Journal of Advances in Physical Chemistry
Vol. 07  No. 04 ( 2018 ), Article ID: 27455 , 11 pages
10.12677/JAPC.2018.74020

Synthesis, Structure and Fluorescence Properties of Transition Metal Coordination Polymers Constructed by 3,5-bis(3’,5’-dicarboxylphenyl)- 1H-1,2,4-triazole

Zhe Li1, Jianing Xu2, Yong Fan2, Li Wang2, Jia Jia1*

1College of Chemistry, Baicheng Normal University, Baicheng Jilin

2College of Chemistry, Jilin University, Changchun Jilin

Received: Oct. 18th, 2018; accepted: Nov. 1st, 2018; published: Nov. 8th, 2018

ABSTRACT

Two novel coordination polymers [Zn(H2L)(H2O)2·H2O]n (1) and [Cd(H2L)(H2O)2·H2O]n (2) were synthesized by self-assembly of 3,5-bis(3’,5’-dicarboxylphenyl)-1H-1,2,4-triazole (H4L) ligand and metal ions Zn(II)/Cd(II). The compounds were characterized by single crystal X-ray diffraction, powder X-ray diffraction, IR, elemental analysis and thermogravimetric analysis. The results show that compounds 1 and 2 are two-dimensional layered structures. The three carboxyl groups of H2L2− ligand in 1 are bridged zinc ions in monodentate coordination mode, while two carboxyl groups in 2 are bidentate chelating and another one is monodentate coordination. The adjacent 2D layers are extended to three-dimensional supramolecular structures by hydrogen bonding and π-π stacking interaction. The fluorescence emission spectra of solid state show that 1 and 2 have good fluorescence properties, and their luminescence mechanism is attributed to π→π* transition of ligands. In addition, different organic small molecules have different effects on the fluorescence intensity of compound 1, and acetone has a significant quenching effect on it. Based on the mechanism of fluorescence quenching, 1 can be used as a promising fluorescent probe for detecting acetone.

Keywords:Coordination Polymer, Crystal Structure, Fluorescence, Sensing Property

3,5-二(3’,5’-二羧基苯基)-1,2,4-三唑构筑的 过渡金属配位聚合物的合成、结构和 荧光性质

李哲1,徐家宁2,范勇2,王莉2,贾佳1*

1白城师范学院化学学院,吉林 白城

2吉林大学化学学院,吉林 长春

收稿日期:2018年10月18日;录用日期:2018年11月1日;发布日期:2018年11月8日

摘 要

以3,5-二(3’,5’-二羧基苯基)-1,2,4-三唑(H4L)为有机配体,分别与Zn(II)和Cd(II)离子反应,通过自组装形成两个新型配位聚合物 [Zn(H2L)(H2O)2·H2O]n(1)和[Cd(H2L)(H2O)2·H2O]n(2)。通过单晶及粉末X射线衍射、红外光谱、元素分析和热重分析对化合物进行了表征。结果表明化合物1和2为二维层状结构,1中H2L2−配体的三个羧基均采取单齿配位模式桥联Zn(II),而2中H2L2−配体有两个羧基采取双齿螯合配位,另外一个羧基单齿配位。相邻的二维层之间又通过氢键和π-π堆积作用拓展为三维超分子结构。固体荧光发射光谱表明,化合物1和2具有良好的荧光性质,其发光机理归因于配体的π→π*跃迁。此外,不同有机小分子对化合物1的荧光强度有不同程度的影响,丙酮对其有显著的淬灭作用,基于荧光淬灭机理,化合物1可以作为一种有前途的荧光探针用于检测丙酮小分子。

