International Journal of Psychiatry and Neurology
Vol.07 No.02(2018), Article ID:24871,4 pages
10.12677/IJPN.2018.72003

Progress in Protective Effect of the Endocannabinoids on the Amyotrophic Lateral Sclerosis

Shiyu Zhu, Yongli Lu, Hongwei Yang*

Department of Physiology and Pathophysiology, College of Medical Sciences of China Three Gorges University, Yichang Hubei

Received: Apr. 23rd, 2018; accepted: May 8th, 2018; published: May 15th, 2018

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a chronic progressive neurodegenerative disorder produced by the damage of the upper motor neurons and lower motor neurons leading to denervation, atrophy and paralysis of voluntary muscles of the trunk, limbs and face. The damage of these neurons occurs by the combination of several events including immunity, chronic inflammation, excitotoxicity, oxidative stress, viral infection and genetics. Recent evidence reveals that endocannabinoids serve as preventive treatment for ALS, based on their neuroprotective and anti-inflammatory effects. Here we summarized several aspects of the protective effect of endocannabinoids on the ALS, aiming at providing a new method for the treatment of ALS.

Keywords:Endocannabinoid System, Annabinoid Receptor, Amyotrophic Lateral Sclerosis

内源性大麻素系统在肌萎缩侧索硬化症中的作用研究进展

朱时钰,陆永利,杨红卫*

三峡大学医学院生理与病理生理学系,湖北 宜昌

收稿日期:2018年4月23日;录用日期:2018年5月8日;发布日期:2018年5月15日

摘 要

肌萎缩侧索硬化症(ALS)是一种以上运动神经元及下运动神经元及其支配的躯干、四肢和头面部肌肉的一种慢性进行性神经变性疾病。其病因可能涉及到免疫、慢性炎症、中毒、氧化应激、病毒感染或遗传特征等。最近的研究发现内源性大麻素系统(eCBs)可能是一种保护神经元免受伤害性刺激的内源性系统,对神经变性疾病的病程有预防和治疗作用。本文阐述了eCBs对ALS的拮抗效应,对于预防和治疗ALS提供新的理论依据。

关键词 :内源性大麻素(eCBs),大麻素受体(CB-R),肌萎缩侧索硬化症(ALS)

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

神经变性疾病(Neurodegenerative disease)是一类以神经元变性病变为基础的缓慢进展性疾病的总称,主要包括阿尔茨海默病(Alzheimer’s disease, AD)、帕金森病(Parkinson’s disease, PD)、亨廷顿病(Huntington disease, HD)及肌萎缩侧索硬化症(amyotrophic lateral sclerosis, ALS)等。成年人运动神经元病中最常见的疾病是ALS,其发病率约5人/10万,通常在罹患该病后于3~5年内死亡,男女患者之比大约为3:1,其中接近10%的ALS患者是常染色体显性或隐性遗传 [1] [2]。ALS常累及上运动神经元及下运动神经元及其支配的躯干、四肢和头面部肌肉的一种慢性进行性神经变性疾病 [3]。临床上常表现为上运动神经元和下运动神经元合并受损的混合性瘫痪。起病虽缓,但病情进展较快,多不伴有感觉功能的异常。ALS患者的自然病程约为3年,却有病情进展迅捷者可于发病1年内死亡,而病程进展慢的ALS患者可持续生存10年以上。究其病因,可能涉及到免疫、中毒、氧化应激、病毒感染或部分病例有遗传特征等 [4]。越来越多的研究表明活化的eCBs具有抗神经元凋亡、抗氧化应激及抗炎等功效,且eCBs与ALS的病程关系密切,有助于改善ALS患者的运动功能 [5] [6]。本文阐述了eCBs对ALS的拮抗效应,对于预防和治疗ALS提供新的理论依据。

2. 内源性大麻素系统

eCBs系统是二十碳不饱和脂肪酸的内源性代谢产物,包括各种不同的eCBs、大麻素的受体以及促进eCBs合成与降解的各种代谢酶等。迄今为止,发现的eCBs有2-花生四烯酸甘油(2-arachidonoyl-glycerol, 2-AG)、花生四烯酸氨基乙醇(anandamide或Arachidonoyl ethanolamide, AEA)、O-花生四烯酸乙醇胺(O-arachidonoyl-ethanolamine, OAE)、2-花生四烯酸甘油酯(2-arachidonoylglycerol ether,2-AGE)及N-花生四烯酸多巴胺(N-arachidonoyl-dopamine, NADA)等,而2-AG与AEA则是eCBs配体中研究最为广泛和深入的两种。大麻素受体则包括大麻素受体CB1和大麻素受体CB2两种类型,它们均为G-蛋白藕联偶联受体。2-AG与AEA可激活细胞膜上的CB1和CB2受体,从而调节神经细胞的功能。其中CB1受体主要存在于中枢神经系统神经元的突触前膜,被神经元突触后膜释放的eCBs所激活 [7] [8] ,CB2受体则主要分布在免疫系统中起免疫调节作用。越来越多的研究发现CB2受体在脑的星型胶质细胞和脑干神经元存在表达,揭示CB2受体也可参与脑的各种生理和不同的病理进程 [8]。

