Hans Journal of Ophthalmology
Vol. 13  No. 01 ( 2024 ), Article ID: 83314 , 8 pages
10.12677/hjo.2024.131002

户外光照和运动在防治近视中的研究进展

陈雪林1,董开业2,李才锐2*

1大理大学临床医学院,云南 大理

2大理大学第一附属医院眼科,云南 大理

收稿日期:2024年2月18日;录用日期:2024年3月18日;发布日期:2024年3月27日

摘要

近视(Myopia)是最常见的一种屈光不正,近年来全球近视眼患病率呈攀升趋势,使之成为全世界着重关注的健康问题,世界卫生组织已将近视防控列入《全球防盲计划》。增加户外活动已成为多个国家近视防控策略之一。目前,关于户外运动引起近视的防治作用存在争议,争论的焦点是无法确定运动本身或户外光照对近视的防治起主要作用,因此有不少研究人员致力于深入分析户外环境与运动对近视的独立影响。本综述将对户外光照和体力运动在预防和控制近视中的作用进行阐述。

关键词

户外光照,运动,近视

Research Progress of Outdoor Light and Exercise in the Prevention and Treatment of Myopia

Xuelin Chen1, Kaiye Dong2, Cairui Li2*

1School of Clinical Medicine, Dali University, Dali Yunnan

2Department of Ophthalmology, The First Affiliated Hospital of Dali University, Dali Yunnan

Received: Feb. 18th, 2024; accepted: Mar. 18th, 2024; published: Mar. 27th, 2024

ABSTRACT

Myopia is the most common kind of refractive error. In recent years, the global prevalence of myopia is increasing, making it a health problem that the world pays close attention to. The World Health Organization has included myopia prevention and control in the “Global Blind Prevention Program”. Increasing outdoor activities has become one of the myopia prevention and control strategies in many countries. At present, there is controversy about the prevention and treatment of myopia caused by outdoor sports, and the focus of the debate is that it is impossible to determine that exercise itself or outdoor light plays a major role in the prevention and treatment of myopia. Therefore, many researchers are committed to in-depth analysis of the independent impact of outdoor environment and exercise on myopia. This review will describe the role of outdoor light and physical exercise in the prevention and control of myopia.

Keywords:Outdoor Light, Physical Exercise, Myopia

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

随着全球近视流行的加速,高度近视眼占比增加。眼轴和近视度数增长会增加视网膜脱离、黄斑变性、青光眼等并发症的风险,甚至导致失明 ‎[1] ‎[2] ,对国家安全、社会就业形势、经济生产活动和个人健康造成极大影响 ‎[3] ‎[4] 。越早发生近视,以后患高度近视的可能性就越大 ‎[5] ‎[6] ,一旦发生无法矫正性视力损害会导致生活质量下降以及相关的经济负担。尽管与近视相关的视力威胁性疾病通常发生在生命后期,但潜在的近视是在童年时期发展起来的。近视一旦发生,无法治愈,不可逆转,但可防可控。因此,将近视防控年龄关卡前移,延后发病年龄,减缓近视进展对于预防高度近视眼及其并发症具有重大意义,这需要我们在儿童阶段采取干预措施来预防或减少近视的发展。现有研究表明,角膜塑形镜、药物治疗等对近视的预防和缓解有作用,但也存在一定弊端。比如,药物治疗中的阿托品会使机体产生耐药性,用药时瞳孔散大、畏光、视近困难,停药后容易反弹;长期佩戴角膜接触镜可能会诱发角膜炎。因此,如何安全有效地解决近视问题,仍是亟待突破的临床瓶颈。有研究表明,户外活动可使眼部血流量增加,导致脉络膜增厚从而抑制眼轴生长 ‎[7] ‎[8] 。因此,户外活动在预防近视发生、减少近视进展方面具有重大价值。增加户外活动被认为是防止或延迟近视发生的措施中最安全、最具成本效益的。然而,对于户外环境和运动本身是否是控制近视的独立因素尚存在争议。

