Open Journal of Natural Science
Vol. 12  No. 03 ( 2024 ), Article ID: 86220 , 12 pages
10.12677/ojns.2024.123054

细胞分裂素转运蛋白在细胞分裂素平衡和信号分布中的作用

曹文强

浙江师范大学生命科学学院,浙江 金华

收稿日期:2024年3月28日;录用日期:2024年4月30日;发布日期:2024年5月9日

摘要

细胞分裂素(CK)是一类可移动的腺嘌呤衍生物,它们作为化学信号调节与植物发育和胁迫反应有关的各种生物过程。它们的合成、稳态和信号感知会引起复杂的细胞内交通、细胞间移动以及短距离和长距离转运。近二十年来,膜转运蛋白的亚群已被识别并参与CK以及相关腺苷酸的转运。本文旨在回顾参与细胞分裂素运输和易位的转运蛋白探索的主要进展,讨论它们在细胞分裂素介导的旁分泌和远距离通讯中的功能意义,并强调一些知识空白和开放性问题,以全面理解膜转运蛋白在控制细胞分裂素物种时空分布中的分子机制。

关键词

拟南芥,转运蛋白,细胞分裂素

Role of Cytokinin Transporter Proteins in Cytokinin Homeostasis and Signal Distribution

Wenqiang Cao

College of Life Sciences, Zhejiang Normal University, Jinhua Zhejiang

Received: Mar. 28th, 2024; accepted: Apr. 30th, 2024; published: May. 9th, 2024

ABSTRACT

Cytokinins (CKs) are a group of mobile adenine derivatives that act as chemical signals regulating a variety of biological processes implicated in plant development and stress responses. Their synthesis, homeostasis, and signaling perception evoke complicated intracellular traffic, intercellular movement, and in short- and long-distance translocation. Over nearly two decades, subsets of membrane transporters have been recognized and implicated in the transport of CKs as well as the related adenylates. In this review, we aim to recapitulate the key progresses in exploration of the transporter proteins involved in cytokinin traffic and translocation, discuss their functional implications in the cytokinin-mediated paracrine and long-distance communication, and highlight some knowledge gaps and open issues toward comprehensively understanding the molecular mechanism of membrane transporters in controlling spatiotemporal distribution of cytokinin species.

Keywords:Arabidopsis thaliana, Transporter, Cytokinin

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 细胞分裂素

1.1. 细胞分裂素的种类

细胞分裂素(Cytokinin, CK)是一类能促进细胞分裂和分化的腺嘌呤衍生物 [1] 。在植物中,CK通常以N6-(Δ2-异戊烯基)腺嘌呤(isopentenyladenine, iP)、反式玉米素(trans-Zeatin, tZ)、玉米素(cis-Zeatin, cZ)和二氢玉米素(dihydrozeatin, DHZ)的形式存在 [2] 。在植物体内,细胞分裂素通常以无活性状态储存,待需要时通过代谢转化成活性形式 [3] 。CK对植物生长发育至关重要,参与种子萌发与叶片发育、植物组织器官生长、离体叶片的衰老、以及幼枝和根的生长调控等生长发育过程 [4] [5] 。

1.2. 细胞分裂素的代谢

1.2.1. 细胞分裂素的合成

CK主要有两种生物合成途径,分别是tRNA分解途径和从头合成途径 [6] [7] 。大部分内源CK通过从头合成途径合成,该途径的第一步是由异戊烯基转移酶(isopentenyl transferase, IPT)催化5’-磷酸腺苷(AMP、ATP或ADP)与二甲基烯丙基二磷酸(Dimethylallyl Diphosphate, DMAPP)反应,生成iPR前体 [8] [9] 。随后在CYP735A催化下转化为tZR前体,后者在异戊二烯侧链末端被羟基化 [10] 。对拟南芥和水稻中这些生物合成基因功能丧失突变体的表型分析表明,这些反应在从头CK生物合成中起核心作用 [11] [12] [13] [14] [15] 。

核苷酸形式的CK有两种转化为活性形式的途径:主要途径是通过磷酸核糖水解酶(Lonely guy,LOG)将细胞分裂素核苷酸转化为核碱基活性形式 [16] [17] [18] [19] 。另一种是通过两步法,细胞分裂素核苷酸如iP核苷5′-单磷酸(iPRMP)可通过核苷酸酶先后转化为相应的细胞分裂素核苷如iP核苷(iPR),然后通过核苷酸酶转化为细胞分裂素核碱基(如iP) [20] [21] 。最近有文章报道,GY3可编码催化iPRMP转化为iPR的LOG样蛋白。抑制GY3等位基因表达会导致代谢库中更多的iPRMP转化为tZRMP,随后转化为tZ增强OSH1和CYCD3;1的表达。进一步通过维持分生活性和促进细胞分裂,最终导致穗发育出更多的二级分枝,谷物产量增加 [22] 。定位于细胞壁的细胞分裂素/嘌呤核苷核苷酸酶(cytokinin/purine riboside nucleosidase, CPN)也能催化细胞分裂素核苷前体和其他嘌呤核苷的去核糖基化,参与细胞分裂素代谢 [23] 。

cZ型CK的合成过程是由tRNA-IPTs的酶催化的,它们通过异戊烯化反应将二甲基烯丙基二磷酸连接到tRNA分子上 [24] 。在调节活性CK浓度平衡中,CYP735A2至关重要 [10] 。研究结果显示,多种活性CK可以诱导CYP735A2的表达。然而,CYP735A1对CK的响应并不敏感。此外,CYP735A2主要表达在根部,但也在花瓣、茎尖分生组织以及下胚轴中有高水平表达 [10] (图1)。

Figure 1. Cytokinin homeostasis maintenance pathway involving in situ cytokinin biosynthesis (catalyzed by ATP-ADP IPTs and tRNA-IPTs), activation (catalyzed by specific phosphoribohydrolases encoded by LOG genes), irreversible inactivation (catalyzed by N-glucosyltransferases), reversible inactivation (catalyzed by O-glucosyltransferases), reactivation (catalyzed by β-glucosidases) and irreversible degradation (catalyzed by cytokinin oxidase/dehydrogenases). Cytokininoxidase/dehydrogenases substrates are highlighted in red [25]