内源性大麻素2-AG的合成是由二酯酰甘油可转化而来,该酶促化学反应是由二酯酰甘油脂肪酶(diacylglycerol lipase, DGL)所催化,而2-AG的降解是由单酯酰甘油脂肪酶(monoacylglycerol lipase, MAGL)将其水解为花生四烯酸;而AEA的合成则是在磷脂酶D的作用下由N-花生四烯酸磷脂酰乙醇胺转化而来,AEA的降解是由脂肪酰胺水解酶(fatty acid amide hydrolase, FAAH)将其水解为花生四烯酸。

大量的研究表明eCBs可根据细胞需求而合成,内源性大麻素2-AG和AEA通过与CB1和CB2受体的结合,通过调制突触囊泡内神经递质的释放效率和突触的可塑性参与调节中枢神经系统的生理功能和病理进程 [7] [8]。

3. ALS的病理特征

愈来愈多的研究表明ALS并非单一累及运动系统的疾病,主要病理表现为异常蛋白的积聚与神经炎症。TDP-43由414个氨基酸构成,有两个RNA识别域和一个甘氨酸富含域,在ALS中发挥着重要作用。TDP-43主要位于神经元核内,参与mRNA的剪接、运输及稳定等过程。ALS运动神经元胞质含有TDP-43阳性的内含物是其ALS的典型病理特征,且伴随着正常的核蛋白的表达减少 [9]。TDP-43蛋白聚合物可经由轴桨运输由脑内向周围扩散,进而导致ALS患者症状之扩散。研究表明运动神经元胞质获得性毒性和核功能的丧失可能与ALS的发生有关 [10]。

4. eCBs系统对ALS的保护作用

目前有关eCBs对人ALS患者的研究甚少,eCBs系统的变化可反映该病的神经源性炎症的发病机理。迄今为止,尚无动物模型能精确反映ALS的病理特征。研究表明表达人SOD1突变的转基因小鼠(hSOD1G93A, hSOD1G85R, hSOD1G37R)的运动神经元变性在病理和细胞层面与家族遗传性或散发的ALS病例相似 [11] [12]。hSOD1G93A小鼠主要用于临床前测试治疗ALS的小鼠种系。罹患该病的动物经历发病起始、进展及其结果均接近模拟人ALS。

在ALS模型大鼠的研究表明,给予大麻素受体激动剂有益于ALS的病情进展 [13] [14] ,Bilsland等发现AEA和2-AG在脊髓腰膨大积聚,可能与eCBs的防御机制有关。Rossi等(2010)的研究报道在hSOD1G93A小鼠未见CB2免疫活性的增强,CB1受体的表达在症状前阶段是降低的,但在有症状阶段却是增强的,可能与纹状体CB1受体的上调有关。

在ALS模型小鼠,大麻素的有效成分四氢大麻酚能延长小鼠的生存率和延迟运动损伤 [15] ,Bilsland等的研究揭示大麻素的激动剂WIN55,212-2可延迟病情的进展,在FAAH基因敲除的ALS小鼠,由于增加细胞内AEA的水平提高了运动神经元的生存率,表明eCBs对ALS小鼠具有神经保护作用。去除CB1受体的ALS小鼠,并不能增加运动神经元的生存率,但可延长其寿命。而Kim等的研究表明在ALS起始以后应用CB2激动剂AM1241可延缓病情进展,在ALS患者的脊髓激活的小胶质细胞提示CB2受体表达的增强,研究表明CB2受体介导了ALS的进展 [16] [17]。eCBs对ALS小鼠具有神经保护作用,而且没有四氢大麻酚的精神方面副作用,因此eCBs可有望成为治疗ALS新的治疗靶点。

5. 小结与展望

eCBs系统治疗神经变性疾病ALS的机制尚不清楚,但eCBs系统在中枢神经系统具有十分广泛的分布及对神经细胞具有精确的调制作用,这为延缓ALS的病程或治疗ALS带来了希望。但eCBs系统和ALS之间的关系还有待进一步的研究来发现和证实,无疑这些新的研究将有助于揭示ALS的发病机制,并为进一步探究ALS的分子靶向干预治疗提供新的理论基础。

文章引用

朱时钰,陆永利,杨红卫. 内源性大麻素系统在肌萎缩侧索硬化症中的作用研究进展
Progress in Protective Effect of the Endocannabinoids on the Amyotrophic Lateral Sclerosis[J]. 国际神经精神科学杂志, 2018, 07(02): 19-22. https://doi.org/10.12677/IJPN.2018.72003

参考文献

  1. 1. Pasinelli, P. and Brown, R.H. (2006) Molecular Biology of Amyotrophic Lateral Sclerosis: Insights from Genetics. Nature Reviews. Neuroscience, 7, 710-723. https://doi.org/10.1038/nrn1971

  2. 2. Al-Chalabi, A. and Hardiman, O. (2013) The Epidemiology of ALS: A Conspiracy of Genes, Environment and Time. Nature Reviews Neurology, 9, 617-628. https://doi.org/10.1038/nrneurol.2013.203

  3. 3. Verde, F., Del Tredici. K., Braak, H., et al. (2017) The Multisystem Degeneration Amyotrophic Lateral Sclerosis—Neuropathological Staging and Clinical Translation Ludolph A. Archives Italiennes de Biologie, 155, 118-130.