2. 户外光照对近视的影响机制

2.1. 视网膜–脉络膜–巩膜途径

目前对近视的发病机制尚不明确,但视网膜–视网膜色素上皮细胞(Retinal Pigment Epithelium, RPE)-脉络膜–巩膜途径被广泛认为是近视发生的重要途经,即视觉信息经视网膜–RPE–脉络膜途径的复杂信号转导后,传递至巩膜,然后转化为影响巩膜重塑的信号,最终导致巩膜细胞外基质减少,巩膜变薄,眼轴变长而形成近视。巩膜胶原蛋白表达和巩膜重塑在近视眼的眼轴伸长中起重要作用,并且与许多近视信号通路相关。其中,转录生长因子-β (Transcriptional growth factor-β, TGF-β)信号通路对巩膜胶原表达和巩膜重塑具有正性调节作用,缺氧诱导因子-1α (Hypoxia Inducible Factor-1α, HIF-1α)信号通路对巩膜胶原表达和巩膜重塑具有负性调节作用,环磷酸腺苷(Cyclic Adenosine Mono Phosphate, cAMP)参与介导近视相关信号通路的双向调节。有研究表明多巴胺D1样受体可刺激腺苷酸环化酶活性,多巴胺D2样受体(D2R)可抑制其活性。D1R和D2R的拮抗作用发挥近视的稳态控制 ‎[9] 。光照可通过改变信号转导途径中的信号分子或结合蛋白活性及含量控制眼轴增长。比如,强光激活视网膜ON通路中的D1R信号,D1R与Gs蛋白偶联,激活腺苷酸环化酶,从而增加cAMP的合成并启动下游靶基因的转录,抑制形觉剥夺性近视的发展。

2.2. 多巴胺假说

户外光照环境对近视的防治机制主要归结于“光–多巴胺”假说。多巴胺(Dopamine, DA)作为一种近视保护性神经调节剂,可作用于特定视觉通路的DA受体,从而调控视杆细胞通路、视锥细胞通路和视网膜缝隙连接,进一步激活了多巴胺能无长突细胞(Dopaminergic Amacrine Cell, DAC),促进释放DA,增加了视网膜DA的含量,从而控制近视的发展。有研究 ‎[10] 指出,暴露在户外阳光下会刺激视网膜释放DA。增加室外光线可以通过上调视网膜中多巴胺的分泌,从而控制眼轴的长度来防控近视 ‎[11] 。在动物近视模型中,通过滴眼液或结膜下注射多巴胺激动剂——阿普洛芬,可以减缓近视进展 ‎[12] ,而在玻璃体内注射多巴胺抑制剂——螺旋体酮,发现近视进展加快 ‎[13] 。总而言之,多巴胺水平升高可以增加近视保护作用。由于中央神经系统和外周器官的多巴胺的复杂合成,以及它无法跨越血–脑屏障,目前对多巴胺能通路和近视的研究大多局限于动物模型,尚不清楚测量循环多巴胺的代谢产物是否可以推断出有效的视网膜多巴胺水平,是否符合人体屈光不正的进展情况。

3. 户外环境防治近视的因素

3.1. 光照强度

动物实验发现,暴露在低照度水平(50Lux)因形觉剥夺而产生近视和眼轴伸长,在15,000 Lux至25,000 Lux范围内的光照水平下会减少近视发生 ‎[14] 。有分析显示,光照强度大于3000 Lux是一个保护因素 ‎[15] ,而户外光照强度与天气、纬度、季节、海拔等相关。夏季近视进展较冬季慢,也说明光照强度对近视防治的影响。在雏鸡实验中观察到视网膜释放多巴胺的速率随着光强度的增加而增加 ‎[16] 。在一项研究 ‎[17] 中发现,无论是近视眼还是正视眼,随着光照时间延长,50 Lux光照使眼轴增长,而5000 Lux白光可以使眼轴缩短,这表明高光照度环境可能对近视有保护作用,暗光可能是近视的危险因素。那是否能说明光线越强越有利于控制近视呢?Landis等 ‎[18] 通过佩戴光传感器来监测儿童每日光照水平,发现与非近视儿童相比,近视儿童接受的暗视光和明视光都显著减少,说明暗光环境激发的视杆细胞通路,同样具有抑制轴性近视的作用,由此可见广泛的光照环境对视觉发育过程是必要的。

最适宜人眼屈光发育的光照强度尚无定论,仅现存的动物实验研究数据,可说明光照强度越强,近视发生及进展的风险越低,但光照强度过强会导致青少年儿童白内障、黄斑光损伤等疾病发生,台湾一项研究中建议可以考虑相对较低的室外光强度和较长时间的户外活动,例如在走廊或树荫下活动 ‎[19] 。