图1. 细胞分裂素平衡维持途径涉及细胞分裂素的原位生物合成(由ATP-ADPIPT和tRNA-IPT催化)、激活(由LOG基因编码的特定磷酸核糖水解酶催化)、不可逆失活(由N-葡糖基转移酶催化)、可逆失活(由O-葡糖基转移酶催化)、再激活(由LOG基因编码的特定磷酸核糖水解酶催化)、不可逆失活(由N-葡萄糖基转移酶催化)、可逆失活(由O-葡萄糖基转移酶催化)、再活化(由β-葡萄糖苷酶催化)和不可逆降解(由细胞分裂素氧化酶/脱氢酶催化)。细胞分裂素氧化酶/脱氢酶底物用红色标出 [25]

1.2.2. 细胞分裂素的降解

细胞分裂素氧化酶(cytokinin oxidase, CKX)是植物中负责分解细胞分裂素的关键酶。tZ和iP具有不饱和N6-侧链并被切割,而二氢玉米素和BA对CKX具有抗性 [26] 。最初在玉米中发现了CKX,后续研究揭示了它在植物体中降解细胞分裂素的生物学功能 [27] [28] 。在拟南芥中鉴定出了7个CKX,即AtCKX1至AtCKX7。过表达AtCKX1至AtCKX6基因会导致植物内源性细胞分裂素含量降低,产生细胞分裂素缺乏的典型症状,如植株矮化、初生根伸长、叶原基和顶端分生组织异常发育等 [4] [29] 。当AtCKX3、AtCKX5突变时,拟南芥中的CK含量升高,表现出花器官增大、胚珠数量增多和种子产量提高的表型 [30] 。

1.3. 细胞分裂素的信号

植物对环境变化的可塑性机制是理解其行为的关键。在生长过程中,植物器官按照既定的发育程序分化,同时又能灵活地响应外部环境的变化,这有助于植物在最佳环境中发芽 [31] 。在生长过程中,器官对环境信号的响应,通过细胞间的信号传递进行协调。生长素和细胞分裂素的丰度以及它们之间的比率和分布对环境盐胁迫敏感 [32] ,这似乎是通过极性生长素转运蛋白的作用进而影响了植物根系结构 [33] 。冷胁迫也会导致植物生长减少,而外源性施加细胞分裂素可以提高拟南芥幼苗的抗冻性 [34] 。除了生长素的不对称分布外,信号传递主要依赖木质部和韧皮部运输实现 [35] 。在这个过程中,无机离子、信号分子、激素和肽在系统信号传递中扮演着至关重要的角色 [4] 。

CK信号转导途径是一种类似细菌的双组分反应(Two-component signaling sensor, TCS)系统。其中主要包括组氨酸蛋白激酶(Arabidopsis histidine kinase receptor, AHK)、组氨酸磷酸转移蛋白(Arabidopsis histidine phosphotransfer protein, AHP)和应答调节因子(Arabidopsis response regulator, ARR)三个部分 [36] 。信号以AHK为媒介,经过一系列磷酸化反应传递到细胞核中的B型ARR。B型ARR编码转录激活因子,能直接促进下游靶基因的表达 [37] 。这一磷酸化系统涉及的多步反应,在Asp和His残基间进行。CK利用此系统传递信号,参与愈伤组织形成、种子萌发、细胞分化以及叶片衰老延缓等生理过程 [38] 。

CK通过三种AHK受体感知,进而刺激靶基因的转录,激活磷酸化信号反应 [39] 。这些受体结构保守,包含受体结构域、组氨酸激酶结构域和配体结合位点,且存在功能冗余 [40] [41] [42] [43] 。大多数受体在ER上被发现,并能有效结合细胞分裂素 [41] [44] [45] ,这暗示细胞分裂素需转运至胞内,并可能转运至ER,从而触发依赖于细胞分裂素的信号传递 [46] [47] [48] 。然而,关于CK信号起始位点是位于质膜还是内质网膜上,目前仍存在争议 [49] 。

在拟南芥中,ARR根据它们的结构和氨基酸序列被划分为A、B、C三类 [50] 。A型ARR受到细胞分裂素的诱导,并且能够通过反馈机制调控细胞分裂素的活性 [4] [51] ;B型ARR是一类编码具有DNA结合结构域(GARP)的转录因子,GARP能特异性地结合并调控A型ARR的转录活性 [4] [52] ;C类ARR不受到CK诱导,并且它们的结构与AHK类似,可能在与细胞分裂素信号传导途径有关的方面上,扮演与A型和B型ARR不同的角色 [53] [54] (图2)。

2. 细胞分裂素的转运

2.1. 细胞分裂素的分布

细胞分裂素是维持分生组织和其他生理和发育过程所必需的植物激素,涉及胚胎发育、细胞分裂、侧根形成、叶片衰老以及对热和干旱胁迫的适应性反应 [56] [57] [58] 。由于CK的生物合成由IPT催化,仅在特定组织中发生,因此CK需要通过输出和/或主动运输机制在植物体内进行转移 [14] [35] [39] 。CK的合成和代谢的空间分布表明,CK在根和芽中均有合成,并且可以通过短距离和长距离运输 [60] [61] 。在拟南芥中,IPT在根、茎、叶和花等多个器官中表达 [35] [59] 。而CYP735A则在根中主要表达 [10] 。

新合成的细胞分裂素N9位置含有一个核糖苷分子,这类细胞分裂素被称为核苷型细胞分裂素,包括iPR和tZR。核苷基团裂解释放出的自由碱基分别是iP和tZ,这些是更具生物活性的形式,而核iPR和

Figure 2. Core steps of the cytokinin signaling pathway [55]

图2. 细胞分裂素信号途径的核心步骤 [55]

tZR是主要的运输形式 [62] [63] 。因为CK的合成基因在空间表达模式上存在差异,导致了不同形式的CK在木质部和韧皮部分布不均。在木质部中,tZ型CK为主要形式;而在韧皮部中,iP型CK占主导地位 [64] 。根和芽中合成的CK类型不同,也导致了根源性tZ型CK主要是通过木质部向顶部运输,而茎源性iP型CK是通过韧皮部扩散或向基部运输 [65] [66] 。由于CK是可移动的信号,已知的CK转运蛋白家族包括ATP结合盒蛋白家族(ATP-binding cassette, ABC) [67] 、嘌呤渗透酶蛋白家族(purine permease, PUP) [68] [69] 、氮杂鸟嘌呤抗性蛋白家族(AZA-guanine resistant) [70] [71] 以及平衡核苷转运蛋白家族(equilibrative nucleoside transporter, ENT) [72] (图3)。