关键词 :配位聚合物,晶体结构,荧光,传感性质

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

配位聚合物作为一种多功能材料,在气体存储 [1] [2] 、分子分离 [3] [4] [5] 、催化 [6] [7] 、质子传导 [8] [9] 、发光和化学传感 [10] [11] [12] [13] [14] 等方面的潜在应用得到了广泛的研究。在其中一些领域,配位聚合物的性能超过了传统或基准材料,显示出了商业化的潜在价值。利用金属离子和有机配体种类的丰富性及配位模式的多样性可以合成出具有新颖结构及独特性质的配位聚合物,特别是发光配位聚合物可用作荧光化学传感器,实现对特定物质的检测,如用于环境中有毒有害气体和蒸气、重金属离子、有机小分子等的检测 [15] - [26] 。然而,合理的预测、设计与合成目标配位聚合物仍是巨大的挑战。由于d10金属d轨道全部充满,没有d-d跃迁,不会造成潜在的荧光淬灭,因此d10金属配位聚合物具有良好的发光性能,可以作为潜在的荧光化学传感器。丙酮是一种高挥发性有机溶剂,据报道,人类可以通过多种途径很容易地吸收丙酮,如吸入,摄入和皮肤暴露。被吸收的丙酮分布在整个身体,特别是在高含水量的器官,这将导致代谢紊乱,对人体有毒性作用。考虑到丙酮的广泛应用和潜在的危害,开发新的传感器来检测它是迫切需要的。到目前为止,只有少数已报道的发光配位聚合物检测丙酮 [27] 。

有机配体的选择对构筑发光配位聚合物也至关重要。π共轭体系的芳香类配体使荧光增强,同时羧基和唑类基团可以采取多种配位模式,构筑迷人的骨架结构。本文选择3,5-二(3’,5’-二羧基苯基)-1,2,4-三唑(H4L)为有机配体,与d10金属Zn(II)和Cd(II)离子反应,构筑了两个新型配位聚合物[Zn(H2L)(H2O)2·H2O]n(1)和[Cd(H2L)(H2O)2·H2O]n(2),研究它们的晶体结构、热稳定性及荧光性质,并进一步探讨了有机小分子对化合物1的荧光响应。结果表明,化合物1可以选择性地检测丙酮。

2. 实验部分

2.1. 试剂与仪器

氯化锌[ZnCl2]、氯化镉[CdCl2·2.5H2O]和盐酸购于国药集团化学试剂有限公司;3,5-二(3’,5’-二羧基苯基)-1,2,4-三唑购于济南恒化科技有限公司。以上试剂均为分析纯。

Bruker Smart CCD 1000型X-射线单晶衍射仪(德国Bruker公司);SHIMADZU XRD-6000型粉末X-射线衍射仪(日本SHIMADZU公司);Perkin Elmer 2400型元素分析仪(美国Perkin Elmer公司);Nicolet Impact 410 型傅里叶变换红外光谱仪(美国Nicolet公司);Perkin-Elmer TGA-7型热重分析仪(美国Perkin Elmer公司);Edinburgh Instrument FLS920型稳态瞬态荧光光谱仪(英国Edinburgh公司);Perkin Elmer LS-55荧光分光光度计(美国Perkin Elmer公司)。

2.2. 实验过程

2.2.1. 化合物1的合成

将ZnCl2 (0.0272 g, 0.2 mmol),H4L配体(0.0397 g, 0.1 mmol)和H2O (5.0 mL)依次加入到50 mL的烧杯中,在不断搅拌下加入HCl (6 M, 0.1 mL),继续搅拌30分钟后将混合物移至25 mL带有聚四氟乙烯内衬的不锈钢反应釜中,在170℃的烘箱中加热72小时,冷却到室温后得到黄色块状晶体,将得到的产物过滤,自然干燥,产率为54.0% (以H4L配体计算)。元素分析理论值(C18 H15 N3 O11 Zn):C,42.00;H,2.94;N,8.16%。实验值:C,41.96;H,2.88;N,8.17%。主要的红外吸收峰(KBr, cm−1):3440(s),2958(s),2626(m),1652(s),1510(w),1453(s),1398(s),1293(w),1198(w),1111(w),1008(m),920(w),833(m),782(w),759(s),745(s),704(m),663(w),637(w),542(w),459(w)。