3.2. 户外时间

户外活动时间与儿童近视发病风险之间呈反比关系 ‎[20] 。户外时间保护近视的确切机制尚不清楚,但有报道称与DA的增加有关 ‎[21] 。短暂强光照射后DA代谢与合成未达到动态平衡,从而导致总体DA水平出现滞后。延长光照时间后,DA和代谢产物–二羟基苯乙酸(DOPAC)水平显示出对强光的适应,增加视网膜总体DA含量,从而发挥控制近视进展的作用。由此可以说明增加光照时间,强化明适应过程对控制近视的重要性 ‎[22] 。在控制了近距离工作和体力活动后,户外的时间保持对近视发展的保护,由此确定户外时间可以独立预测近视的发生率 ‎[23] 。在调整体力活动后,户外时间的风险比HR从0.70变为0.76,相当于效应量减少了约10%。

Sherwin等 ‎[24] 表示每周在户外多待一小时可导致儿童近视的风险降低2%。He等人 ‎[25] 对中国广州儿童进行的整群随机试验,研究发现,与通常的活动相比,在学校增加了40分钟的户外活动,虽然眼轴伸长差异未达到统计学意义,但降低了未来3年近视的发生率(30.4%比39.5%;P < 0.001)。尽管户外时间在延缓近视发生方面有更明确的益处,但在控制近视进展方面的价值仍然存在争议,大多数研究并未发现其具有保护作用。Xiong等 ‎[26] 发现户外时间对近视的发生有保护作用,但对近视的进展没有保护作用。和先贵团队 ‎[27] 对6~9岁学生使用腕戴式可穿戴设备对每天的室外和室内时间以及光强度进行2年客观监测,发现户外时间可以降低非近视儿童近视发病风险,但不会减缓已经近视的眼睛近视进展。然而,在一项对比研究中发现,与对照组相比,增加户外活动时间的干预组的近视进展和眼轴伸长都显着减少(0.35D vs. 0.47 D;0.28 mm vs. 0.33 mm;P = 0.002 和 P = 0.003) ‎[28] 。在2021年的一项研究中,发现8~12岁时在户外的平均时间越长,成年后发展为近视的风险就越低,并且如果儿童每天花在户外的时间从1小时增加到3小时,他们近视的风险可以减少50% ‎[29] 。台湾和新加坡的公共卫生干预建议儿童每天至少在户外活动2小时。我国《综合防控儿童青少年近视实施方案》中要求学校确保中小学生每天1小时以上体育活动。总之,增加户外时间可以预防近视发生,但延缓近视进展的作用尚存在争议,有必要进行进一步的全球研究来量化户外时间与近视之间的关系。

3.3. 光照波长

太阳光谱是连续光谱,人眼所能够接受的光波波长大约是390 nm~760 nm。通过纵向色差(LCA)得出,长波长单色光的焦点靠后,导致眼球代偿性增长而产生相对性近视;短波长单色光焦点靠前会产生相对性远视。大量动物研究支持LCA结论,例如,雏鸡 ‎[30] 、豚鼠 ‎[31] 、慈鲷鱼 ‎[32] 等在短波长光照射后出现相对远视,在长波长光照射出现相对近视。然而,Hung等 ‎[33] 发现窄带长波长红光照明导致幼年恒河猴出现远视,Liu等 ‎[34] 通过对幼年恒河猴的研究,发现610 nm红光能够促进恒河猴眼轴增长;经蓝光处理过的树鼩屈光状态由远视转向正视,最终变成近视。说明不同物种的生物即使在同一单色光照射下也会出现不同的屈光度变化,因此还需要进一步研究不同物种、不同年龄、特定波长分布以及暴露的时间等因素缓解近视的原因。有研究发现与色觉正常人群相比,红绿色盲人群的近视患病率明显较低 ‎[35] ,说明不同波长的光还可以通过对色觉通道产生不同的影响而调控眼球的生长。