Figure 3. Overview of CK transporters in plants. (Left) Illustration of an Arabidopsis plant with magnifications emphasizing different organs. (Right) Overview of characterized CK transporters. Blue arrows represent importers; red arrows represent exporters. The inset is a magnification of the indicated organelles. The numbers in circles above transporter names indicate locations in the tissues in the illustration on the left (not all tissues express transporters regulating this hormone). The direction of CK transport for the three ER-localized ABCI proteins is currently not entirely clear. All transporters were characterized in Arabidopsis unless the transporter name is preceded by a species abbreviation. Abbreviations: CK, cytokinin; ER, endoplasmic reticulum; Os, Oryza sativa [73]

图3. 植物中的CK转运体概览。(左图)拟南芥植株图解,不同器官的放大倍数不同。(右图)表征的CK转运体概览。蓝色箭头代表输入体;红色箭头代表输出体。插图为所示细胞器的放大图。转运体名称上方圆圈中的数字表示左侧插图中组织的位置(并非所有组织都表达调节这种激素的转运体)。目前还不完全清楚三种位于ER的ABCI蛋白的CK转运方向。除非转运体名称前有物种缩写,否则所有转运体都是在拟南芥中表征的。缩写:CK,细胞分裂素;ER,内质网;Os,水稻 [73]

2.2. ABC转运蛋白参与细胞分裂素的转运

在大多数生物体中,ABC转运蛋白是最大的膜蛋白家族之一 [74] [75] 。这类蛋白负责介导多种分子跨越磷脂双分子层的转运,包括矿物质离子、肽类和脂类等。ABC转运蛋白主要结构包含两个核酸结合结构域(nucleotide binding domain, NBD)和两个跨膜结构域(transmembrane domain, TMD) [76] ,前者也常称为ATP结合结构域。NBD的功能是结合及水解ATP以提供动力,而TMD则负责底物穿越膜的路径。这两个结构域协同作用,共同完成了底物的动态转运过程 [77] 。

ABC蛋白家族还与嘌呤核苷酸的转运和再循环有关,这可能赋予其在转运细胞分裂素方面的调控和代谢优势。AtABCG14是首个被报道参与tZ型CK长距离的转运蛋白 [64] [78] ,定位于质膜,具有外排tZ类CK的活性。AtABCG14在根部的中柱和中柱鞘中主要表达,对CK装载到木质部和向地上运输至关重要。在atabcg14中,根部tZ型CK积累,而茎中降低。相比之下,iP型CK水平在根和茎中均显著升高。导致根短、植株矮小且生长发育迟缓。此外,AtABCG14也影响地上部分对CK的分配 [64] [78] 。类似地,水稻中的OsABCG18定位于质膜,对CK具有外排活性,并在茎、根和主叶脉中表达,参与CK从根部向地上部分的运输 [79] 。

2.3. PUP转运蛋白参与细胞分裂素的转运

与ABC蛋白不同,PUP主要参与细胞对激素的吸收,而不是激素从细胞中释放 [80] 。拟南芥的PUP家族有21个成员,其中大多数基因尚未被表征 [60] 。AtPUP1和AtPUP2以质子偶联的方式介导游离的iP型tZ型CK向内运输 [69] [81] 。水稻中的OsPUPl和OsPUP7定位于内质网上,而OsPUP4定位于质膜 [82] 。在植物中,定位在质膜上的AtPUP14表达最高。其转运活性依赖于ATP,但与质子梯度无关 [68] 。研究者们使用TCSn::GFP这一合成CK报告系统来研究拟南芥心形期胚的发育情况,并发现AtPUP14在心形期胚胎中表达量的降低与CK含量的升高有关。这表明AtPUP14可能负责将活性形式的细胞分裂素运输到胞质中,从而减少了细胞间CK的浓度,导致膜定位的细胞分裂素受体感知减少,进而调节植物的细胞分裂素信号传导。通过对AtPUP14进行激素转运实验,发现AtPUP14具有转运活性CK的能力,并且AtPUP14的转运活性明显强于AtPUP1。当AtPUP14的功能缺失时,会影响CK的信号运输,导致分生组织和胚胎发育出现异常,表现出芽和叶原基的分支增多和叶序发育混乱 [68] 。这些综合研究表明,AtPUP14参与了CK由胞外向胞内的运输。

近期研究报道了一种基因的多重敲除编辑技术,该技术是一种基因组规模的间隔短回文重复系统,用于同时针对拟南芥中多个基因家族成员的功能冗余 [83] 。在这项研究中,鉴定和表征了植物中AtPUP7、AtPUP8和AtPUP21三个基因,并通过系统发育分析确认它们属于同一单系进化枝,并且具有完整的遗传连锁。根据实验证明,质膜定位的AtPUP8是一个CK外排的转运蛋白,而液泡膜定位的AtPUP7和AtPUP21则是CK的内吸转运蛋白,它们都能降低细胞质和/或内质网中CK的水平。这两种转运蛋白的共同作用可能导致细胞质CK水平的下降,并显示出部分功能冗余。这种质膜和液泡膜转运蛋白网络的协调可能是决定细胞和组织内CK水平的关键因素,这对于在SAM内建立CK信号传导的空间模式至关重要,并在调节芽和叶序生长中发挥重要作用。

2.4. AZG转运蛋白参与细胞分裂素的转运

研究发现,AZG家族成员AtAZG1、AtAZG2均具有CK的转运活性 [70] [71] 。EnAZGA是该家族的首个成员,在构巢曲霉中发现能转运次黄嘌呤、腺嘌呤和鸟嘌呤 [84] 。在拟南芥中,AZG1和AZG2最初被认为是腺嘌呤和鸟嘌呤的转运蛋白 [85] 。AtAZG2定位主要在内质网中,暗示其在细胞内CK分布和信号传递中发挥功能 [71] ,在质膜也有定位,但尽管AtAZG1和AtAZG2都涉及CK转运,但它们的转运机制不同。AtAZG1是依赖质子驱动力作为细胞CK的输入蛋白,而AtAZG2的转运不受电化学质子梯度或能量的影响,并且与pH值无关。在酵母中的研究表明,AtAZG2能高效地双向转运不同类型的CK,如iP、tZ、6-BA等。AZG2在侧根原基(lateral root primordial, LRP)周围细胞中有少量表达表明它参与侧根发育过程中CK的调节。azg2侧根密度增加,且发育迟缓,对外源性CK的反应降低,根部的TCSnpro:GFP荧光信号也较弱。过表达AtAZG2的转基因株系几乎没有产生侧根。此外,生长素通过ARF7诱导AtAZG2表达,促进胞内CK的转运,进而抑制侧根的形成 [71] 。