  4. 4. Renton, A.E., Chiò, A. and Traynor, B.J. (2014) State of Play in Amyotrophic Lateral Sclerosis Genetics. Nature Neuroscience, 17, 17-23. https://doi.org/10.1038/nn.3584

  5. 5. Pryce, G. and Baker, D. (2015) Endocannabinoids in Multiple Sclerosis and Amyotrophic Lateral Sclerosis. Handbook of Experimental Pharmacology, 231, 213-231. https://doi.org/10.1007/978-3-319-20825-1_7

  6. 6. Fernández-Ruiz, J., Moro, M.A. and Martínez-Orgado, J. (2015) Cannabinoids in Neurodegenerative Disorders and Stroke/Brain Trauma: From Preclinical Models to Clinical Applications. Neurotherapeutics, 12, 793-806. https://doi.org/10.1007/s13311-015-0381-7

  7. 7. Araque, A., Castillo, P.E., Manzoni, O.J., et al. (2017) Synaptic Functions of Endocannabinoid Signaling in Health and Disease. Neuropharmacology, 5, 13-24. https://doi.org/10.1016/j.neuropharm.2017.06.017

  8. 8. Xu, J. and Chen, C. (2015) Endocannabinoids in Synaptic Plasticity and Neuroprotection. Neuroscientist, 21, 152-168. https://doi.org/10.1177/1073858414524632

  9. 9. Espejo-Porras, F., Piscitelli, F., Verde, R., et al. (2015) Changes in the Endocannabinoid Signaling System in CNS Structures of TDP-43 Transgenic Mice: Relevance for a Neuroprotective Therapy in TDP-43-Related Disorders. Journal of NeuroImmune Pharmacology, 10, 233-244. https://doi.org/10.1007/s11481-015-9602-4

  10. 10. Layfield, R., Cavey, J.R. and Lowe, J. (2003) Role of Ubiquitin-Mediated Proteolysis in the Pathogenesis of Neurodegenerative Disorders. Ageing Research Reviews, 2, 343-356. https://doi.org/10.1016/S1568-1637(03)00025-4

  11. 11. Zhou, Q., Wang, Y., Zhang, J., et al. (2018) Fingerprint Analysis of Huolingshengji Formula and Its Neuroprotective Effects in SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis. Scientific Reports, 8, 1668. https://doi.org/10.1038/s41598-018-19923-9

  12. 12. Bonifacino, T., Cattaneo, L., Gallia, E., et al. (2017) In-Vivo Effects of Knocking-Down Metabotropic Glutamate Receptor 5 in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis. Neuro-pharmacology, 23, 433-445. https://doi.org/10.1016/j.neuropharm.2017.06.020

  13. 13. Navarro, G., Morales, P., Rodríguez-Cueto, C., et al. (2016) Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders. Frontiers in Neuroscience, 10, 406. https://doi.org/10.3389/fnins.2016.00406

  14. 14. Fernández-Ruiz, J., Moro, M.A., Martínez-Orgado, J., et al. (2015) Cannabinoids in Neurodegenerative Disorders and Stroke/Brain Trauma: From Preclinical Models to Clinical Applications. Neurotherapeutics, 12, 793-806. https://doi.org/10.1007/s13311-015-0381-7

  15. 15. Haug, N.A., Kieschnick, D., Sottile, J.E., et al. (2016) Training and Practices of Cannabis Dispensary Staff. Cannabis and Cannabinoid Research, 1, 244-251. https://doi.org/10.1089/can.2016.0024

  16. 16. Pryce, G. and Baker, D. (2015) Endocannabinoids in Multiple Sclerosis and Amyotrophic Lateral Sclerosis. Handbook of Experimental Pharmacology, 231, 213-231. https://doi.org/10.1007/978-3-319-20825-1_7

  17. 17. Espejo-Porras, F., Fernández-Ruiz, J. and de Lago, E. (2018) Analysis of Endocannabinoid Receptors and Enzymes in the Post-Mortem Motor Cortex and Spinal Cord of Amyotrophic Lateral Sclerosis Patients. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 15, 1-10. https://doi.org/10.1080/21678421.2018.1425454

NOTES

*通讯作者。

期刊菜单