于江等 ‎[36] 对8~13岁近视儿童进行650 nm红光照射治疗(每天2次,每次3 min,每周5天) 1年后,发现眼轴伸长减缓0.26 mm,近视屈光度进展减缓0.59 D。另外,Tian等人 ‎[37] 还得出结论,在为期6个月的试验中,650 nm重复低强度红光(RLRL)疗法可以显着延缓6~12岁儿童的近视进展,并且没有严重的副作用。RLRL用于近视防控的安全性和广泛实施是研究的两大问题。另外,这样的疗法对于高度近视是否有效,还需要进一步的科学研究。

长波紫外线(UVA,波长为320~400 nm)与可见紫光的波长(360~400 nm)有重合部分,是最不具破坏力的紫外线。在紫外线照射下,巩膜胶原会发生硬化,从而影响眼球的屈光发育。Torii等 ‎[38] 对147名日本近视儿童的研究发现,与佩戴防紫外线的隐形眼镜的儿童(n = 31)相比,佩戴紫外线透射隐形眼镜的儿童(n = 116)的眼睛生长缓慢0.05 mm/年。日常生活中过度的防紫外线措施,如佩戴防紫外线墨镜、使用防紫外线涂层的窗户等,这其实也挡住了有益的可见紫光的照射 ‎[38] ‎[39] 。紫光可能对预防近视很重要,所以在现代社会中,360~400 nm的紫光照射在评估安全性后可以作为近视防控的新策略。

3.4. 其他因素

从某种程度上来说,在室内的近处目标较多,对视网膜产生的远视散焦会导致儿童眼轴伸长和近视发展,而在室外附近物体很少的情况下可以消除这种刺激。此外,在室外光线较高的情况下,瞳孔预计会变小,从而增加焦深并进一步减少模糊,这些作用对视力改变具有保护作用。并且阳光会增加血液中维生素D的含量,可能有助于预防近视发展。

4. 体力活动与近视

运动在防治近视中的益处主要归因于运动时眼相关肌肉功能和血液循环的改善,运动后眼压降低,脉络膜血流速度增加,使视网膜供血充足。更高水平的视网膜血液供应可以有效促进儿童眼神经和肌肉的发育,还可以增强眼内调节肌和眼外会聚肌的收缩强度和调节能力。Siegrist等 ‎[40] 随访研究发现,儿童的体力活动水平越高,其视网膜静脉血管直径越薄,表明儿童的体力活动水平对视网膜微循环有积极影响。体力活动还可通过促进脉络膜灌注和增厚来减缓眼轴增长 ‎[7] ‎[8] ‎[41] 。

早期的研究发现,更多的体力活动可能通过运动引起的生化变化来预防近视。然而,这些研究没有控制户外活动的时间,也没有充分考虑到户外光照和体力活动的综合效应,并且大多使用问卷和访谈方式来分析体力活动对屈光变化的影响,从而导致回忆偏差,结果高估或低估对近视的影响 ‎[42] ‎[43] 。Jacobsen等人 ‎[44] 对151名一年级医学生进行为期2年的随访研究,使用封闭式问卷(是/否)来减少回忆偏差和访谈偏差,并且首次应用加速度计测量体力活动水平,发现体育活动对大学生近视的进展具有保护作用。但此项研究的体力活动是户外骑自行车,无法确定体力活动是防治近视的单一因素。后续研究证实,体育锻炼与近视防治之间存在强度-时间剂量关系。谌丁艳 ‎[45] 研究发现,中等强度的体育锻炼对保护儿童青少年的视力效果最好。徐少军等 ‎[46] 指出,只有体育锻炼持续时间在1小时以上才能起到防治近视的作用。高强度的运动刺激可以更大程度改善循环血量,从而促进眼部相关肌肉的血液供应改善到一定程度,进而起到缓解儿童近视的效果。Lundberg等人 ‎[47] 在一项针对307名丹麦儿童的体力活动与近视关系的前瞻性研究中,使用加速度计监测体力活动的时间和强度。排除年龄、性别等混杂因素后,线性回归并未发现体育锻炼与儿童眼球屈光度和平均眼轴长度增加之间的相关性。许韶君等 ‎[48] 研究发现,每天参加至少60 min的体育锻炼,8~12岁的小学生可显著降低近视发生的风险,而13~18岁学生的视力保护效果并不明显。因此,在实施近视干预手段时,针对不同年龄段儿童应有所不同。