2.2.2. 化合物2的合成

化合物2的合成过程和化合物1相似,只是用CdCl2·2.5H2O (0.0456 g, 0.2 mmol)取代ZnCl2。产物为黄色块状晶体,产率为38.0%(以H4L配体计算)。元素分析理论值(C18 H15 Cd N3 O11):C,38.49;H,2.69;N,7.48%。实验值:C,38.47;H,2.73;N,7.47%。主要的红外吸收峰 (KBr, cm−1):3436(s),2930(s),2625(m),1652(s),1511(w),1403(s),1368(s),1292(w),1198(w),1111(w),1008(m),921(w),833(m),782(w),759(s),745(s),704(m),670(w),637(w),549(w),463(w)。

2.2.3. 晶体结构测定

化合物1和2的晶体数据于室温下在Bruker Smart CCD 1000型X-射线单晶衍射仪上收集,以Mo Kα (λ = 0.071073 nm)射线作为入射光源。晶体数据采用SHELXTL 97软件处理,由原子各向异性确定非氢原子,几何加氢确定配体中的氢原子。化合物1和2的结构精修参数和晶体学数据如表1所示。

Table 1. Crystal data and structure refinement for compounds 1 and 2

表1. 化合物1和2的晶体学数据和结构精修

aR1 = Σ|Fo| − |Fc|/Σ|Fo|. bwR2 = Σ[w(Fo2 − Fc2)2]/Σ[w(Fo2)2]1/2

3. 结果与讨论

3.1. 晶体结构

3.1.1. 化合物[Zn(H2L)(H2O)2·H2O]n (1)的晶体结构

单晶结构分析表明化合物1属于单斜晶系,C 2/c空间群,不对称单元中包含一个Zn(II)离子,一个H2L2−配体,两个配位水分子和一个游离水分子。如图1(a)所示,Zn(II)离子是五配位的,分别与两个配位水中的氧原子和来自三个不同的H2L2−配体中的三个氧原子(O1、O5和O6)配位,Zn-O键长范围1.998(14)~2.109(2) Å。H4L配体并没有完全去质子化,而是脱掉两个H+形成H2L2−配体,每个H2L2−配体中的三个羧基分别采取单齿配位模式桥联三个不同的Zn(II)离子,在bc面上形成一个二维层(图1(b)),相邻的二维层状结构通过氢键O4-H1w···O2和O3-H4w···O1连接成三维超分子结构(图1(c))。主要氢键的键长和键角见表2。此外,相邻的层状结构中有近乎平行的苯环和三唑环,存在π-π堆积作用进一步稳定超分子结构(图1(c))。H2L2−配体中的两个苯环所在的平面之间的二面角为1.362˚,心心距离为3.525 Å,而两个三唑环所在的平面之间的二面角为0.709˚,心心距离为3.342 Å (图1(c))。

Figure 1. (a) Coordination environment of Zn(II) ions in 1; (b) view of 2D layer in 1 in the bc plane (hydrogen atoms and lattice water molecules are omitted for clarity); (c) the packing pattern of the adjacent layers viewed along b-axis through hydrogen bonds and π-π stacking interactions

图1. (a) 化合物1中锌离子的配位环境;(b) 化合物1在bc平面的二维层状结构图(省略氢原子和晶格水分子);(c) 沿着b轴方向,相邻的层状结构通过氢键和π-π堆积作用形成的三维堆积图

Table 2. Hydrogen bond lengths and bond angles for compound 1

表2. 化合物1中的氢键的键长和键角

Symmetry transformations used to generate equivalent atoms: #1: 1/2-x, -1/2-y, 1-z; #4: -x, y, 1/2-z.

3.1.2. 化合物[Cd(H2L)(H2O)2·H2O]n (2)的晶体结构

单晶结构分析表明化合物2属于三斜晶系,P-1空间群,不对称单元中包含一个Cd(II)离子,一个H2L2配体,两个配位水分子和一个游离水分子。如图2(a)所示,Cd(II)离子是七配位的,分别与两个配位水中的氧原子和来自三个不同的H2L2配体中的五个氧原子配位,Cd-O键长范围2.26(3)~2.50(3) Å。部分去质子化的H2L2配体的配位方式与化合物1不同,其中两个羧基采取双齿螯合配位,而另外一个羧基单齿配位,在bc平面连接三个不同的Cd(II)离子形成一个二维层(图2(b))。相邻的二维层状结构通过氢键O5-H5···O9,O5-H6···O3,O9-H8···O1和O9-H11···O4连接成三维超分子结构(图2(c))。主要氢键的键长和键角见表3。与化合物1相似,相邻的层状结构中同样有近乎平行的苯环和三唑环,存在π-π堆积作用(图2(c))。H2L2配体中的苯环所在的平面之间的二面角为1.293˚,心心距离为3.579 Å,而两个三唑环所在的平面则完全平行,心心距离为3.391 Å (图2(c))。