AtAZG1被鉴定为CK输入蛋白,它能与PIN1相互作用并稳定PIN1蛋白,从而影响PIN1蛋白的丰度。AtAZG1定位在根尖分生组织(RAM)的形成层细胞中,通过对CK的再吸收,将tZ保留在分化后的维管细胞内。此外,AtAZG1的表达受到NaCl的调控,对于调节盐胁迫下侧根密度的过程至关重要,它赋予植物对盐度的敏感性,但对干旱的敏感性没有显著影响。研究显示,AtAZG1参与了根尖分生组织(RAM)的原生木质部中的生长素信号与原形成层中的CK信号的调控 [70] 。

2.5. ENT参与参与细胞分裂素的转运

在真核生物中,ENT和浓缩性核苷转运蛋白(concentrative nucleoside transporter, CNT)构成了两大主要的核苷转运体基因家族。ENT蛋白通过促进扩散的方式工作,而CNT蛋白则依赖阳离子共转运机制。CNT蛋白通常含有13个跨膜结构域,借助Na+或H+进行共转运,实现核苷的主动运输,这一过程是逆着浓度梯度的 [86] [87] [88] 。虽然CNT的运输活动在多种动物组织细胞和真细菌中已被发现 [86] [87] [88] ,但在拟南芥的完整基因组序列中,尚未通过生物信息学分析发现CNT编码基因 [89] 。

在酵母表达系统中进行的竞争性实验 [90] 表明,在表达AtENT6的酵母细胞中,iPR显著地抑制腺苷的输入,而tZR的影响不明显。说明AtENT6对iPR的运输具有更高的亲和力,并暗示它可能参与调控iP和tZ型细胞分裂素的分布。通过使用携带AtENT6启动子的转基因拟南芥进行GUS染色,发现AtENT6在根、叶和花的维管组织以及气孔中都有表达。结合酵母表达系统的竞争试验揭示了AtENT6参与核苷的长距离运输,特别是在维管束中对iPR的运输有偏好 [91] 。

最新研究表明,AtENT3在植物体内负责外源或内源性细胞分裂素的分配。该蛋白主要在幼苗的根部、子叶、叶脉和叶原基的分生组织中表达 [92] 。在10日龄幼苗中,AtENT3的表达在根部广泛分布,但主要局限于维管区域。对atent3-1突变体施加内源性CK或外源性tZ后发现,突变体根部的内源性CK积累减少,而向芽运输外源性tZR的能力增强。无论在正常还是缺乏矿物营养的条件下,atent3-1的根部均比野生型对照更长,这与突变体根部的CK水平较低有关 [93] 。此外,atent3-1对外源性细胞分裂素核苷的敏感性也降低 [94] 。这表明AtENT3转运蛋白通过促进根部CK的吸收,参与CK在内源性环境中的分配,进而控制细胞分裂素通过木质部向地上进行运输。

在氮饥饿条件下,AtENT8或AtENT3的缺失突变体表现出对iPR和tZR的敏感性降低,而对iP和tZ的敏感性正常。相反,AtENT8的过表达植株对iPR敏感,但对iP不敏感。植物体内的测定实验结果显示,在atent8和atent3突变体中,用H标记的iPR的含量减少了40%以上 [94] 。表明AtENT3和AtENT8都具有CK的运输功能。

转基因水稻OsENT2::GUS揭示了OsENT2的表达模式,主要集中于发芽种子的盾片。盾片背面的组织在种子萌发期间吸收胚乳储存物质,这一过程需要大量嘌呤和嘧啶核苷酸以维持活跃的核苷酸生物合成。OsENT2还在植物的维管束组织中广泛表达,尤其在叶鞘的韧皮部显著,暗示其在韧皮部的装载和卸载过程中参与核苷的远程运输。核苷类细胞分裂素的长距离转移通常涉及木质部和韧皮部 [95] 。水稻种子发育阶段含有最高浓度的CK,有研究表明水稻胚乳中的细胞数量和细胞分裂活性受该组织中CK水平的调控 [91] 。此外,OsENT2可能参与胚乳核苷的吸收,随后这些核苷在发育中的胚胎中被转化为核苷酸。在2日龄幼苗的根部和成熟植物的侧根中观察到较强的GUS染色,这可能反映了年轻的库器官对核苷酸具有高需求。鉴于OsENT2在叶片的维管束和韧皮部组织中表达,并能介导腺苷及其他核苷的运输,包括iPR且其对tZR的亲和力更高,这表明OsENT2可能在核苷类CK的筛选性运输中扮演重要角色 [90] 。

文章引用

曹文强. 细胞分裂素转运蛋白在细胞分裂素平衡和信号分布中的作用
Role of Cytokinin Transporter Proteins in Cytokinin Homeostasis and Signal Distribution[J]. 自然科学, 2024, 12(03): 471-482. https://doi.org/10.12677/ojns.2024.123054

参考文献

  1. 1. Zhao, J., Ding, B., Zhu, E., et al. (2021) Phloem Unloading via the Apoplastic Pathway Is Essential for Shoot Distribution of Root-Synthesized Cytokinins. Plant Physiology, 186, 2111-2123. https://doi.org/10.1093/plphys/kiab188

  2. 2. He, Q., Yuan, R., Zhang, T., et al. (2022) Arabidopsis TIE1 and TIE2 Transcriptional Repressors Dampen Cytokinin Response during Root Development. Science Advances, 8, eabn5057. https://doi.org/10.1126/sciadv.abn5057

  3. 3. Osugi, A. and Sakakibara, H. (2015) Q&A: How Do Plants Respond to Cytokinins and What Is Their Importance? BMC Biology, 13, Article No. 102. https://doi.org/10.1186/s12915-015-0214-5

  4. 4. Hwang, I., Sheen, J. and Müller, B. (2012) Cytokinin Signaling Networks. Annual Review of Plant Biology, 63, 353-380. https://doi.org/10.1146/annurev-arplant-042811-105503

  5. 5. Argueso, C.T., Ferreira, F.J., Epple, P., et al. (2012) Two-Component Elements Mediate Interactions between Cytokinin and Salicylic Acid in Plant Immunity. PLOS Genetics, 8, e1002448. https://doi.org/10.1371/journal.pgen.1002448

  6. 6. Zancani, M., Braidot, E., Filippi, A., et al. (2020) Structural and Functional Properties of Plant Mitochondrial F-ATP Synthase. Mitochondrion, 53, 178-193. https://doi.org/10.1016/j.mito.2020.06.001

  7. 7. Sakakibara, H. (2005) Cytokinin Biosynthesis and Regulation. Vitamins and Hormones, 72, 271-287. https://doi.org/10.1016/S0083-6729(05)72008-2