为了探讨户外照明和运动对正视和近视儿童屈光度的影响,廖帅雄等 ‎[49] 将201名儿童分为近视与非近视,每组随机分为4组:室内运动组、室内对照组,室外运动组和室外对照组,运动量设定为中高强度有氧运动,每周3次,每次60 min,进行1年的随访研究,发现运动对近视的保护作用仅限于非近视儿童,而且运动对于近视儿童的近视缓解没有明显效果。目前研究中,控制户外光照因素而探索运动强度对近视进展的十分有限,需要投入更多研究。

5. 小结与展望

现有研究表明,无论是单纯运动还是户外照明,还是户外照明与运动的叠加,都是防治近视的关键。运动和户外环境并不能完全阻止儿童屈光度的下降,但可以有效减缓下降速度,延缓儿童近视的发生。未来的研究应该设计更加科学严谨的大规模实验,通过对室外曝光量和运动量的严格检测来检验近视防控效果。研究方向可以包括以下几个方面:1) 是否有最合适的光照强度和运动强度来改善近视;2) 上述两个因素中哪一个对近视效果更好;3) 进一步研究不同屈光度人群,如近视或正常视力,户外光线和运动对近视防治是否有不同效果;4) 日常生活中如何以及何时增加孩子的户外时间,能达到控制近视的最大效率。深入探索户外光照环境以及运动对屈光变化的研究有助于提高我们对户外活动在近视发病和控制中所起作用的理解,也有助于设计有针对性的近视干预措施,以应对近视发病率的上升。

文章引用

陈雪林,董开业,李才锐. 户外光照和运动在防治近视中的研究进展
Research Progress of Outdoor Light and Exercise in the Prevention and Treatment of Myopia[J]. 眼科学, 2024, 13(01): 7-14. https://doi.org/10.12677/hjo.2024.131002

参考文献

  1. 1. Guo, Y., Liu, L., Tang, P., Lv, Y., Wu, M., Liang, X., Zhang, L., Jonas, J.B. and Wang, Y. (2021) Progression of Myopic Maculopathy in Chinese Children with High Myopia: A Long-Term Follow-Up Study. Retina, 41, 1502-1511.https://doi.org/10.1097/IAE.0000000000003018

  2. 2. Fang, Y., Yokoi, T., Nagaoka, N., Shinohara, K., Onishi, Y., Ishida, T., Yoshida, T., Xu, X., Jonas, J.B. and Ohno-Matsui, K. (2018) Progression of Myopic Maculopathy during 18-Year Follow-Up. Ophthalmology, 125, 863-877.https://doi.org/10.1016/j.ophtha.2017.12.005

  3. 3. Sankaridurg. P., Tahhan, N., Kandel, H., et al. (2021) IMI Impact of Myopia. Investigative Ophthalmology & Visual Science, 62, Article 2. https://doi.org/10.1167/iovs.62.5.2

  4. 4. Lim, M.C.C., Gazzard, G., Sim, E.-L., Tong, L. and Saw, S.-M. (2009) Direct Costs of Myopia in Singapore. Eye, 23, 1086-1089. https://doi.org/10.1038/eye.2008.225

  5. 5. Chua, S.Y.L., Sabanayagam, C., Cheung, Y.-B., et al. (2016) Age of Onset of Myopia Predicts Risk of High Myopia in Later Childhood in Myopic Singapore Children. Ophthalmic and Physiological Optics, 36, 388-394.https://doi.org/10.1111/opo.12305

  6. 6. Pärssinen, O. and Kauppinen, M. (2019) Risk Factors for High Myopia: A 22-Year Follow-Up Study from Childhood to Adulthood. Acta Ophthalmologica, 97, 510-518. https://doi.org/10.1111/aos.13964

  7. 7. Sayin, N., Kara, N., Pekel, G. and Altinkaynak, H. (2015) Choroidal Thickness Changes after Dynamic Exercise as Measured by Spectral-Domain Optical Coherence Tomography. Indian Journal of Ophthalmology, 63, 445-450.https://doi.org/10.4103/0301-4738.159884

  8. 8. Insa-Sanchez, G., Fuentes-Broto, L., Cobos, A., et al. (2021) Choroidal Thickness and Volume Modifications Induced by Aerobic Exercise in Healthy Young Adults. Ophthalmic Research, 64, 604-612. https://doi.org/10.1159/000511201