Figure 2. (a) Coordination environment of Cd(II) ions in 2; (b) view of 2D layer in 2 (hydrogen atoms are omitted for clarity); (c) the packing pattern of the adjacent layers through hydrogen bonds and π-π stacking interactions

图2. (a) 化合物2中镉离子的配位环境;(b) 化合物2的二维层状结构(省略氢原子);(c) 相邻的层状结构通过氢键和π-π堆积作用形成的三维堆积图

Table 3. Hydrogen bond lengths and bond angles for compound 2

表3. 化合物2中的氢键的键长和键角

Symmetry transformations used to generate equivalent atoms: #1: 1+x, y, z; #2: -1-x, 1-y, -z; #3: 1-x, 1-y, 1-z; #4: -x, -y, -z.

3.2. 粉末x射线衍射和热失重分析

化合物1和2的粉末XRD谱图及模拟XRD谱图如图3所示,这两个化合物的粉末XRD谱图衍射峰的位置与其模拟XRD谱图基本一致,表明所合成的化合物均为纯相,衍射峰的强度差异可能是由于晶体的晶面取向造成的。

(a)(b)

Figure 3. Simulated and experimental X-ray diffraction patterns of compounds 1 (a) and 2 (b)

图3. 化合物1 (a)和2 (b)的模拟和实验XRD粉末衍射谱图

为了研究化合物1和2的热稳定性,在空气气氛测定它们的TGA曲线,如图4所示。化合物1的第一个失重台阶从室温至248℃,归属为游离水和配位水的失去 (实验值:10.45%,理论值:10.49%),1的骨架从390℃开始分解,直到513℃骨架分解完全,最终产物为ZnO (实验值:15.51%,理论值:15.81%)。化合物2在室温至260℃间失重11.2%,对应于水分子的失去(理论失重是9.61%),从330℃开始配体逐渐分解,并伴随着化合物骨架的坍塌。

Figure 4. The TGA curves of compounds 1 and 2

图4. 化合物1和2的热重曲线

3.3. 荧光性质

图5(a)是化合物1,2和自由的H4L配体在室温下的固体荧光发射光谱图。以380 nm的光激发,化合物1和2均展示出强的宽发射峰,最大峰值分为470 nm和483 nm。与H4L配体的最大发射峰454 nm相比较,峰位均发生了红移,但是发射峰的形状与配体的基本一致,该峰归属于π→π*跃迁。此外,发射峰强度比配体的高很多,这是因为有机配体被固定在MOFs中,从而降低了非辐射衰变率,导致荧光强度增加 [28] 。化合物1的荧光发射峰覆盖了400~700 nm的范围,CIE坐标为(0.306, 0.340),比较接近理想白光坐标(0.333, 0.333),量子产率为2.65% (图5(b))。

(a) (b)

Figure 5. (a) Luminescence spectra of 1, 2 and H4L ligand in the solid state at room temperature; (b) the CIE chromaticity diagram for 1 under excitation wavelength at 380 nm

图5. (a)化合物1, 2和H4L配体在室温下的固体荧光发射光谱图;(b)化合物1在380 nm激发波长的CIE色度图

室温下化合物1,2及H4L配体的荧光寿命曲线如图6所示,该曲线符合二阶实验方程:I = I0 + A1 exp(−t/τ1) + A2 exp(−t/τ2),这里的I和I0分别表示当t = t和t = 0时的荧光强度,τ1和τ2定义为荧光寿命。由此方程得到最适合实验荧光强度的荧光寿命为:化合物1中τ1 = 1.69 ns,τ2 = 5.93 ns,化合物2中τ1 = 1.74 ns,τ2 = 5.78 ns,H4L配体中τ1 = 1.53 ns,τ2 = 5.94 ns。