  8. 8. Takei, K., Sakakibara, H. and Sugiyama, T. (2001) Identification of Genes Encoding Adenylate Isopentenyltransferase, a Cytokinin Biosynthesis Enzyme, in Arabidopsis Thaliana. The Journal of Biological Chemistry, 276, 26405-26410. https://doi.org/10.1074/jbc.M102130200

  9. 9. Kakimoto, T. (2001) Identification of Plant Cytokinin Biosynthetic Enzymes as Dimethylallyl Diphosphate: ATP/ADP Isopentenyltransferases. Plant & Cell Physiology, 42, 677-685. https://doi.org/10.1093/pcp/pce112

  10. 10. Takei, K., Yamaya, T. and Sakakibara, H. (2004) Arabidopsis CYP735A1 and CYP735A2 Encode Cytokinin Hydroxylases That Catalyze the Biosynthesis of Trans-Zeatin. The Journal of Biological Chemistry, 279, 41866-41872. https://doi.org/10.1074/jbc.M406337200

  11. 11. Kiba, T., Takei, K., Kojima, M., et al. (2013) Side-Chain Modification of Cytokinins Controls Shoot Growth in Arabidopsis. Developmental Cell, 27, 452-461. https://doi.org/10.1016/j.devcel.2013.10.004

  12. 12. Tokunaga, H., Kojima, M., Kuroha, T., et al. (2012) Arabidopsis Lonely Guy (LOG) Multiple Mutants Reveal a Central Role of the LOG-Dependent Pathway in Cytokinin Activation. The Plant Journal, 69, 355-365. https://doi.org/10.1111/j.1365-313X.2011.04795.x

  13. 13. Kuroha, T., Tokunaga, H., Kojima, M., et al. (2009) Functional Analyses of LONELY GUY Cytokinin-Activating Enzymes Reveal the Importance of the Direct Activation Pathway in Arabidopsis. Plant Cell, 21, 3152-3169. https://doi.org/10.1105/tpc.109.068676

  14. 14. Matsumoto-Kitano, M., Kusumoto, T., Tarkowski, P., et al. (2008) Cytokinins Are Central Regulators of Cambial Activity. Proceedings of the National Academy of Sciences of the United States of America, 105, 20027-20031. https://doi.org/10.1073/pnas.0805619105

  15. 15. Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., et al. (2006) Roles of Arabidopsis ATP/ADP Isopentenyltransferases and TRNA Isopentenyltransferases in Cytokinin Biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 16598-16603. https://doi.org/10.1073/pnas.0603522103

  16. 16. Kurakawa, T., Ueda, N., Maekawa, M., et al. (2007) Direct Control of Shoot Meristem Activity by a Cytokinin-Activating Enzyme. Nature, 445, 652-655. https://doi.org/10.1038/nature05504

  17. 17. Samanovic, M.I., Tu, S., Novák, O., et al. (2015) Proteasomal Control of Cytokinin Synthesis Protects Mycobacterium Tuberculosis against Nitric Oxide. Molecular Cell, 57, 984-994. https://doi.org/10.1016/j.molcel.2015.01.024

  18. 18. Radhika, V., Ueda, N., Tsuboi, Y., et al. (2015) Methylated Cytokinins from the Phytopathogen Rhodococcus Fascians Mimic Plant Hormone Activity. Plant Physiology, 169, 1118-1126. https://doi.org/10.1104/pp.15.00787

  19. 19. Hinsch, J., Vrabka, J., Oeser, B., et al. (2015) De Novo Biosynthesis of Cytokinins in the Biotrophic Fungus Claviceps Purpurea. Environmental Microbiology, 17, 2935-2951. https://doi.org/10.1111/1462-2920.12838

  20. 20. Chen, C.M. and Kristopeit, S.M. (1981) Metabolism of Cytokinin: Dephosphorylation of Cytokinin Ribonucleotide by 5’-Nucleotidases from Wheat Germ Cytosol. Plant Physiology, 67, 494-498. https://doi.org/10.1104/pp.67.3.494

  21. 21. Chen, C.M. and Kristopeit, S.M. (1981) Metabolism of Cytokinin: Deribosylation of Cytokinin Ribonucleoside by Adenosine Nucleosidase from Wheat Germ Cells. Plant Physiology, 68, 1020-1023. https://doi.org/10.1104/pp.68.5.1020

  22. 22. Wu, B., Meng, J., Liu, H., et al. (2023) Suppressing a Phosphohydrolase of Cytokinin Nucleotide Enhances Grain Yield in Rice. Nature Genetics, 55, 1381-1389. https://doi.org/10.1038/s41588-023-01454-3

  23. 23. Kojima, M., Makita, N., Miyata, K., et al. (2023) A Cell Wall-Localized Cytokinin/Purine Riboside Nucleosidase Is Involved in Apoplastic Cytokinin Metabolism in Oryza Sativa. Proceedings of the National Academy of Sciences of the United States of America, 120, e2217708120. https://doi.org/10.1073/pnas.2217708120

  24. 24. Kasahara, H., Takei, K., Ueda, N., et al. (2004) Distinct Isoprenoid Origins of Cis-and Trans-Zeatin Biosyntheses in Arabidopsis. The Journal of Biological Chemistry, 279, 14049-14054. https://doi.org/10.1074/jbc.M314195200

  25. 25. Sharma, A., Prakash, S. and Chattopadhyay, D. (2022) Killing Two Birds with a Single Stone-Genetic Manipulation of Cytokinin Oxidase/Dehydrogenase (CKX) Genes for Enhancing Crop Productivity and Amelioration of Drought Stress Response. Frontiers in Genetics, 13, Article 941595. https://doi.org/10.3389/fgene.2022.941595

  26. 26. Schmülling, T., Werner, T., Riefler, M., et al. (2003) Structure and Function of Cytokinin Oxidase/Dehydrogenase Genes of Maize, Rice, Arabidopsis and Other Species. Journal of Plant Research, 116, 241-252. https://doi.org/10.1007/s10265-003-0096-4

  27. 27. Houba-Hérin, N., Pethe, C., D’alayer, J., et al. (1999) Cytokinin Oxidase from Zea Mays: Purification, CDNA Cloning and Expression in Moss Protoplasts. The Plant Journaly, 17, 615-626. https://doi.org/10.1046/j.1365-313X.1999.00408.x