  9. 9. Han, J., Gao, L., Dong, J., Wang, Y., Zhang, M. and Zheng, J. (2017) Dopamine Attenuates Ethanol-Induced Neuroapoptosis in the Developing Rat Retina via the cAMP/PKA Pathway. Molecular Medicine Reports, 16, 1982-1990.https://doi.org/10.3892/mmr.2017.6823

  10. 10. Dhakal, R., Vupparaboina, K.K. and Verkicharla, P.K. (2020) Anterior Sclera Undergoes Thinning with Increasing Degree of Myopia. Investigative Ophthalmology & Visual Science, 61, Article 6. https://doi.org/10.1167/iovs.61.4.6

  11. 11. Cao, K., Wan, Y., Yusufu, M. and Wang, N. (2020) Significance of Outdoor Time for Myopia Prevention: A Systematic Review and Meta-Analysis Based on Randomized Controlled Trials. Ophthalmic Research, 63, 97-105.https://doi.org/10.1159/000501937

  12. 12. Dong, F., Zhi, Z., Pan, M., Xie, R., Qin, X., Lu, R., Mao, X., Chen, J.F., Willcox, M.D., Qu, J. and Zhou, X. (2011) Inhibition of Experimental Myopia by a Dopamine Agonist: Different Effectiveness between form Deprivation and Hyperopic Defocus in Guinea Pigs. Molecular Vision, 17, 2824-2834.

  13. 13. Iuvone, P.M., Tigges, M., Stone, R.A., Lambert, S. and Laties, A.M. (1991) Effects of Apomorphine, a Dopamine Receptor Agonist, on Ocular Refraction and Axial Elongation in a Primate Model of Myopia. Investigative Ophthalmology & Visual Science, 32, 1674-1677.

  14. 14. Norton, T.T. (2016) What Do Animal Studies Tell Us about the Mechanism of Myopia—Protection by Light? Optometry and Vision Science, 93, 1049-1051. https://doi.org/10.1097/OPX.0000000000000917

  15. 15. Wen, L., Cao, Y., Cheng, Q., et al. (2020) Objectively Measured Near Work, Outdoor Exposure and Myopia in Children. British Journal of Ophthalmology, 104, 1542-1547. https://doi.org/10.1136/bjophthalmol-2019-315258

  16. 16. Cohen, Y., Peleg, E., Belkin, M., Polat, U. and Solomon, A.S. (2012) Ambient Illuminance, Retinal Dopamine Release and Refractive Development in Chicks. Experimental Eye Research, 103, 33-40.https://doi.org/10.1016/j.exer.2012.08.004

  17. 17. 李澜, 唐秀平, 邹云春, 等. 不同光照度的全光谱白光对人体眼轴的短期影响研究[J]. 四川医学, 2020, 41(1): 24-28.

  18. 18. Landis, E.G., Yang, V., Brown, D.M., et al. (2018) Dim Light Exposure and Myopia in Children. Investigative Ophthalmology & Visual Science, 59, 4804-4811. https://doi.org/10.1167/iovs.18-24415

  19. 19. Galvis, V., Tello, A., Gómez, L.M., Camacho, P.A. and Ortiz, R.G. (2018) Re: Wu et al.: Myopia Prevention and Outdoor Light Intensity in a School-Based Cluster Randomized Trial. (Ophthalmology. 2018;125:1239-1250) Ophthalmology, 125, E77. https://doi.org/10.1016/j.ophtha.2018.06.003

  20. 20. Guggenheim, J.A., Northstone, K., McMahon, G., Ness, A.R., Deere, K., Mattocks, C., Pourcain, B.S. and Williams, C. (2012) Time Outdoors and Physical Activity as Predictors of Incident Myopia in Childhood: A Prospective Cohort Study. Investigative Ophthalmology & Visual Science, 53, 2856-2865. https://doi.org/10.1167/iovs.11-9091

  21. 21. Lingham, G., Mackey, D.A., Lucas, R., et al. (2020) How Does Spending Time Outdoors Protect against Myopia? A Review. British Journal of Ophthalmology, 104, 593-599. https://doi.org/10.1136/bjophthalmol-2019-314675