(a)(b)(c)

Figure 6. Luminescence decay profiles for compounds 1 (a), 2 (b) and H4L ligand (c) recorded at room temperature

图6. 化合物1 (a),2 (b)和H4L配体(c)在室温下的荧光寿命曲线

基于化合物1比2产率高且具有良好的发光性能,继续探讨了化合物1在有机小分子检测方面的潜在应用。将3 mg化合物1分散于3 mL不同纯溶剂中,分别为丙酮(acetone),三氯甲烷(CHCl3),四氯化碳(CCl4),乙腈(CH3CN),甲醇(MeOH),乙醇(EtOH),N,N-二甲基甲酰胺(DMF),N,N-二甲基乙酰胺(DMA),乙酸乙酯(ethyl acetate)。经超声30 min然后自然沉降形成稳定的化合物1悬浮液。在激发波长290 nm下测试各悬浮液的荧光光谱(图7(a))。化合物1的荧光性质与溶剂种类有较大的关联,这一现象可能主要归因于框架结构与不同溶剂分子之间的不同相互作用 [29] ,并且各悬浮液的最大发射峰位置有不同程度的位移,这可能是由于溶剂分子的极性不同造成的 [30] 。在丙酮溶剂中,体现了较强的淬灭效应(图7(b))。

在乙酸乙酯的悬浮液中,化合物1的发射峰最强,因此在接下来的传感实验中,我们主要采用乙酸乙酯作为分散介质,不断增加丙酮的量,监测荧光发射光谱的变化,从而研究传感丙酮的灵敏度。随着丙酮量的增加,悬浮液的荧光强度逐渐降低(图8(a))。荧光强度的降低与丙酮的浓度是成比例的,1的荧光强度随丙酮体积比的下降趋势可以用一阶指数衰减来拟合[R2 = 0.995] (图8(b)),表明丙酮对1的荧光淬灭是扩散控制的 [31] [32] [33] [34] 。当丙酮的体积分数为1%时,荧光淬灭效率为88% (淬灭效率 = (1 − I/I0) × 100%,I0和I分别表示没加丙酮和加入丙酮之后的荧光强度)。化合物1和溶剂的物理作用对小分子溶剂的荧光淬灭起着至关重要的作用。这种淬灭机制是由于被激发的配合物分子与吸附在配合物表面和孔隙中的丙酮分子之间的光源能量的竞争。激发时,由有机配体吸收的能量转移到丙酮分子,导致荧光强度的降低。以上结果表明化合物1可以作为一种有前途的荧光探针用于检测丙酮小分子 [31] [32] [33] [34] 。

(a)(b)

Figure 7. (a) PL spectra of 1 introduced into various pure solvents when excited at 290 nm; (b) comparison of luminescence intensity of 1-solvent emulsions at room temperature (excited at 290 nm). Solvent: a. ethyl acetate; b. DMF; c. MeOH; d. EtOH; e. CCl4; f. CH3CN; g. DMA; h. CHCl3; i. acetone

图7. (a) 290 nm 激发波长下化合物1在不同溶剂中的荧光发射光谱图;(b)室温下化合物1的悬浮液的荧光强度对比图(激发波长290 nm),溶剂:a. 乙酸乙酯;b. N,N-二甲基甲酰胺;c. 甲醇;d. 乙醇;e. 四氯化碳;f. 乙腈;g. N,N-二甲基乙酰胺;h.三氯甲烷;i. 丙酮

(a)(b)

Figure 8. (a) Fluorescence titration of 1 dispersed in ethyl acetate (1 mg/mL) with gradual addition of acetone, λex = 290 nm; (b) luminescence intensity of 1 dispersed in ethyl acetate versus the volume ratio of acetone

图8. (a) 分散在乙酸乙酯中的化合物1 (1 mg/mL),逐渐滴加丙酮的荧光滴定,激发波长290 nm;(b) 分散在乙酸乙酯中的化合物1的荧光强度对丙酮含量的曲线图

4. 结论

水热条件下,以H4L配体分别与Zn(II)和Cd(II)离子反应,合成了两个新型二维层状配位聚合物 [Zn(H2L)(H2O)2·H2O]n (1)和[Cd(H2L)(H2O)2·H2O]n (2)。化合物1是单斜晶系,C 2/c空间群,而化合物2是三斜晶系,P-1空间群。整个反应体系的酸性过高,使得H4L配体的羧基没有完全去质子化,而是脱掉两个H+形成H2L2−配体,从而减少了配位点,使得化合物的维度拓展受限。化合物通过氢键和π-π堆积作用形成三维超分子结构。此外,固体荧光发射光谱表明,1和2具有良好的荧光性质,比自由的H4L配体的发光强度高很多,且1可以作为检测丙酮的荧光化学传感器。

基金项目

国家自然科学基金(批准号:21171065,21201077)资助。

文章引用

李 哲,徐家宁,范 勇,王 莉,贾 佳. 3,5-二(3’,5’-二羧基苯基)-1,2,4-三唑构筑的过渡金属配位聚合物的合成、结构和荧光性质
Synthesis, Structure and Fluorescence Properties of Transition Metal Coordination Polymers Constructed by 3,5-bis(3’,5’-dicarboxylphenyl)-1H-1,2,4-triazole[J]. 物理化学进展, 2018, 07(04): 163-173. https://doi.org/10.12677/JAPC.2018.74020

参考文献

  1. 1. Sculley, J., Yuan, D. and Zhou, H.C. (2011) The Current Status of Hydrogen Storage in Metal-Organic Frameworks—Updated. Ener-gy & Environmental Science, 4, 2721-2735. https://doi.org/10.1039/c1ee01240a

  2. 2. Suh, M.P., Park, H.J., Prasad, T.K. and Lim, D.W. (2012) Hydrogen Storage in Metal-Organic Frameworks. Chemical Reviews, 112, 782-835. https://doi.org/10.1021/cr200274s

  3. 3. Li, J.R., Sculley, J. and Zhou, H.C. (2012) Metal-Organic Frameworks for Separations. Chemical Reviews, 112, 869-932. https://doi.org/10.1021/cr200190s

  4. 4. Bao, Z., Chang, G., Xing, H., Krishna, R., Ren, Q. and Chen, B. (2016) Potential of Microporous Metal-Organic Frameworks for Separation of Hydrocarbon Mixtures. Energy & Environ-mental Science, 9, 3612-3641. https://doi.org/10.1039/C6EE01886F

  5. 5. Cui, X., Chen, K., Xing, H., Yang, Q., Krishna, R., Bao, Z., Wu, H., Zhou, W., Dong, X., Han, Y., Li, B., Ren, Q., Zaworotko, M.J. and Chen, B. (2016) Pore Chemistry and Size Control in Hybrid Porous Materials for Acetylene Capture from Ethylene. Science, 353, 141-144. https://doi.org/10.1126/science.aaf2458

  6. 6. Zhu, L., Liu, X. Q., Jiang, H.L. and Sun, L.B. (2017) Metal-Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117, 8129-8176. https://doi.org/10.1021/acs.chemrev.7b00091

  7. 7. Huang, Y.B., Liang, J., Wang, X.S. and Cao, R. (2017) Multifunctional Met-al-Organic Framework Catalysts: Synergistic Catalysis and Tandem Reactions. Chemical Society Reviews, 46, 126-157. https://doi.org/10.1039/C6CS00250A

  8. 8. Shimizu, G.K.H., Taylor, J.M. and Kim, S. (2013) Proton Conduction with Met-al-Organic Frameworks. Science, 341, 354-355. https://doi.org/10.1126/science.1239872

  9. 9. Ramaswamy, P., Wong, N.E. and Shimizu, G.K.H. (2014) MOFs as Proton Conductors—Challenges and Opportunities. Chemical Society Reviews, 43, 5913-5932. https://doi.org/10.1039/C4CS00093E

  10. 10. Kreno, L., Leong, K., Farha, O., Allendorf, M., Duyne, R. and Hupp, J. (2012) Met-al-Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112, 1105-1125. https://doi.org/10.1021/cr200324t