  28. 28. Morris, R.O., Bilyeu, K.D., Laskey, J.G., et al. (1999) Isolation of a Gene Encoding a Glycosylated Cytokinin Oxidase from Maize. Biochemical and Biophysical Research Communications, 255, 328-333. https://doi.org/10.1006/bbrc.1999.0199

  29. 29. Werner, T., Motyka, V., Laucou, V., et al. (2003) Cytokinin-Deficient Transgenic Arabidopsis Plants Show Multiple Developmental Alterations Indicating Opposite Functions of Cytokinins in the Regulation of Shoot and Root Meristem Activity. Plant Cell, 15, 2532-2550. https://doi.org/10.1105/tpc.014928

  30. 30. Bartrina, I., Otto, E., Strnad, M., et al. (2011) Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis Thaliana. Plant Cell, 23, 69-80. https://doi.org/10.1105/tpc.110.079079

  31. 31. Fusconi, A. (2014) Regulation of Root Morphogenesis in Arbuscular Mycorrhizae: What Role Do Fungal Exudates, Phosphate, Sugars and Hormones Play in Lateral Root Formation? Annals of Botany, 113, 19-33. https://doi.org/10.1093/aob/mct258

  32. 32. Albacete, A., Ghanem, M.E., Martínez-Andújar, C., et al. (2008) Hormonal Changes in Relation to Biomass Partitioning and Shoot Growth Impairment in Salinized Tomato (Solanum lycopersicum L.) Plants. Journal of Experimental Botany, 59, 4119-4131. https://doi.org/10.1093/jxb/ern251

  33. 33. Wang, Y., Li, K. and Li, X. (2009) Auxin Redistribution Modulates Plastic Development of Root System Architecture Under Salt Stress in Arabidopsis Thaliana. Journal of Plant Physiology, 166, 1637-1645. https://doi.org/10.1016/j.jplph.2009.04.009

  34. 34. Jeon, J., Kim, N.Y., Kim, S., et al. (2010) A Subset of Cytokinin Two-Component Signaling System Plays a Role in Cold Temperature Stress Response in Arabidopsis. The Journal of Biological Chemistry, 285, 23371-23386. https://doi.org/10.1074/jbc.M109.096644

  35. 35. Miyawaki, K., Matsumoto-Kitano, M. and Kakimoto, T. (2004) Expression of Cytokinin Biosynthetic Isopentenyltransferase Genes in Arabidopsis: Tissue Specificity and Regulation by Auxin, Cytokinin, and Nitrate. The Plant Journal, 37, 128-138. https://doi.org/10.1046/j.1365-313X.2003.01945.x

  36. 36. Huo, R., Liu, Z., Yu, X., et al. (2020) The Interaction Network and Signaling Specificity of Two-Component System in Arabidopsis. International Journal of Molecular Sciences, 21, Article 4898. https://doi.org/10.3390/ijms21144898

  37. 37. Kroll, C.K. and Brenner, W.G. (2020) Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. Frontiers in Plant Science, 11, Article 604489. https://doi.org/10.3389/fpls.2020.604489

  38. 38. Müller, B. and Sheen, J. (2007) Cytokinin Signaling Pathway. Sciences STKE, 2007, cm4. https://doi.org/10.1126/stke.4072007cm4

  39. 39. Yamada, H., Suzuki, T., Terada, K., et al. (2001) The Arabidopsis AHK4 Histidine Kinase Is a Cytokinin-Binding Receptor That Transduces Cytokinin Signals across the Membrane. Plant & Cell Physiology, 42, 1017-1023. https://doi.org/10.1093/pcp/pce127

  40. 40. Kieber, J.J. and Schaller, G.E. (2018) Cytokinin Signaling in Plant Development. Development, 145, dev149344. https://doi.org/10.1242/dev.149344

  41. 41. Caesar, K., Thamm, A.M., Witthoft, J., et al. (2011) Evidence for the Localization of the Arabidopsis Cytokinin Receptors AHK3 and AHK4 in the Endoplasmic Reticulum. Journal of Experimental Botany, 62, 5571-5580. https://doi.org/10.1093/jxb/err238

  42. 42. Danilova, M.N., Kudryakova, N.V., Doroshenko, A.S., et al. (2017) Opposite Roles of the Arabidopsis Cytokinin Receptors AHK2 and AHK3 in the Expression of Plastid Genes and Genes for the Plastid Transcriptional Machinery during Senescence. Plant Molecular Biology, 93, 533-546. https://doi.org/10.1007/s11103-016-0580-6

  43. 43. Sun, L., Zhang, Q., Wu, J., et al. (2014) Two Rice Authentic Histidine Phosphotransfer Proteins, OsAHP1 and OsAHP2, Mediate Cytokinin Signaling and Stress Responses in Rice. Plant Physiology, 165, 335-345. https://doi.org/10.1104/pp.113.232629

  44. 44. Lomin, S.N., Yonekura-Sakakibara, K., Romanov, G.A., et al. (2011) Ligand-Binding Properties and Subcellular Localization of Maize Cytokinin Receptors. Journal of Experimental Botany, 62, 5149-5159. https://doi.org/10.1093/jxb/err220

  45. 45. Ding, W., Tong, H., Zheng, W., et al. (2017) Isolation, Characterization and Transcriptome Analysis of a Cytokinin Receptor Mutant Osckt1 in Rice. Frontiers in Plant Science, 8, Article 88. https://doi.org/10.3389/fpls.2017.00088

  46. 46. Wulfetange, K., Lomin, S.N., Romanov, G.A., et al. (2011) the Cytokinin Receptors of Arabidopsis Are Located Mainly to the Endoplasmic Reticulum. Plant Physiology, 156, 1808-1818. https://doi.org/10.1104/pp.111.180539

  47. 47. Hejátko, J., Ryu, H., Kim, G.T., et al. (2009) the Histidine Kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 Regulate Vascular Tissue Development in Arabidopsis Shoots. Plant Cell, 21, 2008-2021. https://doi.org/10.1105/tpc.109.066696

  48. 48. Hwang, I. and Sheen, J. (2001) Two-Component Circuitry in Arabidopsis Cytokinin Signal Transduction. Nature, 413, 383-389. https://doi.org/10.1038/35096500

  49. 49. Romanov, G.A., Lomin, S.N. and Schmülling, T. (2018) Cytokinin Signaling: from the ER or from the PM? That Is the Question! The New Phytologist, 218, 41-53. https://doi.org/10.1111/nph.14991

  50. 50. Lomin, S.N., Krivosheev, D.M., Steklov, M.Y., et al. (2012) Receptor Properties and Features of Cytokinin Signaling. Acta Naturae, 4, 31-45. https://doi.org/10.32607/20758251-2012-4-3-31-45