  22. 22. Landis, E.G., Park, H.N., Chrenek, M., He, L., Sidhu, C., Chakraborty, R., et al. (2021) Ambient Light Regulates Retinal Dopamine Signaling and Myopia Susceptibility. Investigative Ophthalmology & Visual Science, 62, Article 28.https://doi.org/10.1167/iovs.62.1.28

  23. 23. Rose, K.A., Morgan, I.G., Ip, J., et al. (2008) Outdoor Activity Reduces the Prevalence of Myopia in Children. Ophthalmology, 115, 1279-1285. https://doi.org/10.1016/j.ophtha.2007.12.019

  24. 24. Sherwin, J.C., Reacher, M.H., Keogh, R.H., et al. (2012) The Association between Time Spent Outdoors and Myopia in Children and Adolescents: A Systematic Review and Meta-Analysis. Ophthalmology, 119, 2141-2151.https://doi.org/10.1016/j.ophtha.2012.04.020

  25. 25. He, M., Xiang, F., Zeng, Y., et al. (2015) Effect of Time Spent Outdoors at School on the Development of Myopia among Children in China: A Randomized Clinical Trial. JAMA, 314, 1142-1148.https://doi.org/10.1001/jama.2015.10803

  26. 26. Xiong, S., Sankaridurg, P., Naduvilath, T., et al. (2017) Time Spent in Outdoor Activities in Relation to Myopia Prevention and Control: A Meta-Analysis and Systematic Review. Acta Ophthalmologica, 95, 551-566.https://doi.org/10.1111/aos.13403

  27. 27. He, X., Sankaridurg, P., Wang, J., et al. (2022) Time Outdoors in Reducing Myopia: A School-Based Cluster Randomized Trial with Objective Monitoring of Outdoor Time and Light Intensity. Ophthalmology, 129, 1245-1254.https://doi.org/10.1016/j.ophtha.2022.06.024

  28. 28. Wu, P.C., Chen, C.T., Lin, K.K, et al. (2018) Myopia Prevention and Outdoor Light Intensity in a School-Based Cluster Randomized Trial. Ophthalmology, 125, 1239-1250. https://doi.org/10.1016/j.ophtha.2017.12.011

  29. 29. Lingham, G., Yazar, S., Lucas, R.M., Milne, E., Hewitt, A.W., Hammond, C.J., MacGregor, S., Rose, K.A., Chen, F.K., He, M., Guggenheim, J.A., Clarke, M.W., Saw, S.M., Williams, C., Coroneo, M.T., Straker, L. and Mackey, D.A. (2021) Time Spent Outdoors in Childhood Is Associated with Reduced Risk of Myopia as an Adult. Scientific Reports, 11, Article No. 6337. https://doi.org/10.1038/s41598-021-85825-y

  30. 30. Foulds, W.S., Barathi, V.A. and Luu, C.D. (2013) Progressive Myopia or Hyperopia Can Be Induced in Chicks and Reversed by Manipulation of the Chromaticity of Ambient Light. Investigative Ophthalmology & Visual Science, 54, 8004-8012. https://doi.org/10.1167/iovs.13-12476

  31. 31. Gawne, T.J., Siegwart, J.T., Ward, A.H. and Norton, T.T. (2016) The Wavelength Composition and Temporal Modulation of Ambient Lighting Strongly Affect Refractive Development in Young Tree Shrews. Experimental Eye Research, 155, 75-84. https://doi.org/10.1016/j.exer.2016.12.004

  32. 32. Kröger, R.H. and Wagner, H.J. (1996) The Eye of the Blue Acara (Aequidens pulcher, Cichlidae) Grows to Compensate for Defocus Due to Chromatic Aberration. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 179, 837-842. https://doi.org/10.1007/BF00207362

  33. 33. Hung, L.F., Arumugam, B., She, Z., et al. (2018) Narrow-Band, Long-Wavelength Lighting Promotes Hyperopia and Retards Vision-Induced Myopia in Infant Rhesus Monkeys. Experimental Eye Research, 176, 147-160.https://doi.org/10.1016/j.exer.2018.07.004

  34. 34. Liu, R, Hu, M., et al. (2014) The Effects of Monochromatic Illumination on Early Eye Development in Rhesus Monkeys. Investigative Ophthalmology & Visual Science, 55, 1901-1909. https://doi.org/10.1167/iovs.13-12276