  11. 11. Lustig, W.P., Mukherjee, S., Rudd, N.D., Desai, A.V., Li, J. and Ghosh, S.K. (2017) Metal-Organic Frameworks: Functional Luminescent and Photonic Materials for Sensing Applications. Chemical Society Reviews, 46, 3242-3285. https://doi.org/10.1039/C6CS00930A

  12. 12. Hu, Z., Deibert, B.J. and Li, J. (2014) Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection. Chemical Society Reviews, 43, 5815-5840. https://doi.org/10.1039/C4CS00010B

  13. 13. Hu, Z., Lustig, W.P., Zhang, J., Zheng, C., Wang, H., Teat, S.J., Gong, Q., Rudd, N.D. and Li, J. (2015) Effective Detection of Mycotoxins by a Highly Luminescent Metal-Organic Framework. Journal of the Ameri-can Chemical Society, 137, 16209-16215. https://doi.org/10.1021/jacs.5b10308

  14. 14. Allendorf, M.D., Bauer, C.A., Bhakta, R.K. and Houk, R.J.T. (2009) Luminescent Metal-Organic Frameworks. Chemical Society Reviews, 38, 1330-1352. https://doi.org/10.1039/b802352m

  15. 15. Debal, K.S., Prakash, M., Sudip, K.M. and Partha, M. (2015) Visible Detection of Explo-sive Nitroaromatics Facilitated by a Large Stokes Shift of Luminescence Using Europium and Terbium Doped Yttrium Based MOFs. RSC Advances, 5, 102076-102084.

  16. 16. Xu, H., Hu, H.C., Cao, C.S. and Zhao, B. (2015) Lanthanide Organic Framework as a Re-generable Luminescent Probe for Fe3+. Inorganic Chemistry, 54, 4585-4587. https://doi.org/10.1021/acs.inorgchem.5b00113

  17. 17. Zheng, T.T., Zhao, J., Fang, Z.W., Li, M.T., Sun, C.Y., Li, X., Wang, X.L. and Su, Z.M. (2017) A Luminescent Metal Organic Framework with High Sensitivity for Detecting and Removing Copper Ions from Simulated Biological Fluids. Dalton Transactions, 46, 2456-2461. https://doi.org/10.1039/C6DT04630D

  18. 18. Seong, Y.L. and Kwon, H.B. (2017) A Fluorescence “Turn-On” Chemosensor for Hg2+ and Ag+ Based on NBD (7-Nitrobenzo-2-oxa-1,3-Diazolyl). RSC Advances, 7, 290-299.

  19. 19. Chen, S.G., Shi, Z.Z., Qin, L. and Jia, H.L. (2017) Two New Luminescent Cd(II)-Metal-Organic Frameworks as Bifunctional Chemosensors for Detection of Cations Fe3+, Anions CrO42−, and Cr2O72− in Aqueous Solution. Crystal Growth & Design, 17, 67-72. https://doi.org/10.1021/acs.cgd.6b01197

  20. 20. Hou, S., Liu, Q.K., Ma, J.P. and Dang, Y.B. (2013) Cd(II)-Coordination Framework: Synthesis, Anion-Induced Structural Transformation, Anion-Responsive Luminescence, and Anion Separation. Inorganic Chemistry, 52, 3225-3235. https://doi.org/10.1021/ic302716n

  21. 21. Xu, X.Y. and Yan, B. (2015) Eu(III)-Functionalized MIL-124 as Fluorescent Probe for Highly Selectively Sensing Ions and Organic Small Molecules Especially for Fe(III) and Fe(II). ACS Applied Materials & Interfaces, 7, 721-729. https://doi.org/10.1021/am5070409

  22. 22. Lu, Y., Yah, B. and Liu, K.L. (2014) Nanoscale Metal-Organic Frameworks as Highly Sensitive Luminescent Sensors for Fe2+ in Aqueous Solution and Living Cells. Chemical Communications, 50, 9969-9972. https://doi.org/10.1039/C4CC04524F

  23. 23. Fu, D., Wang, N., Fan, H., Shu, T. and Yue, S. (2017) Luminescent Two-Dimensional CdII Coordination Polymer for Selective Sensing Fe3+ and 2,4,6-Trinitrophenol with High Sensitivity in Water. In-organic Chemistry Communications, 86, 262-266. https://doi.org/10.1016/j.inoche.2017.10.023

  24. 24. Yu, J., Cui, Y., Wu, C. D., Yang, Y. and Qian, G. (2015) Two-Photon Responsive Metal-Organic Framework. Journal of the American Chemical Society, 137, 4026-4029. https://doi.org/10.1021/ja512552g

  25. 25. Cepeda, J. and Diéguez, A.R. (2016) Tuning the Luminescence Performance of Metal-Organic Frameworks Based on d10 Metal Ions: From an Inherent Versatile Behaviour to Their Response to External Stimuli. CrystEngComm, 18, 8556-8573. https://doi.org/10.1039/C6CE01706A

  26. 26. Saines, P.J. and Bristowe, N.C. (2018) Probing Magnetic Interactions in Metal-Organic Frameworks and Coordination Polymers Microscopically. Dalton Transactions, 47, 13257-13280.

  27. 27. Fang, X.M., Roushan, M. and Zhang, R.B. (2012) Tuning and Enhancing White Light Emission of II-VI Based Inorganic-Organic Hybrid Semiconductors as Single-Phased Phosphors. Chemistry of Materials, 24, 1710-1717. https://doi.org/10.1021/cm203137r

  28. 28. Zheng, X.F., Zhou, L., Huang, Y.M., Wang, C.G., Duan, J.G., Wen, L.L., Tian, Z.F. and Li, D.F. (2014) A Series of Metal-Organic Frameworks Based on 5-(4-pyridyl)-Isophthalic Acid: Selective Sorption and Fluorescence Sensing. Journal of Materials Chemistry A, 2, 12413-12422. https://doi.org/10.1039/C4TA01900H

  29. 29. Bauer, C.A., Timofeeva, T.V., Settersten, T.B., Patterson, B.D., Liu, V.H., Simmons, B.A. and Allendorf, M.D. (2007) Influence of Connectivity and Porosity on Ligand-Based Luminescence in Zinc Metal-Organic Frameworks. Journal of the American Chemical Society, 129, 7136-7144. https://doi.org/10.1021/ja0700395

  30. 30. Yamazaki, S. and Kato, S. (2007) Solvent Effect on Conical Intersections in Excited-State 9H-Adenine: Radiationless Decay Mechanism in Polar Solvent. Journal of the American Chemical Society, 129, 2901-2909. https://doi.org/10.1021/ja0669169

  31. 31. Guo, Z., Xu, H., Su, S., Cai, J., Dang, S., Xiang, S., Qian, G., Zhang, H., O’Keeffe, M. and Chen, B. (2011) A Robust near Infrared Luminescent Ytterbium Metal-Organic Framework for Sensing of Small Molecules. Chemical Communications, 47, 5551-5553. https://doi.org/10.1039/c1cc10897b

  32. 32. Ma, D., Wang, W., Li, Y., Li, J., Daigue-bonne, C., Calvez, G. and Guillou, O. (2010) In Situ 2,5-Pyrazinedicarboxylate and Oxalate Ligands Synthesis Leading to a Mi-croporous Europium-Organic Framework Capable of Selective Sensing of Small Molecules. CrystEngComm, 12, 4372-4377. https://doi.org/10.1039/c0ce00135j

  33. 33. Yang, W., Feng, J. and Zhang, H. (2012) Facile and Rapid Fabrication of Nanostructured Lanthanide Coordination Polymers as Selective Luminescent Probes in Aqueous Solution. Journal of Materials Chemistry, 22, 6819-6823. https://doi.org/10.1039/c2jm16344f

  34. 34. Chen, B., Yang, Y., Zapata, F., Lin, G.N., Qian, G. and Lobkovsky, E.B. (2007) Lumi-nescent Open Metal Sites within a Metal-Organic Framework for Sensing Small Molecules. Advanced Materials, 19, 1693-1696. https://doi.org/10.1002/adma.200601838

NOTES

*通讯作者。

期刊菜单