目前临床针对EGFR设计多种治疗方法,但癌症中EGFR突变频率高,非小细胞肺癌中尤其常见 [8] [9]。EGFR共有486个突变位点,主要在酪氨酸激酶编码区(EGFR-TK)集中在第18~21号外显子上,其中第20号外显子T790位于激酶催化域的ATP连接处,由于氢键的结合致使靶向药物Gefitininb与EGFR-TK结合能力降低,治疗效果不显著 [10]。

临床上的药物主要有三代,第一代药物:厄洛替尼、吉非替尼、凯美纳等 [11]。这些药物针对外显子19、21位点的突变。30%的EGFR突变患者在初次使用吉非替尼或厄洛替尼时即显示出耐药性,18个月后变为获得性耐药,主要原因是20号外显子第790位点上易发生错义突变产生耐药(T790M) [12]。第二代药物:阿法替尼与达克替尼。阿法替尼主要用于转移性非小细胞肺癌19号外显子的缺失突变或21号外显子替代突变 [13]。第二代靶向药物与第一代相比无本质上的区别 [14];第三代EGFR-TKI靶向药物AZD9291,在III期临床研究中,中位无进展生存期明显高于化疗药物顺铂与培美曲塞组(10.1个月vs 4.4个月),但是经AZD9291治疗5~17个月后会出现C797S突变引起耐药 [15]。

EGFR的功能有很多,研究发现EGFR存在激酶依赖性和非依赖性功能,其中自噬与能量代谢就属于后者。这种功能的产生是由于细胞和环境压力诱导,并且在肿瘤细胞中这种应激作用为它提供生存优势和耐药的抗性,因此,临床对EGFR突变的治疗策略可以考虑靶向EGFR和应激抑制剂的组合,阻断这种应激途径的产生,或许是今后治疗的一个新的思路。

2.2. KRAS

KRAS是RAS GTP酶家族的成员,细胞内GEF或GAP与KRAS结合调控KRAS信号的激活 [16]。细胞内KRAS的信号调控途径有多种,受体类(EGFR、FGFR和HER2-4)激酶途径RAF/MEK/ERK (PI3K/AKT/mTOR)等,主要作用机制是通过与GTP结合,激活下游信号通路中的靶点蛋白,诱导细胞分化 [17] [18] [19]。15%~20%的非小细胞肺癌中KRAS发生突变,主要位点是外显子12,突变的KRAS降低了GTP酶的酶活,活化KRAS下游信号通路,诱导细胞过度增殖 [20],增强了致瘤性。生理条件下,外界激活EGFR信号通路,KRAS被活化后的EGFR短暂激活,信号传递下游靶点蛋白,KRAS迅速失活而在病理条件下KRAS功能异常,无需EGFR激活信号仍处于激活状态,细胞持续增殖导致肿瘤的形成 [21]。

尽管KRAS突变在肿瘤中发现较早,但KRAS突变的患者在早期和转移性患者中预后均较差,临床上针对KRAS G12C TKI突变有两种靶向药物,即sotorasib (AMG510)和Adagrasib (MRTX849) [22]。在I/II试验中,口服sotorasib的KRAS G12C突变的晚期或转移性患者目标缓解率为32.2%。另一种KRAS G12C TKI突变药物Adagrasib在I/II阶段患者中观察到目标缓解率为45% [23]。目标缓解率低于50%的可能的解释是部分患者存在对KRAS G12C抑制的抗性;另一种解释是肿瘤细胞可能并不仅仅依靠RAS途径来存活和增殖。作为PI3K/AKT/mTORC1信号的RAS独立激活途径可能与对KRAS抑制的抗性有关,细胞毒性药物与信号抑制剂联合使用在二期临床试验中具有显著的疗效,三期试验正在进行中 [24]。

临床针对KRAS研究较多,已经制定了几种常用的治疗方案,靶向KRAS与细胞膜的结合、合成KRAS的致死性伴侣、阻断KRAS的下游信号通路、靶向细胞内的代谢途径、免疫治疗等等,但效果不显著,共价抑制剂可结合靶蛋白抑制其活性,目前共价抑制剂在癌症中已有应用,EGFR第三代药物奥斯替尼就是共价抑制剂,因此在KRAS突变患者中也可以考虑共价抑制剂靶向KRAS的治疗方案,同时免疫疗法与靶向疗法的结合对抑制信号通路的激活具有良好的效果,免疫抑制剂与靶向KRAS结合也可以尝试在临床上的应用。

2.3. ROS1

ROS1编码酪氨酸激酶受体,结构上与ALK蛋白有关 [25]。ROS1重排最早在胶质母细胞瘤中被发现,随后已在多种恶性肿瘤中检测到,包括炎症性肌纤维母细胞瘤、胆管癌、卵巢癌、胃癌、结直肠癌、血管肉瘤和非小细胞肺癌 [26] [27] [28]。非小细胞肺癌是第二个发现具有ROS1重排的实体瘤 [29]。近年来约在1%~2%的非小细胞肺癌患者检出ROS1重排,因此ROS1基因被认为是驱动基因 [30],癌症中ROS1的变化主要有过表达、剪接变体、扩增、突变以及最终与另一个伴侣基因融合 [31]。目前ROS1在癌症中的融合体有55个,其中非小细胞肺癌中有13个,包括CD74、SLC34A2、SDC4、EZR等等 [32],CD74-ROS1在非小细胞肺癌中最常见。ROS1的改变很少与其他基因突变一起发生 [33]。

目前临床常见的靶向药物如crizotinib,I期临床试验总缓解率为72%,中位无进展生存期19.2个月,在这项研究中crizotinib显示出良好的治疗效果但颅内活性有限 [34]。Entrectinib代表一种酪氨酸激酶抑制剂,具有抗ROS1激酶活性,II期研究中总缓解率达77%,中位无进展生存期为24.6个月,颅内活性为55% [35]。ROS1的靶向药物有很多,但几乎所有患者最终都会对TKI产生耐药性,主要原因是由于ROS1发生点突变,最常见的是ROS1 G2032R,无法绑定到靶向药物位点,迄今为止已有20多种赋予各种TKI抗药性的突变描述,为临床新药的开发提供阻力。

随着越来越多的ROS1抑制剂被开发,TPX-0005、DS-6051b、Cabozantinib、Entrectinib、Lorlatinib、Brigatinib等等,但临床缺乏安全耐受的靶向药物,因此在ROS1研究领域,设计研究靶向G2032R突变安全可耐受的药物是头等大事。临床针对ROS1重排也可尝试采取联合治疗的策略,例如将ROS1 TKI与EGFR靶向药物联合使用,ALK/ROS1和MEK联合使用等等,以期达到提高ROS1的临床治疗效果。

2.4. BRAF

BRAF是丝氨酸苏氨酸蛋白激酶家族的成员 [36]。BRAF是一种癌基因,位于与多个细胞有关的第7号染色体上,功能包括生长、增殖、存活和分化。BRAF激酶的主要作用是促进EGFR激活后的细胞内信号的传递。生理条件下,信号激活下游靶点,负调控途径会失活BRAF 激酶,此时BRAF发生突变(经典的BRAF点突变V600 E)持续激活下游信号通路,细胞受到持续的生长信号指令,肿瘤细胞快速增殖 [37]。癌症中大约5.5%的突变与BRAF有关,鉴定出将近200种BRAF的突变体和易位 [38]。非小细胞肺癌中BRAF的突变位点有多种,如V600E (50%)、G469A (40%)、D594G (11%)等等,而V600E激活突变是实体瘤中最常见的BRAF突变(90%),它占NSCLC中BRAF突变的一半 [39]。非V600E变体是在男性中更为常见尤其吸烟人群 [40]。

临床上靶向BRAF突变的疗法被首先用于黑色素瘤并获得巨大成功,然后用于非小细胞肺癌 [41]。临床许多小型研究仅测试了BRAF抑制剂(vemurafenib, dabrafenib)或与MEK抑制剂(曲美替尼,cobimetinib)的联用,结果得到客观缓解率为24.6个月 [42]。研究证明晚期非小细胞肺癌一线治疗使用双BRAF/MEK抑制剂比单用于治疗BRAF突变的晚期药物作用显著,但不能抵制耐药性突变 [43]。

有研究发现BRAF V600E突变与非BRAF V600E突变在男性与女性中突变率相似,但BRAF突变患者都有吸烟史,并且突变患者接受铂类药物治疗无效后无病生存期短 [44]。另一研究也得出相同的结论,所有非BRAF V600 E患者均存在吸烟史,多项研究都证实BRAF与吸烟史有关 [45],这是肺癌中少数已证明与吸烟史有关的癌基因,并且临床上针对BRAF突变使用顺铂等铂类制剂患者的无病生存期较短,可见针对BRAF的易位信号抑制剂和激酶抑制剂的联合使用将会是临床研究的方向。目前临床联合MEK抑制剂与BRAF抑制剂在临床上已取得较好的效果,但治疗期间出现的耐药问题尚无法解决。PI3K/AKT/mTOR通路与MAPK通路有关联,当MEK治疗时出现耐药是否可以用PI3K/AKT/mTOR通路抑制剂进行治疗,这些治疗思路正在初步的研究中,未来或将解决此类问题。

2.5. HER2 (ERBB2)

HER2基因编码HER2蛋白,是表皮生长因子受体(ERBB)家族成员 [46]。HER2没有直接激活配体,所以主要作用机制是通过配体与细胞外结构域的结合,或通过HER家族的其它成员可与HER2异二聚化,这种异二聚化会导致酪氨酸残基的磷酸化,启动MAPK、PI3K等信号通路,诱导细胞增殖、分化 [47]。大约1%~3%的NSCLC中发现HER2突变,主要是在非吸烟者和女性中的腺癌 [48]。突变通常发生在外显子20位点上的插入或点突变 [49]。

临床上HER2突变主要采用靶向治疗,曲妥珠单抗是一种常见的靶向药物。I期临床试验HER2突变的非小细胞肺癌患者无进展生存期为14个月,然而毒性不可忽略,因为64.3%的患者表现为3级或更高不良反应 [50]。II期随机试验是比较每3周5.4 mg/kg的剂量方案与6.4 mg/kg的剂量方案在非小细胞肺癌患者中的应用,但目前仍未报导具体的研究结果 [51]。阿法替尼是临床上另一种常用药物。2011年阿法替尼首次在HER2突变的非小细胞肺癌患者体内获得使用,9名HER2突变的癌症患者中有4名患者在外显子20位点出现插入突变,但这类患者对阿法替尼敏感,无病生存期为10个月 [52]。另一项全球多地联合实验数据,26例HER2突变的患者,接受阿法替尼治疗后中位无进展生存期为5.5个月,客观缓解率为3.8% [53]。

临床上EGFR突变的肿瘤中TP53、PIK3CA和K-RAS可导致抗HER2突变治疗药物耐药性的增强 [54],并且在乳腺癌细胞系中已证实HER2-HER3异源二聚化诱导拉帕替尼出现耐药性,这些研究都说明抗HER2治疗的药物需要联合激酶抑制剂与抗HER2的治疗药物,单一的治疗药物会受肿瘤中其他调控基因的干扰,产生对抗HER2的耐药机制。临床上曾试验对3名HER2突变的晚期患者给予阿法替尼联合紫杉醇的治疗方案,取得较好的疗效,但临床样本较少,还不能客观的反应这一联合治疗的效果,因此建议临床可针对HER2突变的患者采用联合方案,延长患者的无病生存期。

2.6. RET

RET是跨膜受体和酪氨酸蛋白激酶家族的成员 [55]。RET主要通过配体与受体的结合激活信号通路,通过刺激生长通路调控细胞增殖。RET可通过重排和点突变激活致癌。1%的非小细胞肺癌患者中有RET基因重排现象 [56]。重排的主要基因型有:CCDC6-RET,KIF5B-RET和TRIM33。非小细胞肺癌中RET重排是独立现象,并不与其它突变或重排现象同时存在 [57]。

临床上I/II期试验评估了非小细胞肺癌患者的Selpercatinib疗效。结果显示目标缓解率为64%,与铂类药物相比Selpercatinib效果显著,副作用小,目前正处于III期评估试验 [58]。另一种选择性RET抑制剂普拉西替尼(Pralsetinib)也已获批,临床上一项RET融合患者口服Pralsetinib,目标缓解率为57%,80%的持续反应在6个月时出现 [59]。非小细胞肺癌RET重排患者中,几种药物的总体响应率小于50%,主要原因是抗RET重排的机制不同,包括RET基因突变以及获得的MET或KRAS扩增 [60],导致临床药物的总体响应率偏小,未达到期望值,因此针对RET重排的治疗仍需大量的临床研究。一种新的抗RET特异性激酶抑制剂RXDX-105。临床上针对28名RET融合患者的I期临床试验进行评估,不良事件3级 < 10%,未报告4级毒性。

多激酶抑制剂的可用性指导我们也为这些患者寻找靶向疗法。靶向RET的多激酶抑制剂引起的VEGFR和EGFR产生脱靶效应。因此多激酶抑制剂需要降低使用剂量,抑制副作用的产生,但临床试验的效果仍需大量的验证。针对RET重排的非小细胞肺癌患者,可根据RET重排的结构特性,临床采用联合激酶抑制剂和细胞毒性药物的方案,目前这只是一些尝试,仍需大量的临床研究开发高效的治疗药物。

3. 总结

靶向药物是抗肿瘤药物研发的重点,但靶向药物也存在着很多问题,一个主要问题是肿瘤的发生是多因素的结果,单一的针对某一种靶点蛋白或突变基因进行修复,并不能从根本上抑制肿瘤细胞的生长。目前临床上的许多肿瘤靶向药物多针对某一或某两个靶点,这类药物的初期化疗效果显著,但平均1~2个疗程之后,细胞会对靶点进行功能修复,绕过靶向的抑制作用,重新启动细胞的生长调控机制,促使细胞对靶向药物产生耐药。这类现象最多的就是第一代EGFR的靶向药物,临床使用时间较短,细胞耐药产生较快,因此催生第二代和第三代靶向药物。靶向药物的另一个主要问题是靶点针对的下游信号通路较单一,多数靶向药物都会调控PI3K/Akt、MAPK、ERK等信号通路,这些经典的细胞生长调控通路在细胞内的代偿功能较强,单一的抑制剂只能暂时性的抑制细胞的分化,经过数周或数月后细胞内的代偿功能就会启动,抑制剂失活,细胞产生耐药性。因此目前临床上多采用联合治疗方案,用抑制剂和受体或抑制剂与免疫细胞联合,副作用小还能抑制耐药性的产生,是非小细胞肺癌治疗的新方向。

4. 展望

肿瘤的治疗是临床医学的重要课题,基因组测序在肿瘤药物研究领域发挥着重要的作用,大数据显示肺癌尤其是非小细胞肺癌,驱动基因对肿瘤的发生具有重要的价值。驱动基因的突变直接或间接的诱导细胞的分化和增殖,导致肿瘤的发生。靶向治疗利用驱动基因的突变位点研制出靶点药物在临床应用中具有显著的疗效,目前临床上有很多靶向药物正在进行II/III期临床试验,针对非小细胞肺癌采取抑制信号通路的激活是治疗的策略之一,更多的应考虑联合用药,细胞免疫疗法是肿瘤治疗领域的一个重要方向,一些信号抑制剂与细胞毒性的组合或是信号抑制剂与免疫抑制剂的组成或许将成为新的治疗方案,多途径的联合治疗将会对肿瘤多方面进行抑制,这种思路可能是对肿瘤最有效的治疗方案,未来随着对肿瘤发病机制的了解,治疗药物也会变成多种机制的联合应用,这将有望实现肿瘤从恶性致死性疾病变成慢性疾病的转变,延长肿瘤患者的生存期。

文章引用

曹涤非,薛佳莹,黄国庆. 非小细胞肺癌驱动基因的研究
Study on Driver Genes of Non-Small Cell Lung Cancer[J]. 生物医学, 2022, 12(01): 9-17. https://doi.org/10.12677/HJBM.2022.121002

参考文献

  1. 1. Chevallier, M., Borgeaud, M., Addeo, A. and Friedlaender, A. (2021) Oncogenic Driver Mutations in Non-Small Cell Lung Cancer: Past, Present and Future. World Journal of Clinical Oncology, 12, 217-237. https://doi.org/10.5306/wjco.v12.i4.217

  2. 2. Yu, J.-J., Zhou, D.-D., Yang, X.-X., Cui, B., Tan, F.-W., Wang, J., et al. (2020) TRIB3-EGFR Interaction Promotes Lung Cancer Progression and Defines a Therapeutic Target. Nature Communications, 11, Article No. 3660. https://doi.org/10.1038/s41467-020-17385-0

  3. 3. Le, X., Nilsson, M., Goldman, J., Reck, M., Nakagawa, K., Kato, T., et al. (2021) Dual EGFR-VEGF Pathway Inhibition: A Promising Strategy for Patients with EGFR-Mutant NSCLC. Journal of Thoracic Oncology, 16, 205-215. https://doi.org/10.1016/j.jtho.2020.10.006

  4. 4. Lu, Y., Liu, Y., Oeck, S., Zhang, G.J., Schramm, A. and Glazer, P.M. (2020) Hypoxia Induces Resistance to EGFR Inhibitors in Lung Cancer Cells via Upregulation of FGFR1 and the MAPK Pathway. Cancer Research, 80, 4655-4667. https://doi.org/10.1158/0008-5472.CAN-20-1192

  5. 5. He, D., Wang, D., Lu, P., Yang, N., Xue, Z., Zhu, X., et al. (2021) Single-cell RNA Sequencing Reveals Heterogeneous Tumor and Immune Cell Populations in Early-Stage Lung Adenocarcinomas Harboring EGFR Mutations. Oncogene, 40, 355-368. https://doi.org/10.1038/s41388-020-01528-0

  6. 6. Passarelli, A., Aieta, M., Sgambato, A. and Gridelli, C. (2020) Targeting Immunometabolism Mediated by CD73 Pathway in EGFR-Mutated Non-Small Cell Lung Cancer: A New Hope for Overcoming Immune Resistance. Frontiers in Immunology, 11, Article No. 1479. https://doi.org/10.3389/fimmu.2020.01479

  7. 7. Jin, R., Zhao, J., Xia, L., Li, Q., Li, W., Peng, L., et al. (2020) Application of Immune Checkpoint Inhibitors in EGFR-Mutant Non-Small-Cell Lung Cancer: From Bed to Bench. Therapeutic Advances in Medical Oncology, 12, Article ID: 1758835920930333. https://doi.org/10.1177/1758835920930333

  8. 8. Guo, Y., Song, J., Wang, Y., Huang, L., Sun, L., Zhao, J., et al. (2020) Concurrent Genetic Alterations and Other Biomarkers Predict Treatment Efficacy of EGFR-TKIs in EGFR-Mutant Non-Small Cell Lung Cancer: A Review. Frontiers in Oncology, 10, Article No. 610923. https://doi.org/10.3389/fonc.2020.610923

  9. 9. Papadimitrakopoulou, V.A., Mok, T.S., Han, J.-Y., Ahn, M.-J., Delmonte, A., Ramalingam, S.S., et al. (2020) Osimertinib versus Platinum-Pemetrexed for Patients with EGFR T790M Advanced NSCLC and Progression on a Prior EGFR-Tyrosine Kinase Inhibitor: AURA3 overall Survival Analysis. Annals of Oncology, 31, 1536-1544. https://doi.org/10.1016/j.annonc.2020.08.2100

  10. 10. Nagasaka, M., Zhu, V.W., Lim, S.M., Greco, M., Wu, F. and Ou, S.I. (2021) Beyond Osimertinib: The Development of Third-Generation EGFR Tyrosine Kinase Inhibitors for Advanced EGFR+ NSCLC. Journal of Thoracic Oncology, 16, 740-763. https://doi.org/10.1016/j.jtho.2020.11.028

  11. 11. Qin, Y.R., Jian, H., Tong, X., Wu, X., Wang, F., Shao, Y.W., et al. (2020) Variability of EGFR Exon 20 Insertions in 24 468 Chinese Lung Cancer Patients and Their Divergent Responses to EGFR Inhibitors. Molecular Oncology, 14, 1695-1704. https://doi.org/10.1002/1878-0261.12710

  12. 12. Passaro, A., Mok, T., Peters, S., Popat, S., Ahn, M.J., de Marinis, F., et al. (2021) Recent Advances on the Role of EGFR Tyrosine Kinase Inhibitors in the Management of NSCLC with Uncommon, Non Exon 20 Insertions, EGFR Mutations. Journal of Thoracic Oncology, 16, 764-773. https://doi.org/10.1016/j.jtho.2020.12.002

  13. 13. Donald Harvey, R., Adams, V.R., Beardslee, T. and Medina, P. (2020) Afatinib for the Treatment of EGFR Mutation-Positive NSCLC: A Review of Clinical Findings. Journal of Oncology Pharmacy Practice, 26, 1461-1474. https://doi.org/10.1177/1078155220931926

  14. 14. Zhao, B., Wang, Y., Wang, Y., Chen, W., Zhou, L., Liu, P.H., et al. (2020) Efficacy and Safety of Therapies for EGFR-Mutant Non-Small Cell Lung Cancer with Brain Metastasis: An Evidence-Based Bayesian Network Pooled Study of Multivariable Survival Analyses. Aging (Albany NY), 12, 14244-14270. https://doi.org/10.18632/aging.103455

  15. 15. Kashima, K., Kawauchi, H., Tanimura, H., Tachibana, Y., Chiba, T., Torizawa, T., et al. (2020) CH7233163 Overcomes Osimertinib Resistant EGFR-Del19/T790M/C797S Mutation. Molecular Cancer Therapeutics, 19, 2288-2297. https://doi.org/10.1158/1535-7163.MCT-20-0229

  16. 16. Amodio, V., Yaeger, R., Arcella, P., Cancelliere, C., Lamba, S. and Lorenzato, A, et al. (2020) EGFR Blockade Reverts Resistance to KRAS G12C Inhibition in Colorectal Cancer. Cancer Discovery, 10, 1129-1139. https://doi.org/10.1158/2159-8290.CD-20-0187

  17. 17. Ghimessy, A., Radeczky, P., Laszlo, V., Hegedus, B., Renyi-Vamos, F., Fillinger, J., et al. (2020) Current Therapy of KRAS-Mutant Lung Cancer. Cancer and Metastasis Reviews, 39, 1159-1177. https://doi.org/10.1007/s10555-020-09903-9

  18. 18. Hamarsheh, S., Groß, O., Brummer, T. and Zeiser, R. (2020) Immune Modulatory Effects of Oncogenic KRAS in Cancer. Nature Communications, 11, Article No.5439. https://doi.org/10.1038/s41467-020-19288-6

  19. 19. Uras, I.Z., Moll, H.P. and Casanova, E. (2020) Targeting KRAS Mutant Non-Small-Cell Lung Cancer: Past, Present and Future. International Journal of Molecular Sciences, 21, Article No. 4325. https://doi.org/10.3390/ijms21124325

  20. 20. Hofmann, M.H., Gmachl, M., Ramharter, J., Savarese, F., Gerlach, D., Marszalek, J.R., et al. (2021) BI-3406, a Potent and Selective SOS1-KRAS Interaction Inhibitor, Is Effective in KRAS-Driven Cancers through Combined MEK Inhibition. Cancer Discovery, 11, 142-157. https://doi.org/10.1158/2159-8290.CD-20-0142

  21. 21. Radeczky, P., Ghimessy, Á., Berta, J., László, V., Hegedűs, B., Rényi-Vámos, F., et al. (2020) Therapeutic Possibilities in KRAS-Mutant Lung Adenocarcinoma. Magyar Onkologia, 64, 231-244.

  22. 22. Hong, D.S., Fakih, M.G., Strickler, J.H., Desai, J., Durm, G.A., Shapiro, G.I., et al. (2020) KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors. New England Journal of Medicine, 383, 1207-1217. https://doi.org/10.1056/NEJMoa1917239

  23. 23. Addeo, A., Luigi Banna, G. and Friedlaender, A. (2021) KRASG12C Mutations in NSCLC: From Target to Resistance. Cancers, 13, Article No. 2541. https://doi.org/10.3390/cancers13112541

  24. 24. Tanaka, N., Lin, J.J., Li, C., Ryan, M.B., Zhang, J., Kiedrowski, L.A., et al. (2021) Clinical Acquired Resistance to KRASG12C Inhibition through a Novel KRAS Switch-II Pocket Mutation and Polyclonal Alterations Converging on RAS-MAPK Reactivation. Cancer Discovery, 11, 1913-1922. https://doi.org/10.1158/2159-8290.CD-21-0365

  25. 25. Yun, M.R., Kim, D.H., Kim, S.-Y., Joo, H.S., Lee, Y.W., Choi, H.M., et al. (2020) Repotrectinib Exhibits Potent Antitumor Activity in Treatment-Naïve and Solvent-Front-Mutant ROS1-Rearranged Non-Small Cell Lung Cancer. Clinical Cancer Research, 26, 3287-3295. https://doi.org/10.1158/1078-0432.CCR-19-2777

  26. 26. Cui, M., Han, Y., Li, P., Zhang, J., Ou, Q., Tong, X., et al. (2020) Molecular and Clinicopathological Characteristics of ROS1-Rearranged Non-Small-Cell Lung Cancers Identified by Next-Generation Sequencing. Molecular Oncology, 14, 2787-2795. https://doi.org/10.1002/1878-0261.12789

  27. 27. Li, W., Guo, L., Liu, Y., Dong, L., Yang, L., Chen, L., et al. (2021) Potential Unreliability of Uncommon ALK, ROS1, and RET Genomic Breakpoints in Predicting the Efficacy of Targeted Therapy in NSCLC. Journal of Thoracic Oncology, 16, 404-418. https://doi.org/10.1016/j.jtho.2020.10.156

  28. 28. Sato, H., Schoenfeld, A.J., Siau, E., Lu, Y.C., Tai, H., Suzawa, K., et al. (2020) MAPK Pathway Alterations Correlate with Poor Survival and Drive Resistance to Therapy in Patients with Lung Cancers Driven by ROS1 Fusions. Clinical Cancer Research, 26, 2932-2945. https://doi.org/10.1158/1078-0432.CCR-19-3321

  29. 29. Suda, K. and Mitsudomi, T. (2020) Emerging Oncogenic Fusions Other than ALK, ROS1, RET, and NTRK in NSCLC and the Role of Fusions as Resistance Mechanisms to Targeted Therapy. Translational Lung Cancer Research, 9, 2618-2628. https://doi.org/10.21037/tlcr-20-186

  30. 30. Cai, L.L., Duan, J.C., Qian, L., Wang, Z., Wang, S., Li, S., et al. (2020) ROS1 Fusion Mediates Immunogenicity by Upregulation of PD-L1 after the Activation of ROS1-SHP2 Signaling Pathway in Non-Small Cell Lung Cancer. Frontiers in Immunology, 11, Article ID: 527750. https://doi.org/10.3389/fimmu.2020.527750

  31. 31. Zhu, V.W., Lin, Y.-T., Kim, D.-W., Loong, H.H., Nagasaka, M., To, H., et al. (2020) An International Real-World Analysis of the Efficacy and Safety of Lorlatinib through Early or Expanded Access Programs in Patients with Tyrosine Kinase Inhibitor-Refractory ALK-Positive or ROS1-Positive NSCLC. Journal of Thoracic Oncology, 15, 1484-1496. https://doi.org/10.1016/j.jtho.2020.04.019

  32. 32. Araujo, J.M., Gomez, A.C., Pinto, J.A., Rolfo, C. and Raez, L.E. (2020) Profile of Entrectinib in the Treatment of ROS1-Positive Non-Small Cell Lung Cancer: Evidence to Date. Hematology/Oncology and Stem Cell Therapy, 14, 192-198. https://doi.org/10.1016/j.hemonc.2020.11.005

  33. 33. Chu, P., Antoniou, M., Bhutani, M.K., Aziez, A. and Daigl, M. (2020) Matching-Adjusted Indirect Comparison: Entrectinib versus Crizotinib in ROS1 Fusion-Positive Non-Small Cell Lung Cancer. Journal of Comparative Effectiveness Research, 9, 861-876. https://doi.org/10.2217/cer-2020-0063

  34. 34. D’Angelo, A., Sobhani, N., Chapman, R., Bagby, S., Bortoletti, C., Traversini, M., et al. (2020) Focus on ROS1-Positive Non-Small Cell Lung Cancer (NSCLC): Crizotinib, Resistance Mechanisms and the Newer Generation of Targeted Therapies. Cancers, 12, Article No. 3293. https://doi.org/10.3390/cancers12113293

  35. 35. Holger, F., Ullah, M., de la Cruz, C.C., Hunsaker, T., Senn, C., Wirz, T., et al. (2020) Entrectinib, a TRK/ROS1 Inhibitor with Anti-CNS Tumor Activity: Differentiation from Other Inhibitors in Its Class due to Weak Interaction with P-Glycoprotein. Neuro-Oncology, 22, 819-829. https://doi.org/10.1093/neuonc/noaa052

  36. 36. Liu, H., Nazmun, N., Hassan, S., Liu, X. and Yang, J. (2020) BRAF Mutation and Its Inhibitors in Sarcoma Treatment. Cancer Medicine, 9, 4881-4896. https://doi.org/10.1002/cam4.3103

  37. 37. Roviello, G., D’Angelo, A., Sirico, M., Pittacolo, M., Conter, F.U., Sobhani, N., et al. (2021) Advances in Anti-BRAF Therapies for Lung Cancer. Investigational New Drugs, 39, 879-890. https://doi.org/10.1007/s10637-021-01068-8

  38. 38. Peiffer, L., Farahpour, F., Sriram, A., Spassova, I., Hoffmann, D., Kubat, L., et al. (2021) BRAF and MEK Inhibition in Melanoma Patients Enables Reprogramming of Tumor Infiltrating Lymphocytes. Cancer Immunology, Immunotherapy, 70, 1635-1647. https://doi.org/10.1007/s00262-020-02804-4

  39. 39. Johnson, D.B., Nebhan, C.A. and Noel, M.S. (2020) MEK Inhibitors in Non-V600 BRAF Mutations and Fusions. Oncotarget, 11, 3900-3903. https://doi.org/10.18632/oncotarget.27788

  40. 40. Cotto-Rios, X.M., Agianian, B., Gitego, N., Zacharioudakis, E., Giricz, O., Wu, Y., et al. (2020) Inhibitors of BRAF Dimers Using an Allosteric Site. Nature Communications, 11, Article No. 4370. https://doi.org/10.1038/s41467-020-18123-2

  41. 41. Proietti, I., Skroza, N., Bernardini, N., Tolino, E., Balduzzi, V., Marchesiello, A., et al. (2020) Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancer, 12, Article No. 2801. https://doi.org/10.3390/cancers12102801

  42. 42. Meng, P., Koopman, B., Kok, K., Ter Elst, A., Schuuring, E., van Kempen, L.C., et al. (2020) Combined Osimertinib, Dabrafenib and Trametinib Treatment for Advanced Non-Small-Cell Lung Cancer Patients with an Osimertinib-Induced BRAF V600E Mutation. Lung Cancer, 146, 358-361. https://doi.org/10.1016/j.lungcan.2020.05.036

  43. 43. Subbiah, V., Baik, C. and Kirkwood, J.M. (2020) Clinical Development of BRAF Plus MEK Inhibitor Combinations. Trends in Cancer, 6, 797-810. https://doi.org/10.1016/j.trecan.2020.05.009

  44. 44. Ganna P., Tang, X., Maisonneuve, P., Jin, T., Lavoie, H., Daou, S., et al. (2020) Functional Characterization of a PROTAC Directed against BRAF mutant V600E. Nature Chemical Biology, 16, 1170-1178. https://doi.org/10.1038/s41589-020-0609-7

  45. 45. Gerard O’Leary, C., Andelkovic, V., Ladwa, R., Pavlakis, N., Zhou, C., Hirsch, F., et al. (2019) Targeting BRAF Mutations in Non-Small Cell Lung Cancer. Translational Lung Cancer Research, 8, 1119-1124. https://doi.org/10.21037/tlcr.2019.10.22

  46. 46. Vittoria Dieci, M., Miglietta, F., Griguolo, G. and Guarneri, V. (2020) Biomarkers for HER2-Positive Metastatic Breast Cancer: Beyond Hormone Receptors. Cancer Treatment Reviews, 88, Article ID: 102064. https://doi.org/10.1016/j.ctrv.2020.102064

  47. 47. Zimmer, A.S., Van Swearingen, A.E.D. and Anders, C.K. (2020) HER2-Positive Breast Cancer Brain Metastasis: A New and Exciting Landscape. Cancer Reports, Article No. e1274. https://doi.org/10.1002/cnr2.1274

  48. 48. Vranić, S., Bešlija, S. and Gatalica, Z. (2021) Targeting HER2 Expression in Cancer: New Drugs and New Indications. Bosnian Journal of Basic Medical Sciences, 21, 1-4. https://doi.org/10.17305/bjbms.2020.4908

  49. 49. Chen, K., Pan, G., Cheng, G., Zhang, F., Xu, Y., Huang, Z., et al. (2021) Immune Microenvironment Features and Efficacy of PD-1/PD-L1 Blockade in Non-Small Cell Lung Cancer Patients with EGFR or HER2 Exon 20 Insertions. Thoracic Cancer, 12, 218-226. https://doi.org/10.1111/1759-7714.13748

  50. 50. Hackshaw, M.D., Danysh, H.E., Singh, J., Ritchey, M.E., Ladner, A., Taitt, C., et al. (2020) Incidence of Pneumonitis/Interstitial Lung Disease Induced by HER2-Targeting Therapy for HER2-Positive Metastatic Breast Cancer. Breast Cancer Research and Treatment, 183, 23-39. https://doi.org/10.1007/s10549-020-05754-8

  51. 51. Horvath, L. and Pircher, A. (2021) ASCO 2020 Non-Small Lung Cancer (NSCLC) Personal Highlights. Magazine of European Medical Oncology, 14, 66-69. https://doi.org/10.1007/s12254-020-00673-2

  52. 52. Santos, E.S. and Hart, L. (2020) Advanced Squamous Cell Carcinoma of the Lung: Current Treatment Approaches and the Role of Afatinib. OncoTargets and Therapy, 13, 9305-9321. https://doi.org/10.2147/OTT.S250446

  53. 53. Kazmi, S., Chatterjee, D., Raju, D., Hauser, R. and Kaufman, P.A. (2020) Overall Survival Analysis in Patients with Metastatic Breast Cancer and Liver or Lung Metastases Treated with Eribulin, Gemcitabine, or Capecitabine. Breast Cancer Research and Treatment, 184, 559-565. https://doi.org/10.1007/s10549-020-05867-0

  54. 54. André, F., Ciruelos, E.M., Juric, D., Loibl, S., Campone, M., Mayer, I.A., et al. (2021) Alpelisib plus Fulvestrant for PIK3CA-Mutated, Hormone Receptor-positive, Human Epidermal Growth Factor Receptor-2—Negative Advanced Breast Cancer: Final Overall Survival Results from SOLAR-1. Annals of Oncology, 32, 208-217. https://doi.org/10.1016/j.annonc.2020.11.011

  55. 55. Drilon, A., Oxnard, G.R., Tan, D.S.W., Loong, H.H.F., Johnson, M., Gainor, J., et al. (2020) Efficacy of Selpercatinib in RET Fusion-Positive Non-Small-Cell Lung Cancer. New England Journal of Medicine, 383, 813-824. https://doi.org/10.1056/NEJMoa2005653

  56. 56. Lin, J.J., Liu, S.V., McCoach, C.E., Zhu, V.W., Tan, A.C., Yoda, S., Peterson, J., et al. (2020) Mechanisms of Resistance to Selective RET Tyrosine Kinase Inhibitors in RET Fusion-Positive Non-Small-Cell Lung Cancer. Annals of Oncology, 31, 1725-1733. https://doi.org/10.1016/j.annonc.2020.09.015

  57. 57. Fancelli, S., Caliman, E., Mazzoni, F., Brugia, M., Castiglione, F., Voltolini, L., et al. (2021) Chasing the Target: New Phenomena of Resistance to Novel Selective RET Inhibitors in Lung Cancer. Updated Evidence and Future Perspectives. Cancers, 13, Article ID: 1091. https://doi.org/10.3390/cancers13051091

  58. 58. Rosen, E.Y., Johnson, M.L., Clifford, S.E., Somwar, R., Kherani, J.F., Son, J., et al. (2021) Overcoming MET-Dependent Resistance to Selective RET Inhibition in Patients with RET Fusion-Positive Lung Cancer by Combining Selpercatinib with Crizotinib. Clinical Cancer Research, 27, 34-42. https://doi.org/10.1158/1078-0432.CCR-20-2278

  59. 59. Subbiah, V., Shen, T., Terzyan, S.S., Liu, X., Hu, X., Patel, K.P., et al. (2021) Structural Basis of Acquired Resistance to Selpercatinib and Pralsetinib Mediated by Non-Gatekeeper RET Mutations. Annals of Oncology, 32, 261-268. https://doi.org/10.1016/j.annonc.2020.10.599

  60. 60. Solomon, B.J., Zhou, C.C., Drilon, A., Park, K., Wolf, J., Elamin, Y., et al. (2021) Phase III Study of Selpercatinib versus Chemotherapy ± Pembrolizumab in Untreated RET Positive Non-Small-Cell lung Cancer. Future Oncology, 17, 763-773. https://doi.org/10.2217/fon-2020-0935

  61. NOTES

    *通讯作者。

期刊菜单