  35. 35. Qian, Y.S., Chu, R.Y., He, J.C., et al. (2008) Incidence of Myopia in High School Students with and without Red-Green Color Vision Deficiency. Investigative Ophthalmology & Visual Science, 50, 1598-1605.https://doi.org/10.1167/iovs.07-1362

  36. 36. Jiang, Y., Zhu, Z., Tan, X., et al. (2021) Effect of Repeated Low-Level Red-Light Therapy for Myopia Control in Children: A Multicenter Randomized Controlled Trial. Ophthalmology, 129, 509-519. https://doi.org/10.1016/j.ophtha.2021.11.023

  37. 37. Tian, L., Cao, K., Ma, D.L., et al. (2022) Investigation of the Efficacy and Safety of 650 nm Low-Level Red Light for Myopia Control in Children: A Randomized Controlled Trial. Ophthalmology and Therapy, 11, 2259-2270.https://doi.org/10.1007/s40123-022-00585-w

  38. 38. Torii, H., Kurihara, T., Seko, Y., et al. (2016) Violet Light Exposure Can Be a Preventive Strategy against Myopia Progression. EBioMedicine, 15, 210-219. https://doi.org/10.1016/j.ebiom.2016.12.007

  39. 39. Jiang, X., Kurihara, T., Torii, H., et al. (2018) Progress and Control of Myopia by Light Environments. Eye & Contact Lens: Science & Clinical Practice, 44, 273-278. https://doi.org/10.1097/ICL.0000000000000548

  40. 40. Siegrist, M., Hanssen, H., Lammel, C., et al. (2018) Effects of a Cluster-Randomized School-Based Prevention Program on Physical Activity and Microvascular Function (JuvenTUM 3). Atherosclerosis, 278, 73-81.

  41. 41. Liu, Y., Wang, L., Xu, Y., et al. (2021) The Influence of the Choroid on the Onset and Development of Myopia: From Perspectives of Choroidal Thickness and Blood Flow. Acta Ophthalmologica, 99, 730-738.https://doi.org/10.1111/aos.14773

  42. 42. Jones, L.A., Sinnott, L.T., Mutti, D.O., et al. (2007) Parental History of Myopia, Sports and Outdoor Activities, and Future Myopia. Investigative Ophthalmology & Visual Science, 48, 3524-3532. https://doi.org/10.1167/iovs.06-1118

  43. 43. Foreman, J., Crowston, J.G. and Dirani, M. (2020) Is Physical Activity Protective against Myopia? British Journal of Ophthalmology, 104, 1329-1330. https://doi.org/10.1136/bjophthalmol-2020-316173

  44. 44. Jacobsen, N., Jensen, H. and Goldschmidt, E. (2008) Does the Level of Physical Activity in University Students Influence Development and Progression of Myopia?—A 2-Year Prospective Cohort Study. Investigative Ophthalmology & Visual Science, 49, 1322-1327. https://doi.org/10.1167/iovs.07-1144

  45. 45. 谌丁艳, 罗青山, 吴宇, 王赟, 熊华威, 周丽. 深圳市高一学生身体活动现状及其对视力的影响[J]. 中国学校卫生, 2015, 36(5): 693-695.

  46. 46. Xu, S.J., Wan, Y.H., Xu, Z.H., et al. (2016) [Association between Time Spent on Physical Exercise, Sleep, Homework and Suspected Myopia among Students]. Chinese Journal of Epidemiology, 37, 183-186.

  47. 47. Lundberg, K., Suhr Thykjaer, A., Søgaard Hansen, R., et al. (2017) Physical Activity and Myopia in Danish Children—The CHAMPS Eye Study. Acta Ophthalmologica, 96, 134-141. https://doi.org/10.1111/aos.13513

  48. 48. 许韶君, 万宇辉, 徐增辉, 等. 体育锻炼、睡眠和家庭作业时间与中小学生疑似近视的关系[J]. 中华流行病学杂志, 2016, 37(2): 183-186.

  49. 49. Liao, S., Li, X., Bai, N., et al. (2023) An Empirical Study on the Effect of Outdoor Illumination and Exercise Intervention on Children’s Vision. Frontiers in Public Health, 11, Article 1270826.https://doi.org/10.3389/fpubh.2023.1270826

  50. NOTES

    *通讯作者。

期刊菜单