  51. 51. Jeon, J. and Kim, J. (2013) Arabidopsis Response Regulator1 and Arabidopsis Histidine Phosphotransfer Protein2 (AHP2), AHP3, and AHP5 Function in Cold Signaling. Plant Physiology, 161, 408-424. https://doi.org/10.1104/pp.112.207621

  52. 52. Hirose, N., Makita, N., Kojima, M., et al. (2007) Overexpression of a Type—A Response Regulator Alters Rice Morphology and Cytokinin Metabolism. Plant & Cell Physiology, 48, 523-539. https://doi.org/10.1093/pcp/pcm022

  53. 53. To, J.P. and Kieber, J.J. (2008) Cytokinin Signaling: Two-Components and More. Trends in Plant Science, 13, 85-92. https://doi.org/10.1016/j.tplants.2007.11.005

  54. 54. Horák, J., Grefen, C., Berendzen, K.W., et al. (2008) The Arabidopsis Thaliana Response Regulator ARR22 Is a Putative AHP Phospho-Histidine Phosphatase Expressed in the Chalaza of Developing Seeds. BMC Plant Biology, 8, Article No. 77. https://doi.org/10.1186/1471-2229-8-77

  55. 55. Feng, J., Shi, Y., Yang, S., et al. (2017) 3—Cytokinins. In: Li, J., Li, C. and Smith, S.M., Eds., Hormone Metabolism and Signaling in Plants, Academic Press, Cambridge, 77-106. https://doi.org/10.1016/B978-0-12-811562-6.00003-7

  56. 56. Perilli, S., Moubayidin, L. and Sabatini, S. (2010) The Molecular Basis of Cytokinin Function. Current Opinion in Plant Biology, 13, 21-26. https://doi.org/10.1016/j.pbi.2009.09.018

  57. 57. Wybouw, B. and De Rybel, B. (2019) Cytokinin—A Developing Story. Trends in Plant Science, 24, 177-185. https://doi.org/10.1016/j.tplants.2018.10.012

  58. 58. Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., et al. (2012) Cytokinins: Metabolism and Function in Plant Adaptation to Environmental Stresses. Trends in Plant Science, 17, 172-179. https://doi.org/10.1016/j.tplants.2011.12.005

  59. 59. Takei, K., Ueda, N., Aoki, K., et al. (2004) AtIPT3 Is a Key Determinant of Nitrate-Dependent Cytokinin Biosynthesis in Arabidopsis. Plant & Cell Physiology, 45, 1053-1062. https://doi.org/10.1093/pcp/pch119

  60. 60. Kang, J., Lee, Y., Sakakibara, H. and Martinoia, E. (2017) Cytokinin Transporters: GO and STOP in Signaling. Trends in Plant Science, 22, 455-461. https://doi.org/10.1016/j.tplants.2017.03.003

  61. 61. Kamada-Nobusada, T. and Sakakibara, H. (2009) Molecular Basis for Cytokinin Biosynthesis. Phytochemistry, 70, 444-449. https://doi.org/10.1016/j.phytochem.2009.02.007

  62. 62. Mok, D.W. and Mok, M.C. (2001) Cytokinin Metabolism and Action. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 89-118. https://doi.org/10.1146/annurev.arplant.52.1.89

  63. 63. Kakimoto, T. (2003) Perception and Signal Transduction of Cytokinins. Annual Review of Plant Biology, 54, 605-627. https://doi.org/10.1146/annurev.arplant.54.031902.134802

  64. 64. Zhang, K., Novak, O., Wei, Z., et al. (2014) Arabidopsis ABCG14 Protein Controls the Acropetal Translocation of Root-Synthesized Cytokinins. Nature Communications, 5, Article No. 3274. https://doi.org/10.1038/ncomms4274

  65. 65. Sasaki, T., Suzaki, T., Soyano, T., et al. (2014) Shoot-Derived Cytokinins Systemically Regulate Root Nodulation. Nature Communications, 5, Article No. 4983. https://doi.org/10.1038/ncomms5983

  66. 66. Liu, C.J., Zhao, Y. and Zhang, K. (2019) Cytokinin Transporters: Multisite Players in Cytokinin Homeostasis and Signal Distribution. Frontiers in Plant Science, 10, Article 693. https://doi.org/10.3389/fpls.2019.00693

  67. 67. Do, T.H, T., Martinoia, E., Lee, Y., et al. (2021) 2021 Update on ATP-Binding Cassette (ABC) Transporters: How They Meet the Needs of Plants. Plant Physiology, 187, 1876-1892. https://doi.org/10.1093/plphys/kiab193

  68. 68. Zürcher, E., Liu, J., Di, Donato, M., et al. (2016) Plant Development Regulated by Cytokinin Sinks. Science, 353, 1027-1030. https://doi.org/10.1126/science.aaf7254

  69. 69. BÜRkle, L., Cedzich, A., Döpke, C., et al. (2003) Transport of Cytokinins Mediated by Purine Transporters of the PUP Family Expressed in Phloem, Hydathodes, and Pollen of Arabidopsis. The Plant Journal, 34, 13-26. https://doi.org/10.1046/j.1365-313X.2003.01700.x

  70. 70. Tessi, T.M., Maurino, V.G., Shahriari, M., et al. (2023) AZG1 Is A Cytokinin Transporter That Interacts with Auxin Transporter PIN1 and Regulates the Root Stress Response. The New Phytologist, 238, 1924-1941. https://doi.org/10.1111/nph.18879

  71. 71. Tessi, T.M., Brumm, S., Winklbauer, E., et al. (2021) Arabidopsis AZG2 Transports Cytokinins in Vivo and Regulates Lateral Root Emergence. The New Phytologist, 229, 979-993. https://doi.org/10.1111/nph.16943

  72. 72. Girke, C., Daumann, M., Niopek-Witz, S., et al. (2014) Nucleobase and Nucleoside Transport and Integration into Plant Metabolism. Frontiers in Plant Science, 5, Article 443. https://doi.org/10.3389/fpls.2014.00443

  73. 73. Zhang, Y., Berman, A. and Shani, E. (2023) Plant Hormone Transport and Localization: Signaling Molecules on the Move. Annual Review of Plant Biology, 74, 453-479. https://doi.org/10.1146/annurev-arplant-070722-015329

  74. 74. Verrier, P.J., Bird, D., Burla, B., et al. (2008) Plant ABC Proteins—A Unified Nomenclature and Updated Inventory. Trends in Plant Science, 13, 151-159. https://doi.org/10.1016/j.tplants.2008.02.001

  75. 75. Higgins, C.F. (1992) ABC Transporters: From Microorganisms to Man. Annual Review of Cell Biology, 8, 67-113. https://doi.org/10.1146/annurev.cb.08.110192.000435

  76. 76. Kieber, J.J. and Schaller, G.E. (2014) Cytokinins. The Arabidopsis Book, 12, e0168. https://doi.org/10.1199/tab.0168

  77. 77. Chatfield, S.P., Stirnberg, P., Forde, B.G., et al. (2000) the Hormonal Regulation of Axillary Bud Growth in Arabidopsis. The Plant Journal, 24, 159-169. https://doi.org/10.1046/j.1365-313x.2000.00862.x

  78. 78. Ko, D., Kang, J., Kiba, T., et al. (2014) Arabidopsis ABCG14 Is Essential for the Root-to-Shoot Translocation of Cytokinin. Proceedings of the National Academy of Sciences of the United States of America, 111, 7150-7155. https://doi.org/10.1073/pnas.1321519111

  79. 79. Zhao, J., Yu, N., Ju, M., et al. (2019) ABC Transporter OsABCG18 Controls the Shootward Transport of Cytokinins and Grain Yield in Rice. Journal of Experimental Botany, 70, 6277-6291. https://doi.org/10.1093/jxb/erz382

  80. 80. Durán-Medina, Y., Díaz-Ramírez, D. and Marsch-Martínez, N. (2017) Cytokinins on the Move. Frontiers in Plant Science, 8, Article 146. https://doi.org/10.3389/fpls.2017.00146

  81. 81. Gillissen, B., Bürkle, L., André, B., et al. (2000) A New Family of High-Affinity Transporters for Adenine, Cytosine, and Purine Derivatives in Arabidopsis. Plant Cell, 12, 291-300. https://doi.org/10.1105/tpc.12.2.291

  82. 82. Xiao, Y., Zhang, J., Yu, G., et al. (2020) Endoplasmic Reticulum-Localized PURINE PERMEASE1 Regulates Plant Height and Grain Weight by Modulating Cytokinin Distribution in Rice. Frontiers in Plant Science, 11, Article 618560. https://doi.org/10.3389/fpls.2020.618560

  83. 83. Hu, Y., Patra, P., Pisanty, O., et al. (2023) Multi-Knock—A Multi-Targeted Genome-Scale CRISPR Toolbox to Overcome Functional Redundancy in Plants. Nature Plants, 9, 572-587. https://doi.org/10.1038/s41477-023-01374-4

  84. 84. Cecchetto, G., Amillis, S., Diallinas, G., et al. (2004) The AzgA Purine Transporter of Aspergillus nidulans. Characterization of a Protein Belonging to a New Phylogenetic Cluster. The Journal of Biological Chemistry, 279, 3132-3141. https://doi.org/10.1074/jbc.M308826200

  85. 85. Mansfield, T.A., Schultes, N.P. and Mourad, G.S. (2009) AtAzg1 and AtAzg2 Comprise a Novel Family of Purine Transporters in Arabidopsis. FEBS Letters, 583, 481-486. https://doi.org/10.1016/j.febslet.2008.12.048

  86. 86. Gray, J.H., Owen, R.P. and Giacomini, K.M. (2004) The Concentrative Nucleoside Transporter Family, SLC28. Pflügers Archiv, 447, 728-734. https://doi.org/10.1007/s00424-003-1107-y

  87. 87. Cabrita, M.A., Baldwin, S.A., Young, J.D., et al. (2002) Molecular Biology and Regulation of Nucleoside and Nucleobase Transporter Proteins in Eukaryotes and Prokaryotes. Biochemistry and Cell Biology, 80, 623-638. https://doi.org/10.1139/o02-153

  88. 88. Ritzel, M.W., Ng, A.M., Yao, S.Y., et al. (2001) Molecular Identification and Characterization of Novel Human and Mouse Concentrative Na -Nucleoside Cotransporter Proteins (HCNT3 and MCNT3) Broadly Selective for Purine and Pyrimidine Nucleosides (System Cib). The Journal of Biological Chemistry, 276, 2914-2927. https://doi.org/10.1074/jbc.M007746200

  89. 89. Hyde, R.J., Cass, C.E., Young, J.D., et al. (2001) The ENT Family of Eukaryote Nucleoside and Nucleobase Transporters: Recent Advances in the Investigation of Structure/Function Relationships and the Identification of Novel Isoforms. Molecular Membrane Biology, 18, 53-63. https://doi.org/10.1080/09687680118799

  90. 90. Hirose, N., Makita, N., Yamaya, T., et al. (2005) Functional Characterization and Expression Analysis of a Gene, OsENT2, Encoding an Equilibrative Nucleoside Transporter in Rice Suggest a Function in Cytokinin Transport. Plant Physiology, 138, 196-206. https://doi.org/10.1104/pp.105.060137

  91. 91. Hirose, N., Takei, K., Kuroha, T., et al. (2008) Regulation of Cytokinin Biosynthesis, Compartmentalization and Translocation. Journal of Experimental Botany, 59, 75-83. https://doi.org/10.1093/jxb/erm157

  92. 92. Cornelius, S., Traub, M., Bernard, C., et al. (2012) Nucleoside Transport across the Plasma Membrane Mediated by Equilibrative Nucleoside Transporter 3 Influences Metabolism of Arabidopsis Seedlings. Plant Biology, 14, 696-705. https://doi.org/10.1111/j.1438-8677.2012.00562.x

  93. 93. Korobova, A., Kuluev, B., Möhlmann, T., et al. (2021) Limitation of Cytokinin Export to the Shoots by Nucleoside Transporter ENT3 and Its Linkage with Root Elongation in Arabidopsis. Cells, 10, Article 350. https://doi.org/10.3390/cells10020350

  94. 94. Sun, J., Hirose, N., Wang, X., et al. (2005) Arabidopsis SOI33/AtENT8 Gene Encodes A Putative Equilibrative Nucleoside Transporter That Is Involved in Cytokinin Transport in Planta. Journal of Integrative Plant Biology, 47, 588-603. https://doi.org/10.1111/j.1744-7909.2005.00104.x

  95. 95. Letham, D.S. (2019) Cytokinins as Phytohormones—Sites of Biosynthesis, Translocation, and Function of Translocated Cytokinin. In: Mok, D.W.S., Ed., Cytokinins, CRC Press, Boca Raton, 57-80. https://doi.org/10.1201/9781351071284-5

期刊